

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

A fixed point theorem in generalized ordered metric spaces with application

Leila Gholizadeh

Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran.

Communicated by S. M. Vaezpour

Abstract

In this paper, we consider the concept of Ω -distance on a complete, partially ordered G-metric space and prove a fixed point theorem for (ψ, ϕ) -Weak contraction. Then, we present some applications in integral equations. ©2013 All rights reserved.

Keywords: Ω -distance; fixed point; G-metric space; (ψ, ϕ) -Weak contraction. 2010 MSC: 47H10, 54H25.

1. Introduction and Preliminaries

The Banach fixed point theorem for contraction mapping has been generalized and extended in many direction [[3]-[11]],[18],[20],[27]. Nieto and Rodriguez-Lopez [18], Ran and Reurings [23] and Petrusel and Rus [21] presented some new results for contractions in partially ordered metric spaces. The main idea in [18, 19, 23] involves combining the ideas of an iterative technique in the contraction mapping principle with those in the monotone technique. In [7], Dutte, presented the concept of (ψ, ϕ) -Weak contraction which includes the generalizations Theorem (1.2) in [13] and Theorem (1.4) in [24]. Also, Mustafa and sims [15] introduced the concept of G-metric. Some authors [2, 14, 16, 26] have proved some fixed point theorems in these spaces. Aage [1], proved a fixed point theorem for weak contraction in *G*-metric space. Recently, Saadati et al. [25], using the concept of G-metric, defined an Ω -distance on complete G-metric space and generalized the concept of ω -distance due to Kada et al. [12].

In this paper, inspire of [12] we prove a fixed point theorem for (ψ, ϕ) -Weak contraction in generalized partially ordered metric spaces.

At first we recall some definitions and lemmas. For more information see [2, 7, 14, 15, 17, 22].

Email address: l.gholizade@gmail.com (Leila Gholizadeh)

Definition 1.1. ([15]) Let X be a non-empty set. A function $G: X \times X \times X \longrightarrow [0, \infty)$ is called a G-metric if the following conditions are satisfied:

- (i) G(x, y, z) = 0 if x = y = z (coincidence),
- (ii) G(x, x, y) > 0 for all $x, y \in X$, where $x \neq y$,
- (iii) $G(x, x, z) \leq G(x, y, z)$ for all $x, y, z \in X$, with $z \neq y$,
- (iv) $G(x, y, z) = G(p\{x, y, z\})$, where p is a permutation of x, y, z (symmetry),
- (v) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$ (rectangle inequality).

A G-metric is said to be symmetric if G(x, y, y) = G(y, x, x) for all $x, y \in X$.

Definition 1.2. ([15]) Let (X, G) be a G-metric space,

- (1) a sequence $\{x_n\}$ in X is said to be G-Cauchy sequence if, for each $\varepsilon > 0$, there exists a positive integer n_0 such that for all $m, n, l \ge n_0$, $G(x_n, x_m, x_l) < \varepsilon$.
- (2) a sequence $\{x_n\}$ in X is said to be G-convergent to a point $x \in X$ if, for each $\varepsilon > 0$, there exists a positive integer n_0 such that for all $m, n, \ge n_0$, $G(x_m, x_n, x) < \varepsilon$.

Definition 1.3. ([25]) Let (X, G) be a *G*-metric space. Then a function $\Omega : X \times X \times X \longrightarrow [0, \infty)$ is called an Ω -distance on X if the following conditions are satisfied:

- (a) $\Omega(x, y, z) \leq \Omega(x, a, a) + \Omega(a, y, z)$ for all $x, y, z, a \in X$,
- (b) for any $x, y \in X, \Omega(x, y, .), \Omega(x, ., y) : X \to [0, \infty)$ are lower semi-continuous,
- (c) for each $\varepsilon > 0$, there exists a $\delta > 0$ such that $\Omega(x, a, a) \leq \delta$ and $\Omega(a, y, z) \leq \delta$ imply $G(x, y, z) \leq \varepsilon$.

