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Abstract

In this paper, we consider the concept of Ω-distance on a complete, partially ordered G-metric space and
prove a fixed point theorem for (ψ, φ)-Weak contraction. Then, we present some applications in integral
equations. c©2013 All rights reserved.
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1. Introduction and Preliminaries

The Banach fixed point theorem for contraction mapping has been generalized and extended in many
direction [[3]-[11]],[18],[20],[27]. Nieto and Rodriguez-Lopez [18], Ran and Reurings [23] and Petrusel and
Rus [21] presented some new results for contractions in partially ordered metric spaces. The main idea in
[18, 19, 23] involves combining the ideas of an iterative technique in the contraction mapping principle with
those in the monotone technique. In [7], Dutte, presented the concept of (ψ, φ)-Weak contraction which
includes the generalizations Theorem (1.2) in [13] and Theorem (1.4) in [24]. Also, Mustafa and sims [15]
introduced the concept of G-metric. Some authors [2, 14, 16, 26] have proved some fixed point theorems
in these spaces. Aage [1], proved a fixed point theorem for weak contraction in G-metric space. Recently,
Saadati et al. [25], using the concept of G-metric, defined an Ω-distance on complete G-metric space and
generalized the concept of ω-distance due to Kada et al. [12].
In this paper, inspire of [12] we prove a fixed point theorem for (ψ, φ)-Weak contraction in generalized
partially ordered metric spaces.
At first we recall some definitions and lemmas. For more information see [2, 7, 14, 15, 17, 22].
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Definition 1.1. ([15]) Let X be a non-empty set. A function G : X×X×X −→ [0,∞) is called a G-metric
if the following conditions are satisfied:

(i) G(x, y, z) = 0 if x = y = z (coincidence),

(ii) G(x, x, y) > 0 for all x, y ∈ X, where x 6= y,

(iii) G(x, x, z) ≤ G(x, y, z) for all x, y, z ∈ X, with z 6= y,

(iv) G(x, y, z) = G(p{x, y, z}), where p is a permutation of x, y, z (symmetry),

(v) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

A G-metric is said to be symmetric if G(x, y, y) = G(y, x, x) for all x, y ∈ X.

Definition 1.2. ([15]) Let (X, G) be a G-metric space,

(1) a sequence {xn} in X is said to be G-Cauchy sequence if, for each ε > 0, there exists a positive integer
n0 such that for all m,n, l ≥ n0, G(xn, xm, xl) < ε.

(2) a sequence {xn} in X is said to be G-convergent to a point x ∈ X if, for each ε > 0, there exists a
positive integer n0 such that for all m,n,≥ n0, G(xm, xn, x) < ε.

Definition 1.3. ([25]) Let (X, G) be a G-metric space. Then a function Ω : X×X×X −→ [0,∞) is called
an Ω-distance on X if the following conditions are satisfied:

(a) Ω(x, y, z) ≤ Ω(x, a, a) + Ω(a, y, z) for all x, y, z, a ∈ X,

(b) for any x, y ∈ X,Ω(x, y, .),Ω(x, ., y) : X → [0,∞) are lower semi-continuous,

(c) for each ε > 0, there exists a δ > 0 such that Ω(x, a, a) ≤ δ and Ω(a, y, z) ≤ δ imply G(x, y, z) ≤ ε.

Example 1 : Let (X, d) be a metric space and G : X3 −→ [0,∞) defined by

G(x, y, z) = max{d(x, y), d(y, z), d(x, z)},

for all x, y, z ∈ X. Then Ω = G is an Ω-distance on X.

Example 2 : Let X = R and consider the G-metric G defined by

G(x, y, z) =
1

3
(| x− y | + | y − z | + | x− z |),

for all x, y, z ∈ R. Then Ω : R3 −→ [0,∞) defined by

Ω(x, y, z) =
1

3
(| x− y | + | z − x |),

for all x, y, z ∈ R is an Ω-distance on R.

For more examples see [25].

