

Journal of Nonlinear Science and Applications Print: ISSN 2008-1898 Online: ISSN 2008-1901

Fixed point theorems for cyclic weak contractions in compact metric spaces

Jackie Harjani, Belén López, Kishin Sadarangani*

Departamento de Matemáticas, Universidad de Las Palmas de Gran Canaria, Campus de Tafira Baja, 35017 Las Palmas de Gran Canaria, Spain.

Abstract

The purpose of this paper is to present a fixed point theorem for cyclic weak contractions in compact metric spaces. ©2013 All rights reserved.

Keywords: Fixed point, weak contraction, cyclic representation. 2010 MSC: 47H10.

1. Introduction and Preliminaries

Alber and Guerre-Delabriere in [1] define weakly contractive mappings and they prove some fixed point theorems in the context of Hilbert spaces. In [5] Rhoades extends some results of [1] to complete metric spaces.

Recently, E. Karapinar in [3] proves a fixed point theorem for an operator T on a complete metric space X when X has a cyclic representation with respect to T.

Firstly, we present some definitions.

Definition 1.1. Let X be a nonempty set, m a positive integer and $T: X \longrightarrow X$ an operator. $X = \bigcup_{i=1}^{m} A_i$ is said to be a cyclic representation of X with respect to T if

- (i) $A_i, i = 1, 2, ..., m$ are nonempty subsets of X.
- (*ii*) $T(A_1) \subset A_2, \ldots, T(A_{m-1}) \subset A_m, \quad T(A_m) \subset A_1.$

*Corresponding author

Email addresses: jharjani@dma.ulpgc.es (Jackie Harjani), blopez@dma.ulpgc.es (Belén López), ksadaran@dma.ulpgc.es (Kishin Sadarangani)

In [3] the author uses the class of functions \mathfrak{J} given by

$$\mathfrak{J} = \{\phi : [0,\infty) \longrightarrow [0,\infty): \text{ continuous, nondecreasing } \phi(t) > 0 \text{ for } t \in (0,\infty), \phi(0) = 0\}.$$

Examples of functions in \mathfrak{J} are $\phi(t) = \lambda t$ with $\lambda > 0$; $\phi(t) = \ln(1+t)$; $\phi(t) = \arctan x$. We use in this paper the class of functions \mathfrak{F} given by

$$\mathfrak{F} = \{ \varphi : [0,\infty) \longrightarrow [0,\infty) : \text{ nondecreasing, } \varphi(t) > 0 \text{ for } t \in (0,\infty) \quad \varphi(0) = 0 \}$$

Obviously, $\mathfrak{J} \subset \mathfrak{F}$.

The function $\varphi: [0,\infty) \longrightarrow [0,\infty)$ given by

$$\varphi(t) = \begin{cases} t & \text{for } t \in [0, 1] \\ 2t & \text{for } t \in (1, \infty) \end{cases}$$

belongs to \mathfrak{F} but it is not an element of \mathfrak{J} .

The following definition appears in [3] (Definition 2).

Definition 1.2. Let (X, d) be a metric space, m a positive integer, A_1, A_2, \ldots, A_m closed non-empty subsets of X and $X = \bigcup_{i=1}^{m} A_i$. An operator $T: X \longrightarrow X$ is called a cyclic weak contraction if

- (i) $X = \bigcup_{i=1}^{m} A_i$ is a cyclic representation of X with respect to T.
- (*ii*) $d(Tx, Ty) \le d(x, y) \phi(d(x, y))$ for any $x \in A_i$ and $y \in A_{i+1}$, i = 1, 2, ..., m, where $A_{m+1} = A_1$ and $\phi \in \mathfrak{J}$.

The main result in [3] is the following.

Theorem 1.3. (Theorem 6 of [3]). Let (X, d) be a complete metric space, m a positive integer, A_1, A_2, \ldots, A_m nonempty closed subsets of X and $X = \bigcup_{i=1}^{m} A_i$. Let $T: X \longrightarrow X$ be an operator such that

- (a) $X = \bigcup_{i=1}^{m} A_i$ is a cyclic representation of X with respect to T.
- (b) T is a cyclic weak contraction for certain $\phi \in \mathfrak{J}$.

Then T has a unique fixed point $z \in \bigcap_{i=1}^{m} A_i$.

Remark 1.4. If we look at the proof of Theorem 1 in [3], the author starts with a point $x_0 \in X$ and considers the Picard iteration $x_{n+1} = Tx_n$. He proves that (x_n) is a Cauchy sequence and, therefore, $\lim_{n\to\infty} x_n = x$ for certain $x \in X$.

Using (a), it is proved that the sequence (x_n) has an infinite number of terms in each A_i (i = 1, 2, ..., m)and in this point, the author uses that the sets A_i are closed and proves that $x \in \bigcap