

Journal of Nonlinear Science and Applications

Some new results on complete U_n^* -metric space

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Akbar Dehghan Nezhad^{a,*}, Najmeh khajuee^a

^aDepartment of Mathematics, Yazd University, 89195–741, Yazd, Iran.

Communicated by S.M. Vaezpour

Abstract

In this paper, we give some new definitions of U_n^* -metric spaces and we prove a common fixed point theorem for two mappings under the condition of weakly compatible and establish common fixed point for sequence of generalized contraction mappings in complete U_n^* -metric space. ©2013 All rights reserved.

Keywords: U_n^* -metric space, complete U_n^* -metric space, sequence of contractive mapping. 2010 MSC: 47H10, 54H25.

1. Introduction and Preliminaries

Recently Sedghi et. al. [11] introduced the concept of D^* -metric spaces and proved some common fixed point theorems (see also [3]–[12]).

In the present work, we introduce a new notion of generalized D^* -metric space called U^* -metric space of dimension n and study some fixed point results for two self-mappings f and g on U_n^* -metric spaces. Some fundamental properties of the proposed metric are studied.

Definition 1.1. [2] Let G be an ordered group. An ordered group metric (or OG-metric) on a nonempty set X is a symmetric nonnegative function d_G from $X \times X$ into G such that $d_G(x, y) = 0$ if and only if x = y and such that the triangle inequality is satisfied; the pair (X, d_G) is an ordered group metric space (or OG-metric space).

For $n \ge 2$, let X^n denotes the cartesian product $X \times \ldots \times X$ and $\mathbb{R}^+ = [0, +\infty)$. We begin with the following definition.

Definition 1.2. Let X be a non-empty set. Let $U_n^* : X^n \longrightarrow G^+$ be a function that satisfies the following conditions:

Received 2012-12-14

^{*}Corresponding author

Email addresses: anezhad@yazd.ac.ir (Akbar Dehghan Nezhad), khajuee.najmeh@yahoo.com (Najmeh khajuee)

(U1) $U_n^*(x_1, \ldots, x_n) = 0$ if $x_1 = \ldots = x_n$,

(U2) $U_n^*(x_1,...,x_n) > 0$ for all $x_1,...,x_n$ with $x_i \neq x_j$, for some $i, j \in \{1,...,n\}$,

(U3) $U_n^*(x_1,...,x_n) = U_n^*(x_{\pi_1},...,x_{\pi_n})$, for every permutation $(\pi_{(1)},...,\pi_{(n)})$ of (1,2,...,n),

(U4) $U_n^*(x_1, x_2, \dots, x_n) \le U_n^*(x_1, \dots, x_{n-1}, a) + U_n^*(a, x_n, \dots, x_n)$, for all $x_1, \dots, x_n, a \in X$.

The function U_n^* is called a universal ordered group metric of dimension n, or more specifically an OU_n^* -metric on X, and the pair (X, U_n^*) is called an OU_n^* -metric space.

For example we can place $G^+ = \mathbb{Z}^+$ or \mathbb{R}^+ . In the sequel, for simplicity we assume that $G^+ = \mathbb{R}^+$.

Example 1.3. (a) Let (X, d) be a usual metric space, then (X, S_n) and (X, M_n) are U_n^* -metric spaces, where

$$S_n(x_1, \dots, x_n) = \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} d(x_i, x_j),$$

$$M_n(x_1, \dots, x_n) = \max\{d(x_i, x_j) : 1 \le i < j \le n\}.$$

(b) Let ϕ be a non-decreasing and concave function with $\phi(0) = 0$. If (X, d) is a usual metric space, then (X, ϕ_n) defined by

$$\phi_n(x_1, ..., x_n) = \phi^{-1} \left(\sum_{1 \le i < j \le n} \phi(d(x_i, x_j)) \right)$$

is a U_n^* -metric.

(c) Let X = C([0,T]) be the set of all continuous functions defined on [0,T]. Defined $I_n: X^n \longrightarrow \mathbb{R}^+$ by

$$I_n(x_1, \dots, x_n) = \sum_{1 \le i < j \le n} \sup_{t \in [0,T]} |x_i(t) - x_j(t)|.$$

Then (X, I_n) is a U_n^* -metric space.

(d) Let $X = \mathbb{R}^n$ defined $L_n : \mathbb{R}^n \longrightarrow \mathbb{R}^+$ by

$$L_n(x_1, \dots, x_n) = \sum_{1 \le i < j \le n} \|x_i - x_j\|^{\frac{1}{r}}$$

For every $r \in \mathbb{R}^+$. Then (X, L_n) is a U_n^* -metric space.

(e) Let $X = \mathbb{R}$ defined $K_n : \mathbb{R}^n \longrightarrow \mathbb{R}$ by

$$K_n(x_1, ..., x_n) = \begin{cases} 0 & \text{if } x_1 = \dots = x_n \\ Mox\{x_1, \dots, x_n\} & \text{otherwise} \end{cases}$$

Then (X, K_n) is a U_n^* -metric space.