Lemma 1.4. ([25]) Let X be a metric space with metric G and Ω be an Ω-distance on X. Let xn, yn be
sequences in X, αn, βn be sequences in [0,∞) converging to zero and let x, y, z, a ∈ X. Then we have the
following:

(1) If Ω(y, xn, xn) ≤ αn and Ω(xn, y, z) ≤ βn for n ∈ N, then G(y, y, z) < ε and hence y = z;

(2) If Ω(yn, xn, xn) ≤ αn and Ω(xn, ym, z) ≤ βn for m > n then G(yn, ym, z)→ 0 and hence yn → z;

(3) If Ω(xn, xm, xl) ≤ αn for any l,m, n ∈ N with n ≤ m ≤ l, then xn is a G-Cauchy sequence;

(4) If Ω(xn, a, a) ≤ αn for any n ∈ N then xn is a G-Cauchy sequence.
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2. Main results

Definition 2.1. Suppose (X, ≤) is a partially ordered space and T : X → X is a mapping of X into itself.
We say that T is non-decreasing if for x, y ∈ X,

x ≤ y =⇒ T (x) ≤ T (y).

Definition 2.2. Let Φ = {φ|φ : [0,∞)→ [0,∞)} and Ψ = {ψ|ψ : [0,∞)→ [0,∞)} be the set of continuous,
non-decreasing functions with φ−1(0) = ψ−1(0) = 0.

Theorem 2.3. Let (X, ≤) be a partially ordered space. Suppose there exists a G-metric on X such that
(X, G) is a complete G-metric space and Ω is an Ω-distance on X and T is a non-decreasing mapping from
X into itself. Suppose that

ψ(Ω(Tx, Ty, Tz)) ≤ ψ(Ω(x, y, z))− φ(Ω(x, y, z)), ∀x ≤ y, z ∈ X

where φ ∈ Φ and ψ ∈ Ψ. Also, for every x ∈ X

inf{Ω(x, y, x) + Ω(x, y, Tx) + Ω(x, Tx, y) : x ≤ Tx} > 0,

for every y ∈ X with y 6= Ty. If there exists an x0 ∈ X with x0 ≤ Tx0, then T has a unique fixed point.
Moreover, if v = Tv, then Ω(v, v, v) = 0.

Proof. If x0 = Tx0, then the proof is finished. Suppose that x0 6= Tx0. Since x0 ≤ Tx0 and T is non-
decreasing, we obtain

x0 ≤ Tx0 ≤ T 2x0 ≤ ... ≤ Tn+1x0 ≤ ... .

Now if for some n ∈ N, Ω(Tnx0, T
n+1x0, T

n+1x0) = 0 then,

ψ(Ω(Tn+1x0, T
n+2x0, T

n+2x0)) ≤ ψ(Ω(Tnx0, T
n+1x0, T

n+1x0))

− φ(Ω(Tnx0, T
n+1x0, T

n+1x0)),

therefore, Ω(Tn+1x0, T
n+2x0, T

n+2x0) = 0, and by Part (c) of Definition (1.3),
G(Tnx0, T

n+2x0, T
n+2x0) = 0 and consequently Tnx0 = Tn+2x0, which implies Tnx0 is a fixed point of T

If n is even, and T 2x0 is a fixed point of T if n is odd, then proof is complete.
Otherwise Ω(Tnx0, T

n+1x0, T
n+1x0) > 0, for all n ∈ N and we have

ψ(Ω(Tnx0, T
n+1x0, T

n+1x0)) ≤ ψ(Ω(Tn−1x0, T
nx0, T

nx0))

− φ(Ω(Tn−1x0, T
nx0, T

nx0)). (2.1)

Then,
ψ(Ω(Tnx0, T

n+1x0, T
n+1x0)) ≤ ψ(Ω(Tn−1x0, T

nx0, T
nx0)).

Similarly,
ψ(Ω(Tn−1x0, T

nx0, T
nx0)) ≤ ψ(Ω(Tn−2x0, T

n−1x0, T
n−1x0)).

