Some new results on complete U_{n}^{*}-metric space

Akbar Dehghan Nezhada,*, Najmeh khajuee ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Yazd University, 89195-741, Yazd, Iran.

Communicated by S.M. Vaezpour

Abstract

In this paper, we give some new definitions of U_{n}^{*}-metric spaces and we prove a common fixed point theorem for two mappings under the condition of weakly compatible and establish common fixed point for sequence of generalized contraction mappings in complete U_{n}^{*}-metric space. © 2013 All rights reserved.

Keywords: U_{n}^{*}-metric space, complete U_{n}^{*}-metric space, sequence of contractive mapping. 2010 MSC: 47H10, 54H25.

1. Introduction and Preliminaries

Recently Sedghi et. al. [11 introduced the concept of D^{*}-metric spaces and proved some common fixed point theorems (see also [3]-[12]).
In the present work, we introduce a new notion of generalized D^{*}-metric space called U^{*}-metric space of dimension n and study some fixed point results for two self-mappings f and g on U_{n}^{*}-metric spaces. Some fundamental properties of the proposed metric are studied.

Definition 1.1. 2] Let G be an ordered group. An ordered group metric (or OG-metric) on a nonempty set X is a symmetric nonnegative function d_{G} from $X \times X$ into G such that $d_{G}(x, y)=0$ if and only if $x=y$ and such that the triangle inequality is satisfied; the pair $\left(X, d_{G}\right)$ is an ordered group metric space (or OG-metric space).

For $n \geq 2$, let X^{n} denotes the cartesian product $X \times \ldots \times X$ and $\mathbb{R}^{+}=[0,+\infty)$. We begin with the following definition.

Definition 1.2. Let X be a non-empty set. Let $U_{n}^{*}: X^{n} \longrightarrow G^{+}$be a function that satisfies the following conditions:

[^0](U1) $U_{n}^{*}\left(x_{1}, \ldots, x_{n}\right)=0$ if $x_{1}=\ldots=x_{n}$,
(U2) $U_{n}^{*}\left(x_{1}, \ldots, x_{n}\right)>0$ for all x_{1}, \ldots, x_{n} with $x_{i} \neq x_{j}$, for some $i, j \in\{1, \ldots, n\}$,
(U3) $U_{n}^{*}\left(x_{1}, \ldots, x_{n}\right)=U_{n}^{*}\left(x_{\pi_{1}}, \ldots, x_{\pi_{n}}\right)$, for every permutation $\left(\pi_{(1)}, \ldots, \pi_{(n)}\right)$ of $(1,2, \ldots, n)$,
(U4) $U_{n}^{*}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq U_{n}^{*}\left(x_{1}, \ldots, x_{n-1}, a\right)+U_{n}^{*}\left(a, x_{n}, \ldots, x_{n}\right)$, for all $x_{1}, \ldots, x_{n}, a \in X$.
The function U_{n}^{*} is called a universal ordered group metric of dimension n, or more specifically an $O U_{n}^{*}$-metric on X, and the pair $\left(X, U_{n}^{*}\right)$ is called an $O U_{n}^{*}$-metric space.

For example we can place $G^{+}=\mathbb{Z}^{+}$or \mathbb{R}^{+}. In the sequel, for simplicity we assume that $G^{+}=\mathbb{R}^{+}$.
Example 1.3. (a) Let (X, d) be a usual metric space, then $\left(X, S_{n}\right)$ and $\left(X, M_{n}\right)$ are U_{n}^{*}-metric spaces, where

$$
\begin{aligned}
S_{n}\left(x_{1}, \ldots, x_{n}\right) & =\frac{2}{n(n-1)} \sum_{1 \leq i<j \leq n} d\left(x_{i}, x_{j}\right) \\
M_{n}\left(x_{1}, \ldots, x_{n}\right) & =\max \left\{d\left(x_{i}, x_{j}\right): 1 \leq i<j \leq n\right\}
\end{aligned}
$$

(b) Let ϕ be a non-decreasing and concave function with $\phi(0)=0$. If (X, d) is a usual metric space, then $\left(X, \phi_{n}\right)$ defined by

$$
\phi_{n}\left(x_{1}, \ldots, x_{n}\right)=\phi^{-1}\left(\sum_{1 \leq i<j \leq n} \phi\left(d\left(x_{i}, x_{j}\right)\right)\right.
$$

is a U_{n}^{*}-metric.
(c) Let $X=C([0, T])$ be the set of all continuous functions defined on $[0, T]$. Defined $I_{n}: X^{n} \longrightarrow \mathbb{R}^{+}$by

$$
I_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i<j \leq n} \sup _{t \in[0, T]}\left|x_{i}(t)-x_{j}(t)\right|
$$

Then $\left(X, I_{n}\right)$ is a U_{n}^{*}-metric space.
(d) Let $X=\mathbb{R}^{n}$ defined $L_{n}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{+}$by

$$
L_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i<j \leq n}\left\|x_{i}-x_{j}\right\|^{\frac{1}{r}}
$$

For every $r \in \mathbb{R}^{+}$. Then $\left(X, L_{n}\right)$ is a U_{n}^{*}-metric space.
(e) Let $X=\mathbb{R}$ defined $K_{n}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ by

$$
K_{n}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}0 & \text { if } x_{1}=\cdots=x_{n} \\ \operatorname{Mox}\left\{x_{1}, \cdots, x_{n}\right\} & \text { otherwise }\end{cases}
$$

Then $\left(X, K_{n}\right)$ is a U_{n}^{*}-metric space.
Remark 1.4. In a U_{n}^{*}-metric space, we prove that $U^{*}(x, \ldots, x, y)=U^{*}(x, y, \ldots y)$. For
(i) $U^{*}(x, \ldots, x, y) \leq U^{*}(x, \ldots, x)+U^{*}(x, y, \ldots, y)=U^{*}(x, y, \ldots, y)$ and similary
(ii) $U^{*}(y, \ldots y, x) \leq U^{*}(y, \ldots, y)+U^{*}(y, x, \ldots, x)=U^{*}(y, x, \ldots, x)$.