Example 1 : Let (X, d) be a metric space and $G: X^3 \longrightarrow [0, \infty)$ defined by

$$G(x, y, z) = \max\{d(x, y), d(y, z), d(x, z)\},\$$

for all $x, y, z \in X$. Then $\Omega = G$ is an Ω -distance on X.

Example 2 : Let $X = \mathbb{R}$ and consider the *G*-metric *G* defined by

$$G(x, y, z) = \frac{1}{3}(|x - y| + |y - z| + |x - z|),$$

for all $x, y, z \in \mathbb{R}$. Then $\Omega : \mathbb{R}^3 \longrightarrow [0, \infty)$ defined by

$$\Omega(x, y, z) = \frac{1}{3}(|x - y| + |z - x|),$$

for all $x, y, z \in \mathbb{R}$ is an Ω -distance on \mathbb{R} .

For more examples see [25].

Lemma 1.4. ([25]) Let X be a metric space with metric G and Ω be an Ω -distance on X. Let x_n, y_n be sequences in X, α_n, β_n be sequences in $[0, \infty)$ converging to zero and let $x, y, z, a \in X$. Then we have the following:

- (1) If $\Omega(y, x_n, x_n) \leq \alpha_n$ and $\Omega(x_n, y, z) \leq \beta_n$ for $n \in \mathbb{N}$, then $G(y, y, z) < \varepsilon$ and hence y = z;
- (2) If $\Omega(y_n, x_n, x_n) \leq \alpha_n$ and $\Omega(x_n, y_m, z) \leq \beta_n$ for m > n then $G(y_n, y_m, z) \to 0$ and hence $y_n \to z$;
- (3) If $\Omega(x_n, x_m, x_l) \leq \alpha_n$ for any $l, m, n \in \mathbb{N}$ with $n \leq m \leq l$, then x_n is a G-Cauchy sequence;
- (4) If $\Omega(x_n, a, a) \leq \alpha_n$ for any $n \in \mathbb{N}$ then x_n is a G-Cauchy sequence.

2. Main results

Definition 2.1. Suppose (X, \leq) is a partially ordered space and $T: X \to X$ is a mapping of X into itself. We say that T is non-decreasing if for $x, y \in X$,

$$x \le y \Longrightarrow T(x) \le T(y)$$

Definition 2.2. Let $\Phi = \{\phi | \phi : [0, \infty) \to [0, \infty)\}$ and $\Psi = \{\psi | \psi : [0, \infty) \to [0, \infty)\}$ be the set of continuous, non-decreasing functions with $\phi^{-1}(0) = \psi^{-1}(0) = 0$.

Theorem 2.3. Let (X, \leq) be a partially ordered space. Suppose there exists a G-metric on X such that (X, G) is a complete G-metric space and Ω is an Ω -distance on X and T is a non-decreasing mapping from X into itself. Suppose that

$$\psi(\Omega(Tx,Ty,Tz)) \le \psi(\Omega(x,y,z)) - \phi(\Omega(x,y,z)), \quad \forall x \le y, z \in X$$

where $\phi \in \Phi$ and $\psi \in \Psi$. Also, for every $x \in X$

$$\inf\{\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \le Tx\} > 0,$$

for every $y \in X$ with $y \neq Ty$. If there exists an $x_0 \in X$ with $x_0 \leq Tx_0$, then T has a unique fixed point. Moreover, if v = Tv, then $\Omega(v, v, v) = 0$.

Proof. If $x_0 = Tx_0$, then the proof is finished. Suppose that $x_0 \neq Tx_0$. Since $x_0 \leq Tx_0$ and T is non-decreasing, we obtain

$$x_0 \le T x_0 \le T^2 x_0 \le \dots \le T^{n+1} x_0 \le \dots$$

Now if for some $n \in \mathbb{N}$, $\Omega(T^n x_0, T^{n+1} x_0, T^{n+1} x_0) = 0$ then,

$$\psi(\Omega(T^{n+1}x_0, T^{n+2}x_0, T^{n+2}x_0)) \leq \psi(\Omega(T^nx_0, T^{n+1}x_0, T^{n+1}x_0)) - \phi(\Omega(T^nx_0, T^{n+1}x_0, T^{n+1}x_0)),$$