Remark 1.4. In a U_n^* -metric space, we prove that $U^*(x, ..., x, y) = U^*(x, y, ...y)$. For (i) $U^*(x, ..., x, y) \leq U^*(x, ..., x) + U^*(x, y, ..., y) = U^*(x, y, ..., y)$ and similary (ii) $U^*(y, ..., y, x) \leq U^*(y, ..., y) + U^*(y, x, ..., x) = U^*(y, x, ..., x)$.

Hence by (i),(ii) we get $U^*(x,...,x,y) = U^*(x,y,...y)$.

Proposition 1.5. Let (X, U) and (Y, V) be two U_n^* -metric spaces. Then (Z, W) is also a U_n^* -metric space, where $Z = X \times Y$ and $W(z_1, ..., z_n) = max\{U(x_1, ..., x_n), V(y_1, ..., y_n)\}$ for $z_i = (x_i, y_i) \in Z$ with $x_i \in X$, $y_i \in Y$, i = 1, ..., n.

Proof. Obviously (U1-U3) conditions are satisfied. To prove the (U4) inequality. Let $z_1, ..., z_n \in \mathbb{Z}$, with $c = (a, b), \ z_i = (x_i, y_i), \ i = 1, ..., n,$ $W(z_1, ..., z_n) = max\{U(x_1, ..., x_n), V(y_1, ..., y_n)\}) \leq max\{U(x_1, ..., x_{n-1}, a) + U(a, x_n, ..., x_n), u_n(x_n, ..., x_n)\}$ $V(y_1, ..., y_{n-1}, b) + V(b, y_n, ..., y_n)$ $\leq \max\{U(x_1, ..., x_{n-1}, a), V(y_1, ..., y_{n-1}, b)\}$ $+max\{U(a, x_n, ..., x_n), V(b, y_n, ..., y_n)\}$ $= W(z_1, ..., z_{n-1}, c) + W(c, z_n, ..., z_n).$

Hence (Z, W) is a U_n^* -metric space.

Definition 1.6. A U_n^* -metric space X is said to be bounded if there exists a constant M > 0 such that $U_n^*(x_1, ..., x_n) \leq M$ for all $x_1, ..., x_n \in X$. A U_n^* -metric space X is said to be unbounded if it is not bounded.

Proposition 1.7. Let (X, U_n^*) be a U_n^* -metric space and let M > 0 be a fixed positive real number. Then (X, V) is a bounded U_n^* -metric space with bound M, where the function V is given by

$$V(x_1, ..., x_n) = \frac{MU^*(x_1, ..., x_n)}{(k + U^*(x_1, ..., x_n))}$$

for all $x_1, ..., x_n \in X$ and with k > 0.

Proof. Obviously (U1-U3) conditions are satisfied. We only prove the (U4) inequality. Let $x_1, ..., x_n \in X$,

$$\begin{split} V(x_1,...,x_n) &= \frac{MU^*(x_1,...,x_n)}{(k+U^*(x_1,...,x_n))} &= M - \frac{Mk}{(k+U^*(x_1,...,x_n))} \\ &\leq M - \frac{Mk}{(k+U^*(x_1,...,x_{n-1},a) + U^*(a,x_n,...,x_n))} \\ &= \frac{M(U^*(x_1,...,x_{n-1},a) + U^*(a,x_n,...,x_n))}{(k+U^*(x_1,...,x_{n-1},a) + U^*(a,x_n,...,x_n))} \\ &= \frac{M(U^*(x_1,...,x_{n-1},a) + U^*(a,x_n,...,x_n))}{(k+U^*(x_1,...,x_{n-1},a) + U^*(a,x_n,...,x_n))} \\ &+ \frac{M(U^*(a,x_n,...,x_n))}{(k+U^*(x_1,...,x_{n-1},a) + U^*(a,x_n,...,x_n))} \\ &\leq \frac{M(U^*(x_1,...,x_{n-1},a) + U^*(a,x_n,...,x_n))}{(k+U^*(x_1,...,x_{n-1},a) + V(a,x_n,...,x_n))} \\ &= V(x_1,...,x_{n-1},a) + V(a,x_n,...,x_n). \end{split}$$

Hence (X, V) is a U_n^* -metric space. Let $x_1, ..., x_n \in X$, Then we have,

$$V(x_1, ..., x_n) = \frac{MU^*(x_1, ..., x_n)}{(k + U^*(x_1, ..., x_n))} \le \frac{MU^*(x_1, ..., x_n)}{(U^*(x_1, ..., x_n))} = M$$

This show that (X, V) is bounded with U_n^* -bound M.