Hence by $(i),(i i)$ we get $U^{*}(x, \ldots, x, y)=U^{*}(x, y, \ldots y)$.
Proposition 1.5. Let (X, U) and (Y, V) be two U_{n}^{*}-metric spaces. Then (Z, W) is also a U_{n}^{*}-metric space, where $Z=X \times Y$ and $W\left(z_{1}, \ldots, z_{n}\right)=\max \left\{U\left(x_{1}, \ldots, x_{n}\right), V\left(y_{1}, \ldots, y_{n}\right)\right\}$ for $z_{i}=\left(x_{i}, y_{i}\right) \in Z$ with $x_{i} \in$ $X, y_{i} \in Y, i=1, \ldots, n$.

Proof. Obviously (U1-U3) conditions are satisfied. To prove the (U4) inequality. Let $z_{1}, \ldots, z_{n} \in Z$, with $c=(a, b), z_{i}=\left(x_{i}, y_{i}\right), i=1, \ldots, n$,

$$
\begin{aligned}
\left.W\left(z_{1}, \ldots, z_{n}\right)=\max \left\{U\left(x_{1}, \ldots, x_{n}\right), V\left(y_{1}, \ldots, y_{n}\right)\right\}\right) \leq & \max \left\{U\left(x_{1}, \ldots, x_{n-1}, a\right)+U\left(a, x_{n}, \ldots, x_{n}\right)\right. \\
& \left.V\left(y_{1}, \ldots, y_{n-1}, b\right)+V\left(b, y_{n}, \ldots, y_{n}\right)\right\} \\
\leq & \max \left\{U\left(x_{1}, \ldots, x_{n-1}, a\right), V\left(y_{1}, \ldots, y_{n-1}, b\right)\right\} \\
& +\max \left\{U\left(a, x_{n}, \ldots, x_{n}\right), V\left(b, y_{n}, \ldots, y_{n}\right)\right\} \\
& =W\left(z_{1}, \ldots, z_{n-1}, c\right)+W\left(c, z_{n}, \ldots, z_{n}\right)
\end{aligned}
$$

Hence (Z, W) is a U_{n}^{*}-metric space.
Definition 1.6. A U_{n}^{*}-metric space X is said to be bounded if there exists a constant $M>0$ such that $U_{n}^{*}\left(x_{1}, \ldots, x_{n}\right) \leq M$ for all $x_{1}, \ldots, x_{n} \in X$. A U_{n}^{*}-metric space X is said to be unbounded if it is not bounded.

Proposition 1.7. Let $\left(X, U_{n}^{*}\right)$ be a U_{n}^{*}-metric space and let $M>0$ be a fixed positive real number. Then (X, V) is a bounded U_{n}^{*}-metric space with bound M, where the function V is given by

$$
V\left(x_{1}, \ldots, x_{n}\right)=\frac{M U^{*}\left(x_{1}, \ldots, x_{n}\right)}{\left(k+U^{*}\left(x_{1}, \ldots, x_{n}\right)\right)}
$$

for all $x_{1}, \ldots, x_{n} \in X$ and with $k>0$.
Proof. Obviously (U1-U3) conditions are satisfied. We only prove the (U4) inequality. Let $x_{1}, \ldots, x_{n} \in X$,

$$
\begin{aligned}
V\left(x_{1}, \ldots, x_{n}\right)=\frac{M U^{*}\left(x_{1}, \ldots, x_{n}\right)}{\left(k+U^{*}\left(x_{1}, \ldots, x_{n}\right)\right)} & =M-\frac{M k}{\left(k+U^{*}\left(x_{1}, \ldots, x_{n}\right)\right)} \\
& \leq M-\frac{M k}{\left(k+U^{*}\left(x_{1}, \ldots, x_{n-1}, a\right)+U^{*}\left(a, x_{n}, \ldots, x_{n}\right)\right)} \\
& =\frac{M\left(U^{*}\left(x_{1}, \ldots, x_{n-1}, a\right)+U^{*}\left(a, x_{n}, \ldots, x_{n}\right)\right)}{\left(k+U^{*}\left(x_{1}, \ldots, x_{n-1}, a\right)+U^{*}\left(a, x_{n}, \ldots, x_{n}\right)\right)} \\
& =\frac{M\left(U^{*}\left(x_{1}, \ldots, x_{n-1}, a\right)\right)}{\left(k+U^{*}\left(x_{1}, \ldots, x_{n-1}, a\right)+U^{*}\left(a, x_{n}, \ldots, x_{n}\right)\right)} \\
& +\frac{M\left(U^{*}\left(a, x_{n}, \ldots, x_{n}\right)\right)}{\left(k+U^{*}\left(x_{1}, \ldots, x_{n-1}, a\right)+U^{*}\left(a, x_{n}, \ldots, x_{n}\right)\right)} \\
& \leq \frac{M\left(U^{*}\left(x_{1}, \ldots, x_{n-1}, a\right)\right)}{\left(k+U^{*}\left(x_{1}, \ldots, x_{n-1}, a\right)\right.}+\frac{M\left(U^{*}\left(a, x_{n}, \ldots, x_{n}\right)\right)}{\left(k+U^{*}\left(a, x_{n}, \ldots, x_{n}\right)\right)} \\
& =V\left(x_{1}, \ldots, x_{n-1}, a\right)+V\left(a, x_{n}, \ldots, x_{n}\right) .
\end{aligned}
$$

Hence (X, V) is a U_{n}^{*}-metric space.
Let $x_{1}, \ldots, x_{n} \in X$, Then we have,

$$
V\left(x_{1}, \ldots, x_{n}\right)=\frac{M U^{*}\left(x_{1}, \ldots, x_{n}\right)}{\left(k+U^{*}\left(x_{1}, \ldots, x_{n}\right)\right)} \leq \frac{M U^{*}\left(x_{1}, \ldots, x_{n}\right)}{\left(U^{*}\left(x_{1}, \ldots, x_{n}\right)\right)}=M
$$