therefore, $\Omega(T^{n+1}x_0, T^{n+2}x_0, T^{n+2}x_0) = 0$, and by Part (c) of Definition (1.3), $G(T^nx_0, T^{n+2}x_0, T^{n+2}x_0) = 0$ and consequently $T^nx_0 = T^{n+2}x_0$, which implies T^nx_0 is a fixed point of T If n is even, and T^2x_0 is a fixed point of T if n is odd, then proof is complete. Otherwise $\Omega(T^nx_0, T^{n+1}x_0, T^{n+1}x_0) > 0$, for all $n \in \mathbb{N}$ and we have

$$\psi(\Omega(T^{n}x_{0}, T^{n+1}x_{0}, T^{n+1}x_{0})) \leq \psi(\Omega(T^{n-1}x_{0}, T^{n}x_{0}, T^{n}x_{0})) - \phi(\Omega(T^{n-1}x_{0}, T^{n}x_{0}, T^{n}x_{0})).$$
(2.1)

Then,

$$\psi(\Omega(T^n x_0, T^{n+1} x_0, T^{n+1} x_0)) \le \psi(\Omega(T^{n-1} x_0, T^n x_0, T^n x_0)).$$

Similarly,

$$\psi(\Omega(T^{n-1}x_0, T^n x_0, T^n x_0)) \le \psi(\Omega(T^{n-2}x_0, T^{n-1}x_0, T^{n-1}x_0)).$$

This shows that $\{\Omega(T^n x_0, T^{n+1} x_0, T^{n+1} x_0)\}$ is non-increasing. Then, there exists $r \ge 0$ such that

$$\lim_{n \to \infty} \Omega(T^n x_0, T^{n+1} x_0, T^{n+1} x_0) = r.$$

If r > 0, then $\phi(r) > 0$ and by taking $n \to \infty$ on (2.1), we obtain

$$\psi(r) \le \psi(r) - \phi(r),$$

which is a contraction. So,

$$\lim_{n \to \infty} \Omega(T^n x_0, T^{n+1} x_0, T^{n+1} x_0) = 0.$$

We claim that $\{T^n x_0\}$ is a G-Cauchy sequence. Suppose $\{T^n x_0\}$ is not a G-Cauchy sequence. Then, there exists $\varepsilon > 0$ and subsequences $\{T^{n_k} x_0\}$ and $\{T^{m_k} x_0\}$ such that n_k is the smallest integer with $n_k > m_k > k$ and $O(T^{m_k} x_0, T^{n_k} x_0, T^{n_k} x_0) > \varepsilon$

$$\Omega(T^{m_k}x_0, T^{n_k}x_0, T^{n_k}x_0) > \varepsilon$$

Then,

$$\Omega(T^{m_k}x_0, T^{n_k-1}x_0, T^{n_k-1}x_0) \le \varepsilon.$$

By Part (a) of Definition (1.3), we obtain

$$\varepsilon < \Omega(T^{m_k}x_0, T^{n_k}x_0, T^{n_k}x_0)$$

$$\le \Omega(T^{m_k}x_0, T^{n_k-1}x_0, T^{n_k-1}x_0) + \Omega(T^{n_k-1}x_0, T^{n_k}x_0, T^{n_k}x_0)$$

$$\le \varepsilon + \Omega(T^{n_k-1}x_0, T^{n_k}x_0, T^{n_k}x_0).$$

Thus,

$$\lim_{k \to \infty} \Omega(T^{m_k} x_0, T^{n_k} x_0, T^{n_k} x_0) = \varepsilon.$$

Since,

$$\Omega(T^{m_k-1}x_0, T^{n_k-1}x_0, T^{n_k-1}x_0) \leq \Omega(T^{m_k-1}x_0, T^{m_k}x_0, T^{m_k}x_0)$$