Definition 1.8. Let (X, U_n^*) be a U_n^* -metric space, then for $x_0 \in X$, r > 0, the U_n^* -ball with center x_0 and radius r is

$$B_{U^*}(x_0, r) = \{ y \in X : U_n^*(x_0, y, ..., y) < r \}.$$

Definition 1.9. Let (X, U_n^*) be a U_n^* -metric space and $Y \subset X$.

(1) If for every $y \in Y$ there exist r > 0 such that $B_{U^*}(y, r) \subset Y$, then subset Y is called open subset of X. (2) Subset Y of X is said to be U^* -bounded if there exists r > 0 such that $U^*(x, y, ..., y) < r$ for all $x, y \in Y$. (3) A sequence $\{x_k\}$ in X converges to x if and only if

$$U^*(x_k, ..., x_k, x) = U^*(x, ..., x, x_k) \to 0$$
 as $k \to \infty$

That is for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$\forall k \ge N \Longrightarrow U^*(x, ..., x, x_k) < \varepsilon \quad (\star)$$

This is equivalent with, for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$\forall l_1, \dots, l_{n-1} \ge N \Longrightarrow U^*(x, x_{l_1}, \dots, x_{l_{n-1}}) < \varepsilon \quad (\star \star).$$

(4) Let (X, U_n^*) be a U_n^* -metric space, then a sequence $\{x_k\} \subseteq X$ is said to be U_n^* -Cauchy if for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $U_n^*(x_k, x_m, ..., x_l) < \varepsilon$ for all $k, m, ..., l \ge N$. The U_n^* -metric space (X, U_n^*) is said to be complete if every Cauchy sequence is convergent.

Remark 1.10. (i) Let τ be the set of all $Y \subset X$ with $y \in Y$ if and only if there exists r > 0 such that $B_{U^*}(y,r) \subset Y$. Then τ is a topology on X induced by the U_n^* -metric.

(*ii*) If have (
$$\star$$
) of Definition 1.9, then for each $\varepsilon > 0$ there exists,

 $N_1 \in \mathbb{N}$ such that for every $l_1 \ge N_1 \Longrightarrow U^*(x, ..., x, x_{l_1}) < \frac{\varepsilon}{n-1},$ $N_2 \in \mathbb{N}$ such that for every $l_2 \ge N_2 \Longrightarrow U^*(x, ..., x, x_{l_2}) < \frac{\varepsilon}{n-1},$

and similarly there exist $N_{n-1} \in \mathbb{N}$ such that for every $l_{n-1} \ge N_{n-1} \Longrightarrow U^*(x, ..., x, x_{l_{n-1}}) < \frac{\varepsilon}{n-1}$. Let $N_0 = max\{N_1, ..., N_{n-1}\}$ and $K_0 = min\{l_1, ..., l_{n-1}\}$. For $K_0 > N_0$ we have

$$\begin{array}{lll} U^{*}(x, x_{l_{1}}, ..., x_{l_{n-1}}) & \leq & U^{*}(x, x_{l_{1}}, ..., x_{l_{n-2}}, x) + U^{*}(x, x_{l_{n-1}}, ..., x_{l_{n-1}}) \\ & \leq & & \\ & & \\ & + & U^{*}(x, x_{l_{1}}, ..., x_{l_{n-3}}, x) + U^{*}(x, x_{l_{n-2}}, ..., x_{l_{n-2}}) \\ & & + & U^{*}(x, x_{l_{n-1}}, ..., x_{l_{n-1}}) \\ & \leq & \\ & \vdots & \\ & \leq & \sum_{i=1}^{n-1} U^{*}(x, x_{l_{i}}, ..., x_{l_{i}}) \\ & < & \frac{(n-1)\varepsilon}{n-1} = \varepsilon. \end{array}$$

Conversely, set $l_1 = \cdots = l_{n-1} = k$ in $(\star\star)$ we have $U^*(x, \dots, x, x_k) < \varepsilon$.

Proposition 1.11. In a U_n^* -metric space, (X, U_n^*) , the following are equivalent.

(i) The sequence $\{x_k\}$ is U_n^* -Cauchy.

(ii) For every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $U_n^*(x_k, ..., x_k, x_l) < \varepsilon$, for all $k, l \ge N$.

Lemma 1.12. Let (X, U^*) be a U_n^* -metric space.

- (1) If r > 0, then the ball $B_{U^*}(x, r)$ with center $x \in X$ and radius r is the open ball.
- (2) If sequence $\{x_k\}$ in X converges to x, then x is unique.
- (3) If sequence $\{x_k\}$ in X converges to x, then sequence $\{x_k\}$ is a Cauchy sequence.
- (4) The function of U_n^* is continuous on X^n .