This show that (X, V) is bounded with U_{n}^{*}-bound M.
Definition 1.8. Let $\left(X, U_{n}^{*}\right)$ be a U_{n}^{*}-metric space, then for $x_{0} \in X, r>0$, the U_{n}^{*}-ball with center x_{0} and radius r is

$$
B_{U^{*}}\left(x_{0}, r\right)=\left\{y \in X: U_{n}^{*}\left(x_{0}, y, \ldots, y\right)<r\right\}
$$

Definition 1.9. Let $\left(X, U_{n}^{*}\right)$ be a U_{n}^{*}-metric space and $Y \subset X$.
(1) If for every $y \in Y$ there exist $r>0$ such that $B_{U^{*}}(y, r) \subset Y$, then subset Y is called open subset of X.
(2) Subset Y of X is said to be U^{*}-bounded if there exists $r>0$ such that $U^{*}(x, y, \ldots, y)<r$ for all $x, y \in Y$.
(3) A sequence $\left\{x_{k}\right\}$ in X converges to x if and only if

$$
U^{*}\left(x_{k}, \ldots, x_{k}, x\right)=U^{*}\left(x, \ldots, x, x_{k}\right) \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

That is for each $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
\forall k \geq N \Longrightarrow U^{*}\left(x, \ldots, x, x_{k}\right)<\varepsilon \quad(\star)
$$

This is equivalent with, for each $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
\forall l_{1}, \ldots, l_{n-1} \geq N \Longrightarrow U^{*}\left(x, x_{l_{1}}, \ldots, x_{l_{n-1}}\right)<\varepsilon \quad(\star \star)
$$

(4) Let $\left(X, U_{n}^{*}\right)$ be a U_{n}^{*}-metric space, then a sequence $\left\{x_{k}\right\} \subseteq X$ is said to be U_{n}^{*}-Cauchy if for every $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $U_{n}^{*}\left(x_{k}, x_{m}, \ldots, x_{l}\right)<\varepsilon$ for all $k, m, \ldots, l \geq N$. The U_{n}^{*}-metric space $\left(X, U_{n}^{*}\right)$ is said to bo complete if every Cauchy sequence is convergent.

Remark 1.10. (i) Let τ be the set of all $Y \subset X$ with $y \in Y$ if and only if there exists $r>0$ such that $B_{U^{*}}(y, r) \subset Y$. Then τ is a topology on X induced by the U_{n}^{*}-metric.
(ii) If have (\star) of Definition 1.9, then for each $\varepsilon>0$ there exists,
$N_{1} \in \mathbb{N}$ such that for every $l_{1} \geq N_{1} \Longrightarrow U^{*}\left(x, \ldots, x, x_{l_{1}}\right)<\frac{\varepsilon}{n-1}$,
$N_{2} \in \mathbb{N}$ such that for every $l_{2} \geq N_{2} \Longrightarrow U^{*}\left(x, \ldots, x, x_{l_{2}}\right)<\frac{\varepsilon}{n-1}$,
and similary there exist $N_{n-1} \in \mathbb{N}$ such that for every $l_{n-1} \geq N_{n-1} \Longrightarrow U^{*}\left(x, \ldots, x, x_{l_{n-1}}\right)<\frac{\varepsilon}{n-1}$.
Let $N_{0}=\max \left\{N_{1}, \ldots, N_{n-1}\right\}$ and $K_{0}=\min \left\{l_{1}, \ldots, l_{n-1}\right\}$. For $K_{0}>N_{0}$ we have

$$
\begin{aligned}
U^{*}\left(x, x_{l_{1}}, \ldots, x_{l_{n-1}}\right) & \leq U^{*}\left(x, x_{l_{1}}, \ldots, x_{l_{n-2}}, x\right)+U^{*}\left(x, x_{l_{n-1}}, \ldots, x_{l_{n-1}}\right) \\
& \leq U^{*}\left(x, x, x_{l_{1}}, \ldots, x_{l_{n-3}}, x\right)+U^{*}\left(x, x_{l_{n-2}}, \ldots, x_{l_{n-2}}\right) \\
& +U^{*}\left(x, x_{l_{n-1}}, \ldots, x_{l_{n-1}}\right) \\
& \leq \\
& \vdots \\
& \leq \sum_{i=1}^{n-1} U^{*}\left(x, x_{l_{i}}, \ldots, x_{l_{i}}\right) \\
& <\frac{(n-1) \varepsilon}{n-1}=\varepsilon
\end{aligned}
$$

Conversely, set $l_{1}=\cdots=l_{n-1}=k$ in $(\star \star)$ we have $U^{*}\left(x, \ldots, x, x_{k}\right)<\varepsilon$.
Proposition 1.11. In a U_{n}^{*}-metric space, $\left(X, U_{n}^{*}\right)$, the following are equivalent.
(i) The sequence $\left\{x_{k}\right\}$ is U_{n}^{*}-Cauchy.
(ii) For every $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $U_{n}^{*}\left(x_{k}, \ldots, x_{k}, x_{l}\right)<\varepsilon$, for all $k, l \geq N$.

Lemma 1.12. Let $\left(X, U^{*}\right)$ be a U_{n}^{*}-metric space.
(1) If $r>0$, then the ball $B_{U^{*}}(x, r)$ with center $x \in X$ and radius r is the open ball.
(2) If sequence $\left\{x_{k}\right\}$ in X converges to x, then x is unique.
(3) If sequence $\left\{x_{k}\right\}$ in X converges to x, then sequence $\left\{x_{k}\right\}$ is a Cauchy sequence.
(4) The function of U_{n}^{*} is continuous on X^{n}.