+ $\Omega(T^{m_k}x_0, T^{n_k-1}x_0, T^{n_k-1}x_0),$

and,

$$\begin{aligned} \psi(\varepsilon) &< \psi(\Omega(T^{m_k}x_0, T^{n_k}x_0, T^{n_k}x_0)) \\ &\leq \psi(\Omega(T^{m_k-1}x_0, T^{n_k-1}x_0, T^{n_k-1}x_0)) - \phi(\Omega(T^{m_k-1}x_0, T^{n_k-1}x_0, T^{n_k-1}x_0)) \\ &< \psi(\Omega(T^{m_k-1}x_0, T^{n_k-1}x_0, T^{n_k-1}x_0)), \end{aligned}$$

then, we obtain

 ψ

$$\lim_{k \to \infty} \Omega(T^{m_k - 1} x_0, T^{n_k - 1} x_0, T^{n_k - 1} x_0) = \varepsilon.$$

Again, we have

$$\begin{aligned} \psi(\varepsilon) &< \psi(\Omega(T^{m_k}x_0, T^{n_k}x_0, T^{n_k}x_0)) \\ &\leq \psi(\Omega(T^{m_k-1}x_0, T^{n_k-1}x_0, T^{n_k-1}x_0)) - \phi(\Omega(T^{m_k-1}x_0, T^{n_k-1}x_0, T^{n_k-1}x_0)) \end{aligned}$$

So, $\psi(\varepsilon) \leq \psi(\varepsilon) - \phi(\varepsilon)$, which is a contradiction. Therefore $\{T^n x_0\}$ is a G-Cauchy sequence. Since X is G-complete, $\{T^n x_0\}$ converges to a point $u \in X$. Now, for $\varepsilon > 0$ and by lower semi-continuity of Ω ,

$$\Omega(T^n x_0, T^m x_0, u) \le \liminf_{p \to \infty} \Omega(T^n x_0, T^m x_0, T^p x_0) \le \varepsilon, \qquad m \ge n$$

and,

$$\Omega(T^n x_0, u, T^l x_0) \le \liminf_{p \to \infty} \Omega(T^n x_0, T^p x_0, T^l x_0) \le \varepsilon, \qquad l \ge n$$

Assume that $u \neq Tu$. Since $T^n x_0 \leq T^{n+1} x_0$,

$$0 < \inf\{\Omega(T^n x_0, u, T^n x_0) + \Omega(T^n x_0, u, T^{n+1} x_0) + \Omega(T^n x_0, T^{n+1} x_0, u) : n \in \mathbb{N}\} \le 3\varepsilon,$$

which is a contraction. Therefore, we have u = Tu. To prove the uniqueness, let v be another fixed point of T, then

$$\begin{split} \psi(\Omega(u, u, v)) &= \psi(\Omega(Tu, Tu, Tv)) \\ &\leq \psi(\Omega(u, u, v)) - \phi(\Omega(u, u, v)) \\ &< \psi(\Omega(u, u, v)), \end{split}$$

which is a contraction. Therefore, the fixed point u is unique. Now, if v = Tv, we have,

$$\begin{aligned} \psi(\Omega(v,v,v)) &= \psi(\Omega(Tv,Tv,Tv)) \\ &\leq \psi(\Omega(v,v,v)) - \phi(\Omega(v,v,v)) \end{aligned}$$

So, $\Omega(v, v, v) = 0$.

Example 2.4. Let X = [0, 1] and $G(x, y, z) = \frac{1}{3}(|x - y| + |y - z| + |x - z|)$. Then (X, G) is a complete *G*-metric space. Suppose $\Omega(x, y, z) = \frac{1}{3}(|x - y| + |z - x|)$, $T(x) = \frac{x}{3}$, $\phi(t) = 3t$ and $\psi(t) = 9t$. Then,

$$\begin{split} \psi(\Omega(Tx,Ty,Tz)) &= \psi(\frac{1}{3}(|Tx-Ty|+|Tz-Tx|)) \\ &= \psi(\frac{1}{3}(|\frac{x}{3}-\frac{y}{3}|+|\frac{z}{3}-\frac{x}{3}|)) \\ &= |x-y|+|z-x| \\ &\leq \psi(\frac{1}{3}(|x-y|+|z-x|)) - \phi(\frac{1}{3}(|x-y|+|z-x|)) \\ &= \psi(\Omega(x,y,z)) - \phi(\Omega(x,y,z)), \end{split}$$

also, for every $x \in X$

$$\inf\{\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \le Tx\} > 0,$$

for every $y \in X$ with $y \neq Ty$. So, by Theorem 2.3, T has a unique fixed point that is 0.