Proof. proof 1)

Let $w \in B_{U^*}(x,r)$ so that $U^*(x,w,...,w) < r$. If set $U^*(x,w,...,w) = \delta$ and $r' = r - \delta$ then we prove that $B_{U^*}(w,r') \subseteq B_{U^*}(x,r)$. Let $y \in B_{U^*}(w,r')$, by (U_4) we have $U^*(x,y,...,y) = U^*(y,...,y,x) \leq U^*(y,...,y,x)$ $U^*(y, ..., y, w) + U^*(w, x, ..., x) < r' + \delta = r.$ proof 2)

Let $x_k \longrightarrow y$ and $y \neq x$. Since $\{x_k\}$ converges to x and y, for each $\varepsilon > 0$ there exists,

 $N_1 \in \mathbb{N}$ such that for every $k \geq N_1 \Longrightarrow U^*(x, ..., x, x_k) < \frac{\varepsilon}{2}$ and

 $N_2 \in \mathbb{N}$ such that for every $k \ge N_2 \Longrightarrow U^*(y, ..., y, x_k) < \frac{\varepsilon}{2}$. If set $N_0 = mox\{N_1, N_2\}$, then for every $k \ge N_0$ by (U_4) we have

$$U^*(x, ..., x, y) \le U^*(x, ..., x, x_k) + U^*(x_k, y, ..., y) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

then $U^*(x, ..., x, y) = 0$ is a contradiction. So x = y. proof 3)

Since $x_k \longrightarrow x$ for each $\varepsilon > 0$ there exists,

 $N_1 \in \mathbb{N}$ such that for every $k \ge N_1 \Longrightarrow U^*(x_k, ..., x_k, x) < \frac{\varepsilon}{2}$

and

 $N_2 \in \mathbb{N}$ such that for every $l \ge N_1 \Longrightarrow U^*(x, x_l, ..., x_l) < \frac{\varepsilon}{2}$. If set $N_0 = mox\{N_1, N_2\}$, then for every $k, l \ge N_0$ by $(\overline{U_4})$ we have

$$U^{*}(x_{k},...,x_{k},x_{l}) \leq U^{*}(x_{k},...,x_{k},x) + U^{*}(x,x_{l},...,x_{l}) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Hence sequence $\{x_k\}$ is a Cauchy sequence.

proof 4)

Let the sequence $\{((x_1)_k, ..., (x_n)_k)\}$ in X^n converges to a point $(z_1, ..., z_n)$ i.e.

$$\lim_{k \to \infty} (x_i)_k = z_i \quad i = 1, ..., n$$

for each $\varepsilon > 0$ there exists,

 $N_1 \in \mathbb{N}$ such that for every $k > N_1 \Longrightarrow U^*(z_1, ..., z_1, (x_1)_k) < \frac{\varepsilon}{n}$ $N_2 \in \mathbb{N}$ such that for every $k > N_2 \Longrightarrow U^*(z_2, ..., z_2, (x_2)_k) < \frac{\varepsilon}{n}$

 $N_n \in \mathbb{N}$ such that for every $k > N_n \Longrightarrow U^*(z_n, ..., z_n, (x_n)_k) < \frac{\varepsilon}{n}$ If set $N_0 = mox\{N_1, ..., N_n\}$, then for every $k \ge N_0$ we have

$$\begin{aligned} U^*\big((x_1)_k, ..., (x_n)_k\big) &\leq U^*\big((x_1)_k, ..., (x_{n-1})_k, z_n\big) + U^*\big(z_n, (x_n)_k, ..., (x_n)_k\big) \\ &\leq U^*\big((x_1)_k, ..., (x_{n-2})_k, z_n, z_{n-1}\big) + U^*\big(z_{n-1}, (x_{n-1})_k, ..., (x_{n-1})_k\big) \\ &+ U^*\big(z_n, (x_n)_k, ..., (x_n)_k\big) \\ &\leq \\ &\vdots \\ &\leq U^*(z_1, ..., z_n) + \sum_{i=1}^n U^*\big(z_i, (x_i)_k, ..., (x_i)_k\big) \\ &\leq U^*(z_1, ..., z_n) + \frac{n\varepsilon}{n} = U^*(z_1, ..., z_n) + \varepsilon. \end{aligned}$$

Hence we have

$$U^*((x_1)_k, ..., (x_n)_k) - U^*(z_1, ..., z_n) < \varepsilon$$

$$U^{*}(z_{1},...,z_{n}) \leq U^{*}(z_{1},...,z_{n-1},(x_{n})_{k}) + U^{*}((x_{n})_{k},z_{n},...,z_{n})$$

$$\leq U^{*}(z_{1},...,z_{n-2},(x_{n})_{k},(x_{n-1})_{k}) + U^{*}((x_{n-1})_{k},z_{n-1},...,z_{n-1})$$

$$+ U^{*}((x_{n})_{k},z_{n},...,z_{n})$$

$$\leq$$

$$\vdots$$

$$\leq U^{*}((x_{1})_{k},...,(x_{n})_{k}) + \sum_{i=1}^{n} U^{*}((x_{i})_{k},z_{i},...,z_{i})$$

$$\leq U^{*}((x_{1})_{k},...,(x_{n})_{k}) + \frac{n\varepsilon}{n} = U^{*}((x_{1})_{k},...,(x_{n})_{k}) + \varepsilon.$$