Proof. proof 1)
Let $w \in B_{U^{*}}(x, r)$ so that $U^{*}(x, w, \ldots, w)<r$. If set $U^{*}(x, w, \ldots, w)=\delta$ and $r^{\prime}=r-\delta$ then we prove that $B_{U^{*}}\left(w, r^{\prime}\right) \subseteq B_{U^{*}}(x, r)$. Let $y \in B_{U^{*}}\left(w, r^{\prime}\right)$, by $\left(U_{4}\right)$ we have $U^{*}(x, y, \ldots, y)=U^{*}(y, \ldots, y, x) \leq$ $U^{*}(y, \ldots, y, w)+U^{*}(w, x, \ldots, x)<r^{\prime}+\delta=r$.
proof 2)
Let $x_{k} \longrightarrow y$ and $y \neq x$. Since $\left\{x_{k}\right\}$ converges to x and y, for each $\varepsilon>0$ there exists,
$N_{1} \in \mathbb{N}$ such that for every $k \geq N_{1} \Longrightarrow U^{*}\left(x, \ldots, x, x_{k}\right)<\frac{\varepsilon}{2}$
and
$N_{2} \in \mathbb{N}$ such that for every $k \geq N_{2} \Longrightarrow U^{*}\left(y, \ldots, y, x_{k}\right)<\frac{\varepsilon}{2}$.
If set $N_{0}=\operatorname{mox}\left\{N_{1}, N_{2}\right\}$, then for every $k \geq N_{0}$ by $\left(U_{4}\right)$ we have

$$
U^{*}(x, \ldots, x, y) \leq U^{*}\left(x, \ldots, x, x_{k}\right)+U^{*}\left(x_{k}, y, \ldots, y\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

then $U^{*}(x, \ldots, x, y)=0$ is a contradiction. So $x=y$.
proof 3)
Since $x_{k} \longrightarrow x$ for each $\varepsilon>0$ there exists,
$N_{1} \in \mathbb{N}$ such that for every $k \geq N_{1} \Longrightarrow U^{*}\left(x_{k}, \ldots, x_{k}, x\right)<\frac{\varepsilon}{2}$
and
$N_{2} \in \mathbb{N}$ such that for every $l \geq N_{1} \Longrightarrow U^{*}\left(x, x_{l} \ldots, x_{l}\right)<\frac{\varepsilon}{2}$.
If set $N_{0}=\operatorname{mox}\left\{N_{1}, N_{2}\right\}$, then for every $k, l \geq N_{0}$ by $\left(U_{4}\right)$ we have

$$
U^{*}\left(x_{k}, \ldots, x_{k}, x_{l}\right) \leq U^{*}\left(x_{k}, \ldots, x_{k}, x\right)+U^{*}\left(x, x_{l}, \ldots, x_{l}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

Hence sequence $\left\{x_{k}\right\}$ is a Cauchy sequence.
proof 4)
Let the sequence $\left\{\left(\left(x_{1}\right)_{k}, \ldots,\left(x_{n}\right)_{k}\right)\right\}$ in X^{n} converges to a point $\left(z_{1}, \ldots, z_{n}\right)$ i.e.

$$
\lim _{k \rightarrow \infty}\left(x_{i}\right)_{k}=z_{i} \quad i=1, \ldots, n
$$

for each $\varepsilon>0$ there exists,
$N_{1} \in \mathbb{N}$ such that for every $k>N_{1} \Longrightarrow U^{*}\left(z_{1}, \ldots, z_{1},\left(x_{1}\right)_{k}\right)<\frac{\varepsilon}{n}$
$N_{2} \in \mathbb{N}$ such that for every $k>N_{2} \Longrightarrow U^{*}\left(z_{2}, \ldots, z_{2},\left(x_{2}\right)_{k}\right)<\frac{\frac{\varepsilon}{\varepsilon}}{n}$
$N_{n} \in \mathbb{N}$ such that for every $k>N_{n} \Longrightarrow U^{*}\left(z_{n}, \ldots, z_{n},\left(x_{n}\right)_{k}\right)<\frac{\varepsilon}{n}$.
If set $N_{0}=\operatorname{mox}\left\{N_{1}, \ldots, N_{n}\right\}$, then for every $k \geq N_{0}$ we have

$$
\begin{aligned}
U^{*}\left(\left(x_{1}\right)_{k}, \ldots,\left(x_{n}\right)_{k}\right) & \leq U^{*}\left(\left(x_{1}\right)_{k}, \ldots,\left(x_{n-1}\right)_{k}, z_{n}\right)+U^{*}\left(z_{n},\left(x_{n}\right)_{k}, \ldots,\left(x_{n}\right)_{k}\right) \\
& \leq U^{*}\left(\left(x_{1}\right)_{k}, \ldots,\left(x_{n-2}\right)_{k}, z_{n}, z_{n-1}\right)+U^{*}\left(z_{n-1},\left(x_{n-1}\right)_{k}, \ldots,\left(x_{n-1}\right)_{k}\right) \\
& +U^{*}\left(z_{n},\left(x_{n}\right)_{k}, \ldots,\left(x_{n}\right)_{k}\right) \\
& \leq \\
& \vdots \\
& \leq U^{*}\left(z_{1}, \ldots, z_{n}\right)+\sum_{i=1}^{n} U^{*}\left(z_{i},\left(x_{i}\right)_{k}, \ldots,\left(x_{i}\right)_{k}\right) \\
& \leq U^{*}\left(z_{1}, \ldots, z_{n}\right)+\frac{n \varepsilon}{n}=U^{*}\left(z_{1}, \ldots, z_{n}\right)+\varepsilon .
\end{aligned}
$$

Hence we have

$$
U^{*}\left(\left(x_{1}\right)_{k}, \ldots,\left(x_{n}\right)_{k}\right)-U^{*}\left(z_{1}, \ldots, z_{n}\right)<\varepsilon
$$

$$
\begin{aligned}
U^{*}\left(z_{1}, \ldots, z_{n}\right) & \leq U^{*}\left(z_{1}, \ldots, z_{n-1},\left(x_{n}\right)_{k}\right)+U^{*}\left(\left(x_{n}\right)_{k}, z_{n}, \ldots, z_{n}\right) \\
& \leq U^{*}\left(z_{1}, \ldots, z_{n-2},\left(x_{n}\right)_{k},\left(x_{n-1}\right)_{k}\right)+U^{*}\left(\left(x_{n-1}\right)_{k}, z_{n-1}, \ldots, z_{n-1}\right) \\
& +U^{*}\left(\left(x_{n}\right)_{k}, z_{n}, \ldots, z_{n}\right) \\
& \leq \\
& \vdots \\
& \leq U^{*}\left(\left(x_{1}\right)_{k}, \ldots,\left(x_{n}\right)_{k}\right)+\sum_{i=1}^{n} U^{*}\left(\left(x_{i}\right)_{k}, z_{i}, \ldots, z_{i}\right) \\
& \leq U^{*}\left(\left(x_{1}\right)_{k}, \ldots,\left(x_{n}\right)_{k}\right)+\frac{n \varepsilon}{n}=U^{*}\left(\left(x_{1}\right)_{k}, \ldots,\left(x_{n}\right)_{k}\right)+\varepsilon .
\end{aligned}
$$