This shows that {Ω(Tnx0, T
n+1x0, T

n+1x0)} is non-increasing. Then, there exists r ≥ 0 such that

lim
n→∞

Ω(Tnx0, T
n+1x0, T

n+1x0) = r.

If r > 0, then φ(r) > 0 and by taking n→∞ on (2.1), we obtain

ψ(r) ≤ ψ(r)− φ(r),

which is a contraction. So,
lim
n→∞

Ω(Tnx0, T
n+1x0, T

n+1x0) = 0.
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We claim that {Tnx0} is a G-Cauchy sequence. Suppose {Tnx0} is not a G-Cauchy sequence. Then, there
exists ε > 0 and subsequences {Tnkx0} and {Tmkx0} such that nk is the smallest integer with nk > mk > k
and

Ω(Tmkx0, T
nkx0, T

nkx0) > ε.

Then,
Ω(Tmkx0, T

nk−1x0, T
nk−1x0) ≤ ε.

By Part (a) of Definition (1.3), we obtain

ε < Ω(Tmkx0, T
nkx0, T

nkx0)

≤ Ω(Tmkx0, T
nk−1x0, T

nk−1x0) + Ω(Tnk−1x0, T
nkx0, T

nkx0)

≤ ε+ Ω(Tnk−1x0, T
nkx0, T

nkx0).

Thus,
lim
k→∞

Ω(Tmkx0, T
nkx0, T

nkx0) = ε.

Since,

Ω(Tmk−1x0, T
nk−1x0, T

nk−1x0) ≤ Ω(Tmk−1x0, T
mkx0, T

mkx0)

+ Ω(Tmkx0, T
nk−1x0, T

nk−1x0),

and,

ψ(ε) < ψ(Ω(Tmkx0, T
nkx0, T

nkx0))

≤ ψ(Ω(Tmk−1x0, T
nk−1x0, T

nk−1x0))− φ(Ω(Tmk−1x0, T
nk−1x0, T

nk−1x0))

< ψ(Ω(Tmk−1x0, T
nk−1x0, T

nk−1x0)),

then, we obtain
lim
k→∞

Ω(Tmk−1x0, T
nk−1x0, T

nk−1x0) = ε.

Again, we have

ψ(ε) < ψ(Ω(Tmkx0, T
nkx0, T

nkx0))

≤ ψ(Ω(Tmk−1x0, T
nk−1x0, T

nk−1x0))− φ(Ω(Tmk−1x0, T
nk−1x0, T

nk−1x0)).

So, ψ(ε) ≤ ψ(ε) − φ(ε), which is a contradiction. Therefore {Tnx0} is a G-Cauchy sequence. Since X is
G-complete, {Tnx0} converges to a point u ∈ X. Now, for ε > 0 and by lower semi-continuity of Ω,

Ω(Tnx0, T
mx0, u) ≤ lim inf

p→∞
Ω(Tnx0, T

mx0, T
px0) ≤ ε, m ≥ n

and,
Ω(Tnx0, u, T

lx0) ≤ lim inf
p→∞

Ω(Tnx0, T
px0, T

lx0) ≤ ε, l ≥ n.

Assume that u 6= Tu. Since Tnx0 ≤ Tn+1x0,

0 < inf{Ω(Tnx0, u, T
nx0) + Ω(Tnx0, u, T

n+1x0) + Ω(Tnx0, T
n+1x0, u) : n ∈ N} ≤ 3ε,

which is a contraction. Therefore, we have u = Tu.
To prove the uniqueness, let v be another fixed point of T, then

ψ(Ω(u, u, v)) = ψ(Ω(Tu, Tu, Tv))

≤ ψ(Ω(u, u, v))− φ(Ω(u, u, v))

< ψ(Ω(u, u, v)),
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which is a contraction. Therefore, the fixed point u is unique. Now, if v = Tv, we have,

ψ(Ω(v, v, v)) = ψ(Ω(Tv, Tv, Tv))

≤ ψ(Ω(v, v, v))− φ(Ω(v, v, v)).

So, Ω(v, v, v) = 0.