That is,

$$U^*(z_1,...,z_n) - U^*((x_1)_k,...,(x_n)_k) < \varepsilon.$$

Therefore we have $|U^*((x_1)_k, ..., (x_n)_k) - U^*(z_1, ..., z_n)| < \varepsilon$, that is

$$\lim_{k \to \infty} U^*((x_1)_k, ..., (x_n)_k) = U^*(z_1, ..., z_n).$$

Г	
_	_

Definition 1.13. ([6]) Let f and g be mappings from a U_n^* -metric space (X, U_n^*) into itself. Then the mappings are said to be weak compatible if they commute at their coincidence point, that is fx = gx implies that fgx = gfx.

Definition 1.14. Let (X, U_n^*) be a U_n^* -metric space, for $A_1, ..., A_n \subseteq X$, define

$$\Delta_{U^*}(A_1, ..., A_n) = \sup\{U^*(a_1, ..., a_n) | a_i \in A_i, i = 1, ..., n\}.$$

Remark 1.15. It follows immediately from the definition that (i) If A_i consists of a single point a_i we write

$$\Delta_U^*(A_1, \dots, A_{i-1}, A_i, A_{i+1}, \dots, A_n) = \Delta_U^*(A_1, \dots, A_{i-1}, a_i, A_{i+1}, \dots, A_n).$$

If $A_1, ..., A_n$ also consists of a single point $a_1, ..., a_n$ respectively, we write

$$\Delta_U^*(A_1, ..., A_n) = \Delta_U^*(a_1, ..., a_n).$$

Also we have

$$\Delta_{U^*}(A_1, ..., A_n) = 0 \iff A_1 = \dots = A_n = \{a\},\$$
$$\Delta_{U^*}(A_1, ..., A_n) = \Delta_{U^*}(A_{\pi_1}, ..., A_{\pi_n}),\$$

for for every permutation $(\pi_{(1)}, ..., \pi_{(n)})$ of (1, 2, ..., n). In particular for $\emptyset \neq A_1 = \cdots = A_n \subseteq X$,

$$\Delta_{U^*}(A_1) = \sup\{U^*(b_1, ..., b_n) | b_1, ..., b_n \in A_1\}.$$

(*ii*) If $A \subseteq B$, then $\Delta_{U^*}(A) \leq \Delta_{U^*}(B)$. (*iii*) For a sequence $A_k = \{x_k, x_{k+1}, x_{k+2}, \dots\}$ in U_n^* -metric space (X, U_n^*) , let $a_k = \Delta_{U^*}(A_k)$ for $k \in \mathbb{N}$. Then

(a): Since $A_{k+1} \subseteq A_k$ hence $\Delta_{U^*}(A_{k+1}) \leq \Delta_{U^*}(A_k)$, for every $k \geq 1$. (b): $U^*(x_{l_1}, ..., x_{l_n}) \leq \Delta_{U^*}(A_k) = a_k$ for every $l_1, ..., l_n \geq k$, (c): $0 \leq \Delta_{U^*}(A_k) = a_k$. Therefore, (a,) is decreasing and hour dod for all $k \in \mathbb{N}$ and (b)

Therefore, $\{a_k\}$ is decreasing and bounded for all $k \in \mathbb{N}$, and so there exists an $0 \le a$ such that $\lim_{k\to\infty} a_k = a$.

Lemma 1.16. Let (X, U_n^*) be an U_n^* -metric space. If $\lim_{k\to\infty} a_k = 0$, then sequence $\{x_k\}$ is a Cauchy sequence.

Proof. Since $\lim_{k\to\infty} a_k = 0$, we have that for every $\varepsilon > 0$, there exists a $N_0 \in \mathbb{N}$ such that for every $k > N_0$, $|a_k - 0| < \varepsilon$. That is $a_k = \Delta_{U^*}(A_k) < \varepsilon$. Then for $l_1, \dots, l_n \ge k > N_0$ by (b) of Remark 1.15 we have

$$U^*(x_{l_1}, ..., x_{l_n}) \le \sup\{U^*(x_i, ..., x_j) \mid x_i, ..., x_j \in A_k\} = a_k < \varepsilon_k$$

Therefore, $\{x_k\}$ is a Cauchy sequence in X.