That is,

$$
U^{*}\left(z_{1}, \ldots, z_{n}\right)-U^{*}\left(\left(x_{1}\right)_{k}, \ldots,\left(x_{n}\right)_{k}\right)<\varepsilon
$$

Therefore we have $\left|U^{*}\left(\left(x_{1}\right)_{k}, \ldots,\left(x_{n}\right)_{k}\right)-U^{*}\left(z_{1}, \ldots, z_{n}\right)\right|<\varepsilon$, that is

$$
\lim _{k \rightarrow \infty} U^{*}\left(\left(x_{1}\right)_{k}, \ldots,\left(x_{n}\right)_{k}\right)=U^{*}\left(z_{1}, \ldots, z_{n}\right)
$$

Definition 1.13. ([6]) Let f and g be mappings from a U_{n}^{*}-metric space $\left(X, U_{n}^{*}\right)$ into itself. Then the mappings are said to be weak compatible if they commute at their coincidence point, that is $f x=g x$ implies that $f g x=g f x$.

Definition 1.14. Let $\left(X, U_{n}^{*}\right)$ be a U_{n}^{*}-metric space, for $A_{1}, \ldots, A_{n} \subseteq X$, define

$$
\Delta_{U^{*}}\left(A_{1}, \ldots, A_{n}\right)=\sup \left\{U^{*}\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in A_{i}, i=1, \ldots, n\right\}
$$

Remark 1.15. It follows immediately from the definition that
(i) If A_{i} consists of a single point a_{i} we write

$$
\Delta_{U}^{*}\left(A_{1}, \ldots, A_{i-1}, A_{i}, A_{i+1}, \ldots, A_{n}\right)=\Delta_{U}^{*}\left(A_{1}, \ldots, A_{i-1}, a_{i}, A_{i+1}, \ldots, A_{n}\right)
$$

If A_{1}, \ldots, A_{n} also consists of a single point a_{1}, \ldots, a_{n} respectively, we write

$$
\Delta_{U}^{*}\left(A_{1}, \ldots, A_{n}\right)=\Delta_{U}^{*}\left(a_{1}, \ldots, a_{n}\right)
$$

Also we have

$$
\begin{gathered}
\Delta_{U^{*}}\left(A_{1}, \ldots, A_{n}\right)=0 \Longleftrightarrow A_{1}=\cdots=A_{n}=\{a\}, \\
\Delta_{U^{*}}\left(A_{1}, \ldots, A_{n}\right)=\Delta_{U^{*}}\left(A_{\pi_{1}}, \ldots, A_{\pi_{n}}\right)
\end{gathered}
$$

for for every permutation $\left(\pi_{(1)}, \ldots, \pi_{(n)}\right)$ of $(1,2, \ldots, n)$.
In particular for $\varnothing \neq A_{1}=\cdots=A_{n} \subseteq X$,

$$
\Delta_{U^{*}}\left(A_{1}\right)=\sup \left\{U^{*}\left(b_{1}, \ldots, b_{n}\right) \mid b_{1}, \ldots, b_{n} \in A_{1}\right\}
$$

(ii) If $A \subseteq B$, then $\Delta_{U^{*}}(A) \leq \Delta_{U^{*}}(B)$.
(iii) For a sequence $A_{k}=\left\{x_{k}, x_{k+1}, x_{k+2}, \cdots\right\}$ in U_{n}^{*}-metric space $\left(X, U_{n}^{*}\right)$, let $a_{k}=\Delta_{U^{*}}\left(A_{k}\right)$ for $k \in \mathbb{N}$. Then
(a) : Since $A_{k+1} \subseteq A_{k}$ hence $\Delta_{U^{*}}\left(A_{k+1}\right) \leq \Delta_{U^{*}}\left(A_{k}\right)$, for every $k \geq 1$.
(b) : $U^{*}\left(x_{l_{1}}, \ldots, x_{l_{n}}\right) \leq \Delta_{U^{*}}\left(A_{k}\right)=a_{k}$ for every $l_{1}, \ldots, l_{n} \geq k$,
(c) : $0 \leq \Delta_{U^{*}}\left(A_{k}\right)=a_{k}$.

Therefore, $\left\{a_{k}\right\}$ is decreasing and bounded for all $k \in \mathbb{N}$, and so there exists an $0 \leq a$ such that $\lim _{k \rightarrow \infty} a_{k}=$ a.

Lemma 1.16. Let $\left(X, U_{n}^{*}\right)$ be an U_{n}^{*}-metric space. If $\lim _{k \rightarrow \infty} a_{k}=0$, then sequence $\left\{x_{k}\right\}$ is a Cauchy sequence.

Proof. Since $\lim _{k \rightarrow \infty} a_{k}=0$, we have that for every $\varepsilon>0$, there exists a $N_{0} \in \mathbb{N}$ such that for every $k>N_{0}$, $\left|a_{k}-0\right|<\varepsilon$. That is $a_{k}=\Delta_{U^{*}}\left(A_{k}\right)<\varepsilon$. Then for $l_{1}, \ldots, l_{n} \geq k>N_{0}$ by (b) of Remark 1.15 we have

$$
U^{*}\left(x_{l_{1}}, \ldots, x_{l_{n}}\right) \leq \sup \left\{U^{*}\left(x_{i}, \ldots, x_{j}\right) \mid x_{i}, \ldots, x_{j} \in A_{k}\right\}=a_{k}<\varepsilon
$$

Therefore, $\left\{x_{k}\right\}$ is a Cauchy sequence in X.