Example 2.4. Let X = [0, 1] and G(x, y, z) = 1
3(| x− y | + | y− z | + | x− z |). Then (X, G) is a complete

G-metric space. Suppose Ω(x, y, z) = 1
3(| x− y | + | z − x |), T (x) = x

3 , φ(t) = 3t and ψ(t) = 9t. Then,

ψ(Ω(Tx, Ty, Tz)) = ψ(
1

3
(| Tx− Ty | + | Tz − Tx |))

= ψ(
1

3
(| x

3
− y

3
| + | z

3
− x

3
|))

= | x− y | + | z − x |

≤ ψ(
1

3
(| x− y | + | z − x |))− φ(

1

3
(| x− y | + | z − x |))

= ψ(Ω(x, y, z))− φ(Ω(x, y, z)),

also, for every x ∈ X
inf{Ω(x, y, x) + Ω(x, y, Tx) + Ω(x, Tx, y) : x ≤ Tx} > 0,

for every y ∈ X with y 6= Ty. So, by Theorem 2.3, T has a unique fixed point that is 0.

Denote by Λ the set all functions λ : [0,+∞)→ [0,+∞) satisfying the following hypotheses:

(i) λ is a Lebesgue-integrable mapping on each compact subset of [0,+∞),

(ii) for every ε > 0, we have
∫ ε

0 λ(s)ds > 0,

(iii) ‖λ‖ < 1, where ‖λ‖ denotes to the norm of λ.

Now, we have the following corollary.

Corollary 2.5. Let (X, ≤) be a partially ordered space. Suppose that there exists a G-metric on X such
that (X, G) is a complete G-metric space and Ω is an Ω-distance on X and T is a non-decreasing mapping
from X into itself. Suppose that for all x ≤ y, z ∈ X,∫ ψ(Ω(Tx,Ty,Tz))

0
λ(s)ds ≤

∫ ψ(Ω(x,y,z))

0
λ(s)ds−

∫ φ(Ω(x,y,z))

0
λ(s)ds, (3.1)

where λ ∈ Λ. Also, for every x ∈ X

inf{Ω(x, y, x) + Ω(x, y, Tx) + Ω(x, Tx, y) : x ≤ Tx} > 0,

for every y ∈ X with y 6= Ty. If there exists an x0 ∈ X with x0 ≤ Tx0, then T has a unique fixed point.

Proof. Define γ : [0,+∞)→ [0,+∞) by γ(t) =
∫ t

0 λ(s)ds, then from inequality (3.1), we have

γ(ψ(Ω(Tx, Ty, Tz))) ≤ γ(ψ(Ω(x, y, z)))− γ(φ(Ω(x, y, z))),

which can be written as

ψ1(Ω(Tx, Ty, Tz)) ≤ ψ1(Ω(x, y, z))− φ1(Ω(x, y, z)),

where ψ1 = γ ◦ ψ and φ1 = γ ◦ φ. Since the functions ψ1 and φ1 satisfy the properties of ψ and φ, by
Theorem 2.3, T has a unique fixed point.
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3. Application

In this section, we give an existence theorem for a solution of the following integral equations:

x(t) =

∫ 1

0
K(t, s, x(s))ds+ g(t), t ∈ [0, 1]. (3.1)

Let X = C([0, 1]) be the set all continuous functions defined on [0, 1]. Define G : X ×X ×X → R by

G(x, y, z) = ‖x− y‖+ ‖y − z‖+ ‖z − x‖,

where ‖x‖ = sup{| x(t) |: t ∈ [0, 1]}. Then (X, G) is a complete G-metric space. Let Ω = G. Then Ω is an
Ω-distance on X. Define an ordered relation ≤ on X by

x ≤ y iff x(t) ≤ y(t), ∀t ∈ [0, 1].

Then (X, ≤) is a partially ordered set. Now, we prove the following result.