Denote by Λ the set all functions $\lambda: [0, +\infty) \to [0, +\infty)$ satisfying the following hypotheses:

- (i) λ is a Lebesgue-integrable mapping on each compact subset of $[0,+\infty),$
- (ii) for every $\varepsilon > 0$, we have $\int_0^{\varepsilon} \lambda(s) ds > 0$,
- (iii) $\|\lambda\| < 1$, where $\|\lambda\|$ denotes to the norm of λ .

Now, we have the following corollary.

Corollary 2.5. Let (X, \leq) be a partially ordered space. Suppose that there exists a G-metric on X such that (X, G) is a complete G-metric space and Ω is an Ω -distance on X and T is a non-decreasing mapping from X into itself. Suppose that for all $x \leq y, z \in X$,

$$\int_{0}^{\psi(\Omega(Tx,Ty,Tz))} \lambda(s)ds \le \int_{0}^{\psi(\Omega(x,y,z))} \lambda(s)ds - \int_{0}^{\phi(\Omega(x,y,z))} \lambda(s)ds,$$
(3.1)

where $\lambda \in \Lambda$. Also, for every $x \in X$

$$\inf\{\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \le Tx\} > 0,$$

for every $y \in X$ with $y \neq Ty$. If there exists an $x_0 \in X$ with $x_0 \leq Tx_0$, then T has a unique fixed point.

Proof. Define $\gamma: [0, +\infty) \to [0, +\infty)$ by $\gamma(t) = \int_0^t \lambda(s) ds$, then from inequality (3.1), we have

 $\gamma(\psi(\Omega(Tx,Ty,Tz))) \leq \gamma(\psi(\Omega(x,y,z))) - \gamma(\phi(\Omega(x,y,z))),$

which can be written as

$$\psi_1(\Omega(Tx, Ty, Tz)) \le \psi_1(\Omega(x, y, z)) - \phi_1(\Omega(x, y, z))$$

where $\psi_1 = \gamma \circ \psi$ and $\phi_1 = \gamma \circ \phi$. Since the functions ψ_1 and ϕ_1 satisfy the properties of ψ and ϕ , by Theorem 2.3, T has a unique fixed point.

3. Application

In this section, we give an existence theorem for a solution of the following integral equations:

$$x(t) = \int_0^1 K(t, s, x(s))ds + g(t), \quad t \in [0, 1].$$
(3.1)

Let X = C([0,1]) be the set all continuous functions defined on [0,1]. Define $G: X \times X \times X \to \mathbb{R}$ by

$$G(x, y, z) = \|x - y\| + \|y - z\| + \|z - x\|,$$

where $||x|| = \sup\{|x(t)|: t \in [0,1]\}$. Then (X, G) is a complete G-metric space. Let $\Omega = G$. Then Ω is an Ω -distance on X. Define an ordered relation \leq on X by

$$x \le y \quad iff \quad x(t) \le y(t), \qquad \forall t \in [0,1].$$

Then (X, \leq) is a partially ordered set. Now, we prove the following result.

Theorem 3.1. Suppose the following hypotheses hold:

- (1) $K: [0,1] \times [0,1] \times \mathbb{R}^+ \to \mathbb{R}^+$ and $g: [0,1] \to \mathbb{R}$ are continuous mappings,
- (2) K is nondecreasing in its first coordinate and g is nondecreasing,
- (3) There exists a continuous function $G: [0,1] \times [0,1] \rightarrow [0,+\infty)$ such that

$$|K(t, s, u) - K(t, s, v)| \le G(t, s) |u - v|,$$

for every comparable $u, v \in \mathbb{R}^+$ and $s, t \in [0,1]$ with $\sup_{t \in [0,1]} \int_0^1 G(t,s) ds \leq \frac{1}{2}$,

(4) There exist continuous, non-decreasing functions $\phi, \psi : [0, \infty) \to (0, \infty)$ with $\psi^{-1}(0) = \phi^{-1}(0) = 0$ and $\psi(r) \le \psi(2r) - \phi(2r)$ for all $r \in [0, \infty)$.

