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Abstract

In this paper, we introduce the concept of d-point in cone metric spaces and characterize cone completeness
in terms of this notion. c©2013 All rights reserved.
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1. Introduction

In 2007, Huang and Zhang [13] introduced the concept of cone metric spaces by replacing the set of real
numbers with an ordered Banach space. Afterwards, a series of articles in this field have been dedicated
to the improvement of fixed point theory. Some of those articles dealt with the structure of the spaces.
Recently, some authors used cone valued lower semicontinuous functions to establish some results in cone
metric spaces. In 1977, Weston[25] had shown that completeness criterion of metric spaces has got some
relation with the family of real valued semicontinuous functions carried over the space. In fact, he had
proved a necessary and sufficient condition for the metric space (X, d) to be complete in terms of the notion
of d-point for lower semicontinuous functions. In this paper, our main purpose is to introduce the concept
of d-point in cone metric spaces and obtain a result by using this notion. The cone under consideration is
assumed to be strongly minihedral and normal. Our result extend the result of Weston [25] to cone metric
spaces.
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2. Preliminaries

Let E be a real Banach space and P be a subset of E. Then P is called a cone if and only if

(i) P is closed, nonempty and P 6= {θ};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ;

(iii) P ∩ (−P ) = {θ}.

For a given cone P ⊆ E, we can define a partial ordering ≤ on E with respect to P by x ≤ y (equivalently,
y ≥ x) if and only if y − x ∈ P . We shall write x < y (equivalently, y > x) if x ≤ y and x 6= y, while
x� y(equivalently, y � x) will stand for y−x ∈ Int(P ), where Int(P ) denotes the interior of P . The cone
P is called normal if there is a number k > 0 such that for all x, y ∈ E,

θ ≤ x ≤ y implies ‖x‖ ≤ k ‖y‖.

The least positive number satisfying the above inequality is called the normal constant of P .

The cone P is called regular if every increasing sequence which is bounded from above is convergent.
That is, if (xn) is a sequence such that x1 ≤ x2 ≤ ··· ≤ xn ≤ ··· ≤ y for some y ∈ E, then there is x ∈ E such
that ‖ xn − x ‖→ 0 (n → ∞). Equivalently the cone P is regular if and only if every decreasing sequence
which is bounded from below is convergent. Razapour and Hamlbarani [19] proved that every regular cone
is normal and there are no normal cones with normal constant k < 1.

Definition 2.1. [13] Let X be a nonempty set. Suppose the mapping d : X ×X → E satisfies

(i) θ ≤ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 2.2. [13] Let (X, d) be a cone metric space. Let (xn) be a sequence in X and x ∈ X. If for
every c ∈ E with θ � c there is a natural number n0 such that for all n > n0, d(xn, x) � c, then (xn) is
said to be convergent and (xn) converges to x, and x is the limit of (xn). We denote this by lim

n→∞
xn = x or

xn → x (n→∞).

Definition 2.3. [13] Let (X, d) be a cone metric space, (xn) be a sequence in X. If for any c ∈ E with
θ � c, there is a natural number n0 such that for all n,m > n0, d(xn, xm)� c, then (xn) is called a Cauchy
sequence in X.

Definition 2.4. [13] Let (X, d) be a cone metric space, if every Cauchy sequence is convergent in X,
then X is called a complete cone metric space.

Lemma 2.5. [20] Let E be a real Banach space with a cone P . Then
(i) If a� b and b� c, then a� c.
(ii) If a ≤ b and b� c, then a� c.

Lemma 2.6. [13] Let (X, d) be a cone metric space, P a normal cone with normal constant k, x ∈ X
and (xn) a sequence in X. Then
(i) (xn) converges to x if and only if d(xn, x)→ θ(or equivalently, ‖ d(xn, x) ‖→ 0);
(ii) Limit point of every sequence is unique;
(iii) Every convergent sequence is Cauchy;
(iv) (xn) is a Cauchy sequence if and only if d(xn, xm)→ θ as n,m→∞ (or equivalently, ‖ d(xn, xm) ‖→ 0);
(v) If xn → x and yn → y, then d(xn, yn)→ d(x, y) as n→∞.
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Lemma 2.7. [13] Let (X, d) be a cone metric space over a cone P in E. Then one has the following.
(i) Int(P ) + Int(P ) ⊆ Int(P ) and λ Int(P ) ⊆ Int(P ), λ > 0.
(ii) If c� θ, then there exists δ > 0 such that ‖b‖ < δ implies b� c.
(iii) For any given c� θ and c0 � θ there exists n0 ∈ N such that c0

n0
� c.

(iv) If an, bn are sequences in E such that an → a, bn → b and an ≤ bn for all n ≥ 1, then a ≤ b.

Proposition 2.8. [14] If E is a real Banach space with cone P and if a ≤ λa where a ∈ P and 0 ≤ λ < 1
then a = θ.

Definition 2.9. [12] P is called minihedral cone if sup{x, y} exists for all x, y ∈ E, and strongly mini-
hedral if every subset of E which is bounded from above has a supremum or equivalently, every subset of E
which is bounded from below has an infimum.