2. Main results

Theorem 2.1. Let X be a U_{n}^{*}-complete metric space
I) If f and g be self-mappings of a complete U_{n}^{*}-metric space $\left(X, U_{n}^{*}\right)$ satisfying:
i) $g(X) \subseteq f(X)$, and $f(X)$ is closed subset of X,
ii) the pair (f, g) is weakly compatible,
iii) $U^{*}\left(g z_{1}, \ldots, g z_{n}\right) \leq \psi\left(U^{*}\left(f z_{1}, \ldots, f z_{n}\right)\right)$, for every $z_{1}, \ldots, z_{n} \in X$, where $\psi: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$is a nondecreasing continuous function with $\psi(t)<t$ for every $t>0$.
Then f and g have a unique common fixed point in X.
II) If $f_{k}: X \longrightarrow X$ be a sequence maps such that

$$
U^{*}\left(f_{i} z_{1}, f_{j} z_{2}, \ldots, f_{l} z_{n-1}, z_{n}\right) \leq \beta U^{*}\left(z_{1}, \ldots, z_{n}\right)
$$

for all $i \neq j$ and $z_{1}, \ldots, z_{n} \in X$ with $0 \leq \beta<\frac{1}{2}$. Then $\left\{f_{k}\right\}$ have a unique common fixed point.

Proof. proof I)

Let x_{0} be an arbitrary point in X. By (i), we can choose a point x_{1} in X such that $y_{0}=g x_{0}=f x_{1}$ and $y_{1}=g x_{1}=f x_{2}$. In general, there exists a sequence $\left\{y_{k}\right\}$ such that, $y_{k}=g x_{k}=f x_{k+1}$, for $k=0,1,2, \cdots$. We prove that sequence $\left\{y_{k}\right\}$ is a Cauchy sequence. Let $A_{k}=\left\{y_{k}, y_{k+1}, y_{k+2}, \cdots\right\}$ and $a_{k}=\Delta_{U^{*}}\left(A_{k}\right), k \in \mathbb{N}$. Then we know $\lim _{k \rightarrow \infty} a_{k}=a$ for some $a \geq 0$.
Taking $z_{i}=x_{l_{i}+l}$ in (iii) for $l \geq 1$ and $l_{1}, \ldots, l_{n} \geq 0$

$$
\begin{aligned}
U^{*}\left(y_{l_{1}+l}, \ldots, y_{l_{n}+l}\right) & =U^{*}\left(g x_{l_{1}+l}, \ldots, g x_{l_{n}+l}\right) \\
& \leq \psi\left(U^{*}\left(f x_{l_{1}+l}, \ldots, f x_{l_{n}+l}\right)\right) \\
& =\psi\left(U^{*}\left(y_{l_{1}+l-1}, \ldots, y_{l_{n}+l-1}\right)\right)
\end{aligned}
$$

Since $U^{*}\left(y_{l_{1}+l-1}, \ldots, y_{l_{n}+l-1}\right) \leq a_{l-1}$, for every $l_{1}, \ldots, l_{n} \geq 0$ and ψ is increasing in t, we get

$$
U^{*}\left(y_{l_{1}+l}, \ldots, y_{l_{n}+l}\right) \leq \psi\left(U^{*}\left(y_{l_{1}+l-1}, \ldots, y_{l_{n}+l-1}\right)\right)
$$

Therefore

$$
\sup _{l_{1}, \ldots, l_{n} \geq 0}\left\{U^{*}\left(y_{l_{1}+l}, \ldots, y_{l_{n}+l}\right) \leq \psi\left(a_{l-1}\right)\right.
$$

Hence, we have $a_{l} \leq \psi\left(a_{l-1}\right)$. Letting $l \rightarrow \infty$, we get $a \leq \psi(a)$. If $a \neq 0$, then $a \leq \psi(a)<a$, which is a contradiction. Thus $a=0$ and hence $\lim _{k \rightarrow \infty} a_{k}=0$. Thus Lemma $1.16\left\{y_{k}\right\}$ is a Cauchy sequence in X. By the completeness of X, there exists a $v \in X$ such that

$$
\lim _{k \rightarrow \infty} y_{k}=\lim _{k \rightarrow \infty} g x_{k}=\lim _{k \rightarrow \infty}=f x_{k+1}=v
$$

Let $f(X)$ is closed, there exist $w \in X$ such that $f w=v$, Now we show that $g w=v$ For this it is enough set x_{k}, \ldots, x_{k}, w replacing z_{1}, \ldots, z_{n} respectively, in inequality (iii) we get

$$
U^{*}\left(g x_{k}, \ldots, g x_{k}, g w\right) \leq \psi\left(U^{*}\left(f x_{k}, \ldots, f x_{k}, f w\right)\right)
$$

Taking $k \rightarrow \infty$, we get

$$
U^{*}(v, \ldots, v, g w) \leq \psi\left(U^{*}(0)\right)=0
$$

it implies $g w=v$.
Since the pair (f, g) are weakly compatible, hence we get, $g f w=f g w$. Thus $f v=g v$. Now we prove that $g v=v$. If we substitute z_{1}, \ldots, z_{n} in (iii) by x_{k}, \ldots, x_{k} and v respectively, we get

$$
U^{*}\left(g x_{k}, \ldots, g x_{k}, g u\right) \leq \psi\left(U^{*}\left(f x_{k}, \ldots, f x_{k}, f v\right)\right)
$$