Then the integral equation has a solution in C([0,1]).

Proof. Define $Tx(t) = \int_0^1 K(t, s, x(s))ds + g(t)$. By hypothesis (2), we have that T is nondecreasing. Now, if

$$\inf\{\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \le Tx\} = 0,$$

for every $y \in X$ with $y \neq Ty$, then for each $n \in \mathbb{N}$, there exists $x_n \in C([0,1])$ with $x_n \leq Tx_n$ such that

$$\Omega(x_n, y, x_n) + \Omega(x_n, y, Tx_n) + \Omega(x_n, Tx_n, y) \le \frac{1}{n}$$

Then, we have

$$\Omega(x_n, y, Tx_n) = \sup_{t \in [0,1]} |x_n - y| + \sup_{t \in [0,1]} |y - Tx_n| + \sup_{t \in [0,1]} |Tx_n - x_n| \le \frac{1}{n}.$$

Thus,

$$\lim_{n \to \infty} x_n(t) = y(t),$$
$$\lim_{n \to \infty} T x_n(t) = y(t).$$

By the continuity of K, we have

$$y(t) = \lim_{n \to \infty} Tx_n(t) = \int_0^1 K(t, s, \lim_{n \to \infty} x_n(s)) ds + g(t)$$

= $\int_0^1 K(t, s, y(s)) ds + g(t) = Ty(t).$

Which is a contradiction. Therefore,

$$\inf\{\Omega(x,y,x) + \Omega(x,y,Tx) + \Omega(x,Tx,y) : x \le Tx\} > 0.$$

Now, for $x, y, z \in X$ with $x \leq y$, we have

$$\begin{split} \psi(\Omega(Tx,Ty,Tz)) &= \psi(\sup_{t\in[0,1]} | Tx(t) - Ty(t) | + \sup_{t\in[0,1]} | Ty(t) - Tz(t) | \\ &+ \sup_{t\in[0,1]} | Tz(t) - Tx(t) |) \\ &\leq \psi(\sup_{t\in[0,1]} \int_0^1 | K(t,s,x(s)) - K(t,s,y(s)) | ds \\ &+ \sup_{t\in[0,1]} \int_0^1 | K(t,s,y(s)) - K(t,s,z(s)) | ds \\ &+ \sup_{t\in[0,1]} \int_0^1 | K(t,s,z(s)) - K(t,s,x(s)) | ds) \\ &\leq \psi(\sup_{t\in[0,1]} (\int_0^1 G(t,s) | x(s) - y(s) | ds) + \sup_{t\in[0,1]} (\int_0^1 G(t,s) | y(s) - z(s) | ds) \\ &+ \sup_{t\in[0,1]} (\int_0^1 G(t,s) | z(s) - x(s) | ds)) \\ &\leq \psi(\sup_{t\in[0,1]} (| x(t) - y(t) |) \sup_{t\in[0,1]} \int_0^1 G(t,s) ds \\ &+ \sup_{t\in[0,1]} (| z(t) - x(t) |) \sup_{t\in[0,1]} \int_0^1 G(t,s) ds \\ &+ \sup_{t\in[0,1]} (| z(t) - x(t) |) \sup_{t\in[0,1]} \int_0^1 G(t,s) ds \\ &+ \sup_{t\in[0,1]} (| z(t) - y(t) |) + \frac{1}{2} \sup_{t\in[0,1]} (| z(t) - x(t) |)) \\ &\leq \psi(\frac{1}{2} \sup_{t\in[0,1]} (| x(t) - y(t) |) + \frac{1}{2} \sup_{t\in[0,1]} (| z(t) - x(t) |)) \\ &\leq \psi(\frac{1}{2} \Omega(x,y,z)) \leq \psi(\Omega(x,y,z)) - \phi(\Omega(x,y,z)). \end{split}$$

Thus, by Theorem 2.3, there exists a solution $u \in C[0, 1]$ of the integral equation (3.1).