2. Main results

Theorem 2.1. Let X be a U_n^* -complete metric space

I) If f and g be self-mappings of a complete U_n^* -metric space (X, U_n^*) satisfying:

i) $g(X) \subseteq f(X)$, and f(X) is closed subset of X,

ii) the pair (f, g) is weakly compatible,

iii) $U^*(gz_1, ..., gz_n) \leq \psi(U^*(fz_1, ..., fz_n))$, for every $z_1, ..., z_n \in X$, where $\psi : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is a nondecreasing continuous function with $\psi(t) < t$ for every t > 0.

Then f and g have a unique common fixed point in X.

II) If $f_k : X \longrightarrow X$ be a sequence maps such that

$$U^*(f_i z_1, f_j z_2, ..., f_l z_{n-1}, z_n) \le \beta U^*(z_1, ..., z_n)$$

for all $i \neq j$ and $z_1, ..., z_n \in X$ with $0 \leq \beta < \frac{1}{2}$. Then $\{f_k\}$ have a unique common fixed point.

Proof. proof **I**)

Let x_0 be an arbitrary point in X. By (i), we can choose a point x_1 in X such that $y_0 = gx_0 = fx_1$ and $y_1 = gx_1 = fx_2$. In general, there exists a sequence $\{y_k\}$ such that, $y_k = gx_k = fx_{k+1}$, for $k = 0, 1, 2, \cdots$. We prove that sequence $\{y_k\}$ is a Cauchy sequence. Let $A_k = \{y_k, y_{k+1}, y_{k+2}, \cdots\}$ and $a_k = \Delta_{U^*}(A_k), k \in \mathbb{N}$. Then we know $\lim_{k\to\infty} a_k = a$ for some $a \ge 0$.

Taking $z_i = x_{l_i+l}$ in (iii) for $l \ge 1$ and $l_1, ..., l_n \ge 0$

$$U^{*}(y_{l_{1}+l}, ..., y_{l_{n}+l}) = U^{*}(gx_{l_{1}+l}, ..., gx_{l_{n}+l})$$

$$\leq \psi(U^{*}(fx_{l_{1}+l}, ..., fx_{l_{n}+l}))$$

$$= \psi(U^{*}(y_{l_{1}+l-1}, ..., y_{l_{n}+l-1}))$$

Since $U^*(y_{l_1+l-1}, ..., y_{l_n+l-1}) \leq a_{l-1}$, for every $l_1, ..., l_n \geq 0$ and ψ is increasing in t, we get

$$U^*(y_{l_1+l}, ..., y_{l_n+l}) \le \psi(U^*(y_{l_1+l-1}, ..., y_{l_n+l-1})).$$

Therefore

$$\sup_{1,...,l_n \ge 0} \{ U^*(y_{l_1+l},...,y_{l_n+l}) \le \psi(a_{l-1}) \}$$

Hence, we have $a_l \leq \psi(a_{l-1})$. Letting $l \to \infty$, we get $a \leq \psi(a)$. If $a \neq 0$, then $a \leq \psi(a) < a$, which is a contradiction. Thus a = 0 and hence $\lim_{k\to\infty} a_k = 0$. Thus Lemma 1.16 $\{y_k\}$ is a Cauchy sequence in X. By the completeness of X, there exists a $v \in X$ such that

$$\lim_{k \to \infty} y_k = \lim_{k \to \infty} gx_k = \lim_{k \to \infty} fx_{k+1} = v.$$

Let f(X) is closed, there exist $w \in X$ such that fw = v, Now we show that gw = v For this it is enough set $x_k, ..., x_k, w$ replacing $z_1, ..., z_n$ respectively, in inequality (*iii*) we get

$$U^*(gx_k, ..., gx_k, gw) \le \psi(U^*(fx_k, ..., fx_k, fw))$$

Taking $k \to \infty$, we get

$$U^*(v, ..., v, gw) \le \psi(U^*(0)) = 0$$

it implies gw = v.

Since the pair (f, g) are weakly compatible, hence we get, gfw = fgw. Thus fv = gv. Now we prove that gv = v. If we substitute $z_1, ..., z_n$ in *(iii)* by $x_k, ..., x_k$ and v respectively, we get

$$U^*(gx_k, ..., gx_k, gu) \le \psi(U^*(fx_k, ..., fx_k, fv))$$

Taking $k \to \infty$, we get

$$U^{*}(v, ..., v, gv) \leq \psi(U^{*}(v, ..., v, gv)).$$

If $gv \neq v$, then $U^*(v, ..., v, gv) < U^*(v, ..., v, gv)$, is contradiction. Therefore,

$$fv = gv = v$$

For the uniqueness, let v and v' be fixed points of f, g. Taking $z_1 = ... = z_{n-1} = v$ and $z_n = v'$ in (*iii*), we have

$$U^{*}(v, ..., v, v') = U^{*}(gv, ..., gv, gv')$$

$$\leq \psi(U^{*}(fv, ..., fv, fv'))$$

$$= \psi(U^{*}(v, ..., v, v'))$$

$$< U^{*}(v, ..., v, v'),$$

which is a contradiction. Thus we have v = v'. proof **II**)

Let $x_0 \in X$ be any fixed arbitrary element define a sequence $\{x_k\}$ in X as. $x_{k+1} = f_{k+1}x_k$ for all $k = 0, 1, 2, \cdots$.