Taking $k \rightarrow \infty$, we get

$$
U^{*}(v, \ldots, v, g v) \leq \psi\left(U^{*}(v, \ldots, v, g v)\right)
$$

If $g v \neq v$, then $U^{*}(v, \ldots, v, g v)<U^{*}(v, \ldots, v, g v)$, is contradiction. Therefore,

$$
f v=g v=v
$$

For the uniqueness, let v and v^{\prime} be fixed points of f, g. Taking $z_{1}=\ldots=z_{n-1}=v$ and $z_{n}=v^{\prime}$ in (iii), we have

$$
\begin{aligned}
U^{*}\left(v, \ldots, v, v^{\prime}\right) & =U^{*}\left(g v, \ldots, g v, g v^{\prime}\right) \\
& \leq \psi\left(U^{*}\left(f v, \ldots, f v, f v^{\prime}\right)\right) \\
& =\psi\left(U^{*}\left(v, \ldots, v, v^{\prime}\right)\right) \\
& <U^{*}\left(v, \ldots, v, v^{\prime}\right)
\end{aligned}
$$

which is a contradiction. Thus we have $v=v^{\prime}$.
proof II)
Let $x_{0} \in X$ be any fixed arbitrary element define a sequence $\left\{x_{k}\right\}$ in X as. $x_{k+1}=f_{k+1} x_{k}$ for all $k=$ $0,1,2, \cdots$.
Let $d_{k}=U^{*}\left(x_{k}, x_{k+1}, \ldots, x_{k+1}\right)$ for all $k=0,1,2, \cdots$.
Now

$$
\begin{aligned}
d_{k+1} & =U^{*}\left(x_{k+1}, x_{k+2}, \ldots, x_{k+2}\right) \\
& =U^{*}\left(f_{k+1} x_{k}, f_{k+2} x_{k+1}, \ldots, f_{k+2} x_{k+1}, x_{k+2}\right) \\
& \leq \beta U^{*}\left(x_{k}, x_{k+1}, \ldots, x_{k+1}, x_{k+2}\right) \\
& \leq \beta U^{*}\left(x_{k}, x_{k+1}, \ldots, x_{k+1}, x_{k+1}\right)+\beta U^{*}\left(x_{k+1}, x_{k+2}, \ldots, x_{k+2}\right) \\
& =\beta d_{k}+\beta d_{k+1}
\end{aligned}
$$

Hence
$d_{k+1} \leq \frac{\beta}{1-\beta} d_{k}$,
$d_{k} \leq \frac{\beta}{1-\beta} d_{k-1}$ for all $n=1,2, \cdots$. Let $\alpha=\frac{\beta}{1-\beta}$, we have
$d_{k} \leq \alpha d_{k-1} \leq \alpha^{k} d_{0} \rightarrow 0$ as $k \rightarrow \infty$. Therefore
$\lim _{k \rightarrow \beta} d_{k}=0$. Thus
$\lim _{k \rightarrow \beta} U^{*}\left(x_{k}, x_{k+1}, \ldots, x_{k+1}\right)=0$.
Now we shall prove that $\left\{x_{k}\right\}$ is a U_{n}^{*}-Cauchy sequence in X.
Let $l>k>N_{0}$ for some $N_{0} \in \mathbb{N}$. Now

$$
\begin{aligned}
U^{*}\left(x_{k}, \ldots, x_{k}, x_{l}\right) & \leq U^{*}\left(x_{k}, \ldots, x_{k}, x_{k+1}\right)+U^{*}\left(x_{k+1}, \ldots, x_{k+1}, x_{l}\right) \\
& \leq \sum_{t=\infty}^{l-1} U^{*}\left(x_{t}, \ldots, x_{t}, x_{t+1}\right) \rightarrow 0 \text { as } k, l \rightarrow \infty
\end{aligned}
$$

Hence $\lim _{k, l \rightarrow \infty} U^{*}\left(x_{k}, \ldots, x_{k}, x_{l}\right)=0$.
Thus $\left\{x_{k}\right\}$ is U_{n}^{*}-Cauchy sequence in X.
Since X is U_{n}^{*}-complete $x_{k} \rightarrow x$ in X. We prove that x is a fixed point of f_{k} for all k suppose there exist a k^{\prime} such that $f_{k^{\prime}} x \neq x$. Then

$$
\begin{aligned}
U^{*}\left(f_{k^{\prime}}, x, \ldots, x\right) & =\lim _{k \rightarrow \infty} U^{*}\left(f_{k^{\prime}} x, x_{k+1}, \ldots, x_{k+1}, x\right) \\
& =\lim _{k \rightarrow \infty} U^{*}\left(f_{k^{\prime}} x, f_{k+1} x_{k}, \ldots, f_{k+1} x_{k}, x\right) \\
& \leq \beta \lim _{k \rightarrow \infty} U^{*}\left(x, x_{k+1}, \ldots, x_{k+1}, x\right)=0
\end{aligned}
$$

Therefore $U^{*}\left(f_{k^{\prime}}, x, \ldots, x\right)=0$, Therefore $f_{k} x=x$ for all k. Thus x is common fixed point of $\left\{f_{k}\right\}$ for all k. For the uniqueness, suppose $x \neq y$ such that $f_{k} y=y$ for all k. Then

$$
\begin{aligned}
U^{*}(x, y, \ldots, y) & =U^{*}\left(f_{i} x, f_{j} y, \ldots, f_{j} y, y\right) \\
& \leq \beta U^{*}(x, y, \ldots, y)
\end{aligned}
$$

This implies $(1-\beta) U^{*}(x, y, \ldots, y) \leq 0$.
Since $x \neq y$ we have $U^{*}(x, y \ldots, y)>0$ her $(1-\beta)<0$.
This implies $\beta>1$ which contraction to $\beta<\frac{1}{2}$.
Thus $\left\{f_{k}\right\}$ have a unique common fixed point.
Corollary 2.2. Let f be self-mapping of a complete U_{n}^{*}-metric space $\left(X, U_{n}^{*}\right)$ satisfying:

$$
U^{*}\left(z_{1}, \ldots, z_{n}\right) \leq \psi\left(U^{*}\left(f^{m} z_{1}, \ldots, f^{m} z_{n}\right)\right)
$$

for every $z_{1}, \ldots, z_{n} \in X, f$ is surjective and $m \in \mathbb{N}$, where $\psi: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$is a nondecreasing continuous function with $\psi(t)<t$ for every $t>0$.
Then f have a unique fixed point in X.
Proof. If we define $g=I$ identity map in Theorem 2.1. There exists a unique $v \in X$ such that $f^{m} v=v$. Thus

$$
f^{m}(f v)=f\left(f^{m} v\right)=f v
$$

Since v is unique, we have $f v=v$.
Corollary 2.3. Let g be self-mapping of a complete U_{n}^{*}-metric space $\left(X, U_{n}^{*}\right)$ satisfying:

$$
U^{*}\left(g^{m} z_{1}, \ldots, g^{m} z_{n}\right) \leq \psi\left(U^{*}\left(z_{1}, \ldots, z_{n}\right)\right)
$$

for every $z_{1}, \ldots, z_{n} \in X$ and $m \in \mathbb{N}$, where $\psi: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$is a nondecreasing continuous function with $\psi(t)<t$ for every $t>0$.
Then g have a unique fixed point in X.
Proof. If we define $f=I$ identity map in Theorem 2.1. There exists a unique $v \in X$ such that $g^{m} v=v$. Thus

$$
g^{m}(g v)=g\left(g^{m} v\right)=g v
$$

Since v is unique, we have $g v=v$.
Corollary 2.4. Let f and g be self-mappings of a complete U_{n}^{*}-metric space $\left(X, U_{n}^{*}\right)$ satisfying:
(i) $g^{r}(X) \subseteq f^{s}(X)$, and $f^{s}(X)$ is closed subset of X,
(ii) the pair $\left(f^{s}, g^{r}\right)$ is weakly compatible and $f^{s} g=g f^{s}, g^{r} f=f g^{r}$,
(iii) $U^{*}\left(g^{r} z_{1}, \ldots, g^{r} z_{n}\right) \leq \psi\left(U^{*}\left(f^{s} z_{1}, \ldots, f^{s} z_{n}\right)\right)$, for every $z_{1}, \ldots, z_{n} \in X$ and $r, s \in \mathbb{N}$ where $\psi: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$is
a nondecreasing continuous function with $\psi(t)<t$ for every $t>0$.
Then f and g have a unique common fixed point in X.

Proof. By Theorem 2.1 there exists a fixed point $v \in X$ such that $f^{s} v=g^{r} v=v$. On the other hand, we have

$$
g v=g\left(g^{r} v\right)=g^{r}(g v) \text { and } g v=g\left(f^{s} v\right)=f^{s}(g v)
$$

Since v is unique, we have $g v=v$. Similarly, we have $f v=v$.
Corollary 2.5. Let f, g and h be self-mappings of a complete U_{n}^{*}-metric space $\left(X, U_{n}^{*}\right)$ satisfying:
(i) $g(X) \subseteq f h(X)$, and $f h(X)$ is closed subset of X,
(ii) the pair $(f h, g)$ is weakly compatible and $f h=h f, g h=h g$,
(iii) $U^{*}\left(g z_{1}, \ldots, g z_{n}\right) \leq \psi\left(U^{*}\left(f h z_{1}, \ldots, f h z_{n}\right)\right)$, for every $z_{1}, \ldots, z_{n} \in X$, where $\psi: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$is a nondecreasing continuous function with $\psi(t)<t$ for every $t>0$.
Then f, g and h have a unique common fixed point in X.

Proof. By Theorem 2.1 there exists a fixed point $v \in X$ such that $f h v=g v=v$.
Now, we prove that $h v=v$. If $h v \neq v$ in (iii), then we have

$$
\begin{aligned}
U^{*}(h v, v, \ldots, v) & =U^{*}(h g v, g v, \ldots, g v) \\
& =U^{*}(g h v, g v, . ., g v) \\
& \leq \psi\left(U^{*}(f h h v, f h v, \ldots, f h v)\right) \\
& =\psi\left(U^{*}(h v, v, \ldots, v)\right) \\
& <U^{*}(h v, v, \ldots, v)
\end{aligned}
$$

which is a contradiction. Thus we have $h v=v$. Therefore,

$$
f v=f h v=v=h v=g v
$$

Acknowledgements:

The authors thank the editor and the referees for their useful comments and suggestions.

References

[1] A. Bagheri Vakilabad and S. Mansour Vaezpour, Generalized contractions and common fixed point theorems concerning τ-distance, J. Nonlinear Sci. Appl. 3 (3) (2010), 78-86.
[2] L. W. Cohen and C. Goffman, The topology of ordered Abelian groups, Trans. Amer. Math. Soc. 67 (1949), 310-319. 1.1
[3] A. Dehghan Nezhad and Z. Aral, The topology of GB-metric spaces, ISRN. Mathematical Analysis, Hindawi, (2011). 1
[4] A. Dehghan Nezhad and H. Mazaheri, New results in G-best approximation in G-metric spaces, Ukrainian Math. $J ., 62$ (4), (2010), 648-654.
[5] B.C. Dhage, A common fixed point principle in D-metric spaces, Bulletin of the Calcutta Mathematical Society. 91 (6) (1999), 475-480.
[6] G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (3) (1998), 227-238. 1.13
[7] N. V. Luong and N. X. Thuan , Common fixed point theorems in compact D^{*}-metric spaces, Internationnal Mathematical Forum. 6 (13) (2011),605-612.
[8] H.K. Nashine, Coupled common fixed point results in ordered G-metric spaces, J. Nonlinear Sci. Appl. 1 (2012), 1-13.
[9] V. Popa and A.M. Patriciu, A general fixed point theorem for pairs of weakly compatible mappings in G-metric spaces, J. Nonlinear Sci. Appl. 5 (2012), 151-160.
[10] S. Sedghi, M.S. Khan and N. Shobe, Fixed point theorems for six weakly compatible mappings in D^{*}-metric spaces, J. Appl. Math. Informatics. 27 (2) (2009), 351-363.
[11] S. Sedghi, S. Nabi and Z. Haiyun, A common fixed point theorems for in D^{*}-metric spaces, Hindawi Publishing Corporation. Fixed point Theory and Applications, Article ID 27906, (2007), p. 13, doi: 10.1155. 1
[12] S. Shaban, S. Nabi, Z. Haiyun and S. Shahram, Common fixed point theorems for two mappings in D^{*}-metric spaces, Journal of prime research in mathematics. 4 (2008), 132-142. 1

[^0]: *Corresponding author
 Email addresses: anezhad@yazd.ac.ir (Akbar Dehghan Nezhad), khajuee.najmeh@yahoo.com (Najmeh khajuee)