Acknowledgements:

The author is thankful to professor S. M. Vaezpour, for providing valuable comments and suggestions for the improvement of this paper.

References

- C.T. Aage, J.N. Salunke, Fixed point for weak contractions in G- metric spaces, Applied mathematices E-Note, 12 (2012), 23–28. 1
- M. Abbas, B. Rhoades, Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. Comput. 215 (2009), 262–269.
- [3] R.P. Agarwal, M.A. El-Gebeily, D. O'Regan, Generalized in partially ordered metric space, Appl. Anal 87 (2008), 1–8.
- [4] L.B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267–273.
- [5] L.B. Cirić, Coincidence of fixed points for maps on topological spaces, Topology Appl. 154 (2007), 3100–3106.
- [6] L.B. Ćirić, S.N. Jšić, M.M. Milovanović, J.S. Ume, On the steepest descent approximation method for the zeros of generalized accretive oprators, Nonlinear Anal-TMA 69 (2008), 763–769.

- [7] P.N. Dutta, B.S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point theory Appl.2008, 8. Article ID 406368. 1
- [8] J.X. Fang, Y. Gao, Common fixed point theorems under stric contractive conditions in Menger space, Nonlinear Anal-TMA 70 (2006), 184–193.
- T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal-TMA 65 (2006), 1379–1393.
- [10] T. Gnana Bhaskar, V. Lakshmikantham, J.Vasundhara Devi, Monotone interative technique for functional differential equations with retardation and anticipation, Nonlinear Anal-TMA 66 (10)(2007), 12237–2242.
- [11] N. Hussain, Common fixed point in best approximation for Banach opaerator pairs with Ciric type I-contractions, J. Math. Anal. Appl. 338 (2008), 1351–1363.
- [12] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric space, Math. Japonica 44 (1996), 381–391. 1
- [13] M.S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society, 30 (1)(1984), 1–9. 1
- [14] Z. Mustafa, T. Obiedat, F. Awawdeh, Some fixed point theorems for mapping on complete G-metric space, Fixed Point theory Appl.2008 12. Article ID 189870.
- [15] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289–297.
 1, 1.1, 1.2
- [16] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point theory Appl. 2009 10. Article ID 917175. 1
- [17] H. K. Nashine, Coupled common fixed point results in ordered G-metric spaces, J. Nonlinear Sci. Appl. 1 (2012), 1–13.
- [18] J.J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223–239. 1
- [19] J.J. Nieto, R.R. Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. Eng. Ser. 23 (2007), 2205–2212. 1
- [20] D. O'Regan, R. Saadati, Nonlinear contraction theorems in probabilistic spaces, Appl. Math. Comput. 195 (2008), 86–93. 1
- [21] A. Petrusel, L.A. Rus, Fixed point theorems in ordered L- Spaces, Proc. Amer. Math. Soc. 134 (2006), 411–418.
 1
- [22] V. Popa, A-M. Patriciu, A general fixed point theorem for pairs of weakly compatible mappings in G-metric spaces, J. Nonlinear Sci. Appl.5 (2012), 151–160.
- [23] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc.132 (2004), 1435–1443. 1
- [24] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal-TMA 47 (4)(2001), 2683–2693. 1
- [25] R. Saadati, S.M. Vaezpour, P. Vetro, B.E. Rhoades, Fixed point theorems in generalized partially orderedG-metric spaces, Math. Comput. Model. 52 (2010), 797–801. 1, 1.3, 1, 1.4
- [26] W. Shatanawi, Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces, Fixed Point theory Appl.2010 9. Article ID 181650. 1
- [27] W. Shatanawi, H. K. Nashine, A generalization of Banach's contraction principle for nonlinear contraction in a partial metric space, J. Nonlinear Sci. Appl.5 (2012), 37–43. 1