Let $d_k = U^*(x_k, x_{k+1}, ..., x_{k+1})$ for all $k = 0, 1, 2, \cdots$. Now

$$d_{k+1} = U^*(x_{k+1}, x_{k+2}, ..., x_{k+2})$$

= $U^*(f_{k+1}x_k, f_{k+2}x_{k+1}, ..., f_{k+2}x_{k+1}, x_{k+2})$
 $\leq \beta U^*(x_k, x_{k+1}, ..., x_{k+1}, x_{k+2})$
 $\leq \beta U^*(x_k, x_{k+1}, ..., x_{k+1}, x_{k+1}) + \beta U^*(x_{k+1}, x_{k+2}, ..., x_{k+2})$
= $\beta d_k + \beta d_{k+1}.$

Hence

 $\begin{aligned} &d_{k+1} \leq \frac{\beta}{1-\beta} d_k, \\ &d_k \leq \frac{\beta}{1-\beta} d_{k-1} \text{ for all } n = 1, 2, \cdots. \text{ Let } \alpha = \frac{\beta}{1-\beta}, \text{ we have} \\ &d_k \leq \alpha \ d_{k-1} \leq \alpha^k d_0 \to 0 \text{ as } k \to \infty. \text{ Therefore} \\ &\lim_{k \to \beta} d_k = 0. \text{ Thus} \\ &\lim_{k \to \beta} U^*(x_k, x_{k+1}, ..., x_{k+1}) = 0. \\ &\text{Now we shall prove that } \{x_k\} \text{ is a } U_n^*\text{-Cauchy sequence in } X. \\ &\text{Let } l > k > N_0 \text{ for some } N_0 \in \mathbb{N}. \text{ Now} \end{aligned}$

$$U^{*}(x_{k},...,x_{k},x_{l}) \leq U^{*}(x_{k},...,x_{k},x_{k+1}) + U^{*}(x_{k+1},...,x_{k+1},x_{l})$$

$$\leq \sum_{t=\infty}^{l-1} U^{*}(x_{t},...,x_{t},x_{t+1}) \to 0 \text{ as } k, l \to \infty$$

Hence $\lim_{k,l\to\infty} U^*(x_k, ..., x_k, x_l) = 0.$

Thus $\{x_k\}$ is U_n^* -Cauchy sequence in X.

Since X is U_n^* -complete $x_k \to x$ in X. We prove that x is a fixed point of f_k for all k suppose there exist a k' such that $f_{k'}x \neq x$. Then

$$U^{*}(f_{k'}, x, ..., x) = \lim_{k \to \infty} U^{*}(f_{k'}x, x_{k+1}, ..., x_{k+1}, x)$$

=
$$\lim_{k \to \infty} U^{*}(f_{k'}x, f_{k+1}x_{k}, ..., f_{k+1}x_{k}, x)$$

$$\leq \beta \lim_{k \to \infty} U^{*}(x, x_{k+1}, ..., x_{k+1}, x) = 0.$$

Therefore $U^*(f_{k'}, x, ..., x) = 0$, Therefore $f_k x = x$ for all k. Thus x is common fixed point of $\{f_k\}$ for all k. For the uniqueness, suppose $x \neq y$ such that $f_k y = y$ for all k. Then

$$U^{*}(x, y, ..., y) = U^{*}(f_{i}x, f_{j}y, ..., f_{j}y, y)$$

$$\leq \beta U^{*}(x, y, ..., y)$$

This implies $(1 - \beta)U^*(x, y, ..., y) \leq 0$. Since $x \neq y$ we have $U^*(x, y..., y) > 0$ her $(1 - \beta) < 0$. This implies $\beta > 1$ which contraction to $\beta < \frac{1}{2}$. Thus $\{f_k\}$ have a unique common fixed point.

Corollary 2.2. Let f be self-mapping of a complete U_n^* -metric space (X, U_n^*) satisfying:

$$U^*(z_1, ..., z_n) \le \psi(U^*(f^m z_1, ..., f^m z_n)),$$

for every $z_1, ..., z_n \in X$, f is surjective and $m \in \mathbb{N}$, where $\psi : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is a nondecreasing continuous function with $\psi(t) < t$ for every t > 0. Then f have a unique fixed point in X.

Proof. If we define q = I identity map in Theorem 2.1. There exists a unique $v \in X$ such that $f^m v = v$. Thus

$$f^m(fv) = f(f^m v) = fv.$$

Since v is unique, we have fv = v.