It is easy to see that every strongly minihedral normal cone is regular.

Definition 2.10. [1] Let (X, d) be a cone metric space and ϕ : X → E a function on X. Then, the
function ϕ is called a lower semicontinuous on X whenever

lim
n→∞

xn = x =⇒ ϕ(x) ≤ lim
n→∞

inf ϕ(xn) := sup
n≥1

inf
m≥n

ϕ(xm).

Definition 2.11. Let (X, d) be a cone metric space and f : X → E. Then, the function f is called
uniformly continuous on X if for any ε > 0 there is a c ∈ E with θ � c such that

d(x, y)� c =⇒ ‖f(x)− f(y)‖ < ε.

3. Main Results

In this section we always suppose that E is a real Banach space, P is a cone in E with Int(P ) 6= ∅ and ≤
is the partial ordering on E with respect to P . Throughout the paper we denote by N the set of all natural
numbers.

We begin with a definition.

Definition 3.1. Let (X, d) be a cone metric space and h : X → E. A point x0 ∈ X is called a d-point
for h if for every other point x ∈ X with h(x0)− h(x) ∈ Int(P ),

h(x0)− h(x) < d(x0, x)

Example 3.2. Let E = R2, P = {(x, y) ∈ R2 : x, y ≥ 0}, X = {(x, 0) ∈ R2 : 0 ≤ x ≤ 1} ∪ {(0, x) ∈ R2 :
0 ≤ x ≤ 1} and d : X ×X → E be such that

d ((x, 0), (y, 0)) =

(
4

3
| x− y |, | x− y |

)
,

d ((0, x), (0, y)) =

(
| x− y |, 2

3
| x− y |

)
,

d ((x, 0), (0, y)) = d ((0, y), (x, 0)) =

(
4

3
x+ y, x+

2

3
y

)
.
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Then (X, d) is a cone metric space.
We define h : X → E by

h((x, 0)) = (0, x), h((0, y)) =
(
−y

2
, 0
)
.

Then,

h

(
(
1

2
, 0)

)
− h((0, y)) =

(
0,

1

2

)
−
(
−y

2
, 0
)

=

(
y

2
,
1

2

)
∈ Int(P ) for y > 0,

h

(
(
1

2
, 0)

)
− h((y, 0)) =

(
0,

1

2

)
− (0, y) =

(
0,

1

2
− y
)
6∈ Int(P ).

Also, for y > 0

h

(
(
1

2
, 0)

)
− h((0, y)) =

(
y

2
,
1

2

)
< d

(
(
1

2
, 0), (0, y)

)
.

Thus, (12 , 0) is a d-point for h.

Theorem 3.3. Let (X, d) be a complete cone metric space and let P be a strongly minihedral normal
cone of comparable elements. Then any lower semicontinuous function h : X → E which is bounded below
has a d-point. If (X, d) is not complete, then there is a uniformly continuous function g : X → E which is
bounded below but has no d-point.

Proof. For any point x1 ∈ X, we construct a sequence (xn) in the following way:
For each n ∈ N, let

α(xn) = inf{h(x) : h(xn)− h(x) ≥ d(xn, x) > θ}.

h being bounded below, α(xn) exists by strong minihedrality of P .
Let xn+1 be a point such that

h(xn)− h(xn+1) ≥ d(xn, xn+1) (3.1)

and
h(xn+1) < α(xn) +

c0
n
, where c0 ∈ Int(P ). (3.2)

It follows from (3.1) that the sequence (h(xn)) is nonincreasing in E. Also, it is bounded below. Since
P is regular, the sequence (h(xn)) is convergent.
For m ≥ n, the triangle inequality implies that

h(xn)− h(xm) = h(xn)− h(xn+1) + h(xn+1)− h(xn+2)

+ · · ·+h(xm−1)− h(xm)

≥ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≥ d(xn, xm). (3.3)

Hence,
‖ d(xn, xm)‖ ≤ k ‖ h(xn)− h(xm)‖ → 0 as m, n→∞.

By Lemma 2.6, ‖ d(xn, xm) ‖→ 0 yields that the sequence (xn) is Cauchy in X. Completeness of X implies
that the sequence (xn) is convergent to some point in X, say x0. From (3.3), it follows that

h(xm) ≤ h(xn)− d(xn, xm) (3.4)

for all m ≥ n. By regarding (3.4), Lemma 2.6 and lower semicontinuity of the function h, one can obtain
that

h(x0) ≤ lim
m→∞

inf h(xm)

≤ lim
m→∞

inf [h(xn)− d(xn, xm)]

= h(xn)− d(xn, x0)
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for all n ≥ 1. Thus,
h(xn)− h(x0) ≥ d(xn, x0) (3.5)

for all n ≥ 1.
If x0 is not a d-point for h, then for some x(6= x0) ∈ X with h(x0)− h(x) ∈ Int(P ),

h(x0)− h(x) ≥ d(x0, x) > θ. (3.6)

Using (3.5) and (3.2), we obtain

h(x) ≤ h(xn+1) + h(x)− h(x0) < α(xn) +
c0
n

+ h(x)− h(x0). (3.7)

Since θ � c0 and θ � h(x0)− h(x), by Lemma 2.7, there exists n ∈ N such that

c0
n
� h(x0)− h(x)

which implies that h(x0)− h(x)− c0
n ≥ θ. Thus, (3.7) gives that h(x) < α(xn).