Theorem 3.1. Suppose the following hypotheses hold:

(1) K : [0, 1]× [0, 1]× R+ → R+ and g : [0, 1]→ R are continuous mappings,

(2) K is nondecreasing in its first coordinate and g is nondecreasing,

(3) There exists a continuous function G : [0, 1]× [0, 1]→ [0,+∞) such that

| K(t, s, u)−K(t, s, v) |≤ G(t, s) | u− v |,

for every comparable u, v ∈ R+ and s, t ∈ [0, 1] with supt∈[0,1]

∫ 1
0 G(t, s)ds ≤ 1

2 ,

(4) There exist continuous, non-decreasing functions φ, ψ : [0,∞) → (0,∞) with ψ−1(0) = φ−1(0) = 0
and ψ(r) ≤ ψ(2r)− φ(2r) for all r ∈ [0,∞).

Then the integral equation has a solution in C([0, 1]).

Proof. Define Tx(t) =
∫ 1

0 K(t, s, x(s))ds+ g(t). By hypothesis (2), we have that T is nondecreasing.
Now, if

inf{Ω(x, y, x) + Ω(x, y, Tx) + Ω(x, Tx, y) : x ≤ Tx} = 0,

for every y ∈ X with y 6= Ty, then for each n ∈ N, there exists xn ∈ C([0, 1]) with xn ≤ Txn such that

Ω(xn, y, xn) + Ω(xn, y, Txn) + Ω(xn, Txn, y) ≤ 1

n
.

Then, we have

Ω(xn, y, Txn) = sup
t∈[0,1]

| xn − y | + sup
t∈[0,1]

| y − Txn | + sup
t∈[0,1]

| Txn − xn |≤
1

n
.

Thus,
lim
n→∞

xn(t) = y(t),

lim
n→∞

Txn(t) = y(t).

By the continuity of K, we have

y(t) = lim
n→∞

Txn(t) =

∫ 1

0
K(t, s, lim

n→∞
xn(s))ds+ g(t)

=

∫ 1

0
K(t, s, y(s))ds+ g(t) = Ty(t).
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Which is a contradiction. Therefore,

inf{Ω(x, y, x) + Ω(x, y, Tx) + Ω(x, Tx, y) : x ≤ Tx} > 0.

Now, for x, y, z ∈ X with x ≤ y, we have

ψ(Ω(Tx, Ty, Tz)) = ψ( sup
t∈[0,1]

| Tx(t)− Ty(t) | + sup
t∈[0,1]

| Ty(t)− Tz(t) |

+ sup
t∈[0,1]

| Tz(t)− Tx(t) |)

≤ ψ( sup
t∈[0,1]

∫ 1

0
| K(t, s, x(s))−K(t, s, y(s)) | ds

+ sup
t∈[0,1]

∫ 1

0
| K(t, s, y(s))−K(t, s, z(s)) | ds

+ sup
t∈[0,1]

∫ 1

0
| K(t, s, z(s))−K(t, s, x(s)) | ds)

≤ ψ( sup
t∈[0,1]

(

∫ 1

0
G(t, s) | x(s)− y(s) | ds) + sup

t∈[0,1]
(

∫ 1

0
G(t, s) | y(s)− z(s) | ds)

+ sup
t∈[0,1]

(

∫ 1

0
G(t, s) | z(s)− x(s) | ds))

≤ ψ( sup
t∈[0,1]

(| x(t)− y(t) |) sup
t∈[0,1]

∫ 1

0
G(t, s)ds

+ sup
t∈[0,1]

(| y(t)− z(t) |) sup
t∈[0,1]

∫ 1

0
G(t, s)ds

+ sup
t∈[0,1]

(| z(t)− x(t) |) sup
t∈[0,1]

∫ 1

0
G(t, s)ds)

≤ ψ(
1

2
sup
t∈[0,1]

(| x(t)− y(t) |) +
1

2
sup
t∈[0,1]

(| y(t)− z(t) |) +
1

2
sup
t∈[0,1]

(| z(t)− x(t) |))

≤ ψ(
1

2
Ω(x, y, z)) ≤ ψ(Ω(x, y, z))− φ(Ω(x, y, z)).

Thus, by Theorem 2.3, there exists a solution u ∈ C[0, 1] of the integral equation (3.1).
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