Corollary 2.3. Let g be self-mapping of a complete U_n^* -metric space (X, U_n^*) satisfying:

$$U^*(g^m z_1, ..., g^m z_n) \le \psi(U^*(z_1, ..., z_n)),$$

for every $z_1, ..., z_n \in X$ and $m \in \mathbb{N}$, where $\psi : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is a nondecreasing continuous function with $\psi(t) < t$ for every t > 0.

Then g have a unique fixed point in X.

Proof. If we define f = I identity map in Theorem 2.1. There exists a unique $v \in X$ such that $g^m v = v$. Thus

$$g^m(gv) = g(g^m v) = gv.$$

Since v is unique, we have gv = v.

Corollary 2.4. Let f and g be self-mappings of a complete U_n^* -metric space (X, U_n^*) satisfying: (i) $g^r(X) \subseteq f^s(X)$, and $f^s(X)$ is closed subset of X, (ii) the pair (f^s, g^r) is weakly compatible and $f^sg = gf^s$, $g^rf = fg^r$, (*iii*) $U^*(g^r z_1, ..., g^r z_n) \leq \psi(U^*(f^s z_1, ..., f^s z_n))$, for every $z_1, ..., z_n \in X$ and $r, s \in \mathbb{N}$ where $\psi : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is

a nondecreasing continuous function with $\psi(t) < t$ for every t > 0. Then f and g have a unique common fixed point in X.

Proof. By Theorem 2.1 there exists a fixed point $v \in X$ such that $f^s v = g^r v = v$. On the other hand, we have

$$gv = g(g^r v) = g^r(gv)$$
 and $gv = g(f^s v) = f^s(gv)$.

Since v is unique, we have gv = v. Similarly, we have fv = v.

Corollary 2.5. Let f, g and h be self-mappings of a complete U_n^* -metric space (X, U_n^*) satisfying: (i) $g(X) \subseteq fh(X)$, and fh(X) is closed subset of X, (ii) the pair (fh, g) is weakly compatible and fh = hf, gh = hg, (iii) $U^*(gz_1, ..., gz_n) \leq \psi(U^*(fhz_1, ..., fhz_n))$, for every $z_1, ..., z_n \in X$, where $\psi : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is a nondecreasing continuous function with $\psi(t) < t$ for every t > 0. Then f, g and h have a unique common fixed point in X.

Proof. By Theorem 2.1 there exists a fixed point $v \in X$ such that fhv = gv = v. Now, we prove that hv = v. If $hv \neq v$ in (*iii*), then we have

which is a contradiction. Thus we have hv = v. Therefore,

$$fv = fhv = v = hv = gv.$$

Acknowledgements:

The authors thank the editor and the referees for their useful comments and suggestions.

References

- [1] A. Bagheri Vakilabad and S. Mansour Vaezpour, Generalized contractions and common fixed point theorems concerning τ distance, J. Nonlinear Sci. Appl. **3** (3) (2010), 78-86.
- [2] L. W. Cohen and C. Goffman, The topology of ordered Abelian groups, Trans. Amer. Math. Soc.67 (1949), 310-319.
 1.1
- [3] A. Dehghan Nezhad and Z. Aral, The topology of GB-metric spaces, ISRN. Mathematical Analysis, Hindawi, (2011). 1
- [4] A. Dehghan Nezhad and H. Mazaheri, New results in G-best approximation in G-metric spaces, Ukrainian Math. J., 62 (4), (2010), 648-654.
- [5] B.C. Dhage, A common fixed point principle in D-metric spaces, Bulletin of the Calcutta Mathematical Society. 91 (6) (1999), 475-480.
- [6] G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (3) (1998), 227-238. 1.13
- [7] N. V. Luong and N. X. Thuan, Common fixed point theorems in compact D^{*}-metric spaces, Internationnal Mathematical Forum. 6 (13) (2011),605-612.
- [8] H.K. Nashine, Coupled common fixed point results in ordered G-metric spaces, J. Nonlinear Sci. Appl. 1 (2012), 1-13.

- [9] V. Popa and A.M. Patriciu, A general fixed point theorem for pairs of weakly compatible mappings in G-metric spaces, J. Nonlinear Sci. Appl. 5 (2012), 151-160.
- S. Sedghi, M.S. Khan and N. Shobe, Fixed point theorems for six weakly compatible mappings in D^{*}-metric spaces, J. Appl. Math. Informatics. 27 (2) (2009), 351-363.
- [11] S. Sedghi, S. Nabi and Z. Haiyun, A common fixed point theorems for in D^{*}-metric spaces, Hindawi Publishing Corporation. Fixed point Theory and Applications, Article ID 27906, (2007), p. 13, doi: 10.1155.
- [12] S. Shaban, S. Nabi, Z. Haiyun and S. Shahram, Common fixed point theorems for two mappings in D^{*}-metric spaces, Journal of prime research in mathematics. 4 (2008), 132–142. 1