From (3.5) and (3.6), it follows that

h(xn)− h(x) = h(xn)− h(x0) + h(x0)− h(x)

≥ d(xn, x0) + d(x0, x)

> θ

which implies that h(xn) > h(x). So, xn 6= x and therefore d(xn, x) > θ.
Moreover,

h(xn)− h(x) ≥ d(xn, x0) + d(x0, x) ≥ d(xn, x) > θ.

It now follows from the definition of α(xn) that h(x) ≥ α(xn) which contradicts the fact that h(x) < α(xn).
Thus, x0 is a d-point for h.

Now suppose that (X, d) is not complete. So there exists a Cauchy sequence (xn) in X which is not
convergent. We show that for any x ∈ X, the sequence (2d(x, xn)) is Cauchy in E.
For x ∈ X, we have

d(x, xn) ≤ d(x, xm) + d(xm, xn)

and so
d(x, xn)− d(x, xm) ≤ d(xm, xn). (3.8)

Interchanging n and m, we obtain

d(x, xm)− d(x, xn) ≤ d(xm, xn).

By hypothesis, the elements of P are comparable. Then either d(x, xn) ≤ d(x, xm) or d(x, xm) ≤ d(x, xn).
Without loss of generality, we may assume that d(x, xm) ≤ d(x, xn) and so from (3.8), we have

θ ≤ d(x, xn)− d(x, xm) ≤ d(xm, xn).

If k is the normal constant of P , then

‖2d(x, xn)− 2d(x, xm)‖ ≤ k ‖2d(xm, xn)‖ → 0 as m, n→∞

which implies that (2d(x, xn)) is Cauchy in E. By completeness of E, let g(x) be its limit. Clearly, g(x) > θ.
Because g(x) = θ implies that the sequence (xn) is convergent, a contradiction.
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Thus, the function g is bounded below.
If x0 ∈ X, then

g(x0)− g(x) = lim
n→∞

2d(x0, xn)− lim
n→∞

2d(x, xn)

= lim
n→∞

[2d(x0, xn)− 2d(x, xn)]

≤ lim
n→∞

2d(x0, x)

= 2d(x0, x). (3.9)

Interchanging x0 and x, we obtain
g(x)− g(x0) ≤ 2d(x0, x).

Since the elements of P are comparable, either g(x0) ≤ g(x) or g(x) ≤ g(x0). Suppose that g(x) ≤ g(x0).
Then using (3.9), we have

θ ≤ g(x0)− g(x) ≤ 2d(x0, x)

which implies that
‖g(x0)− g(x)‖ ≤ k ‖2d(x0, x)‖.

Let ε > 0 be a given real number. We choose c ∈ E with θ � c and k2‖c‖ < ε. Then,

‖g(x0)− g(x)‖ ≤ 2k2‖ c
2
‖ whenever d(x0, x)� c

2

< ε whenever d(x0, x)� c

2
.

So, g is uniformly continuous. Also,

1

2
[g(x0) + g(x)] =

1

2

[
lim
n→∞

2d(x0, xn) + lim
n→∞

2d(x, xn)
]

≥ d(x0, x).

Now,

g(x0)− g(x) =
1

2
[g(x0) + g(x)] +

1

2
[g(x0)− 3g(x)]

≥ d(x0, x) +
1

2
[g(x0)− 3g(x)] . (3.10)

If g(x0)− g(x) ∈ Int(P ), then g(x)� g(x0). Again, g(x) > θ. So, it must be the case that θ � g(x0). By
the definition of g, 3g(xm)→ θ as m→∞.
By Lemma 2.7, for g(x0) ∈ E with θ � g(x0), there is δ > 0 such that ‖b‖ < δ implies g(x0)− b ∈ Int(P ).
Since 3g(xm) → θ as m → ∞, for this δ there is n0 ∈ N such that ‖3g(xm)‖ < δ for all m > n0. So,
g(x0)− 3g(xm) ∈ Int(P ) for all m > n0 i.e., 3g(xm)� g(x0) for all m > n0. Thus, 3g(x)� g(x0) if x = xm
and m is large. It now follows from (3.10) that g(x0)− g(x) ≥ d(x0, x) if x = xm and m is large. So, x0 is
not a d-point for g.

The following Corollary is the result [[25], Theorem].

Corollary 3.4. If the metric space (X, d) is complete then any lower semicontinuous function X → R
which is bounded below has a d-point. If (X, d) is not comlete there is a uniformly continuous function
X → R which is bounded below but has no d-point.

Proof. Taking E = R, P = [0,∞) in Theorem 3.3, the conclusion of the Corollary follows.

Remark 3.5. Theorem 3.3 is an extension of the result [[25], Theorem] in metric spaces to cone metric
spaces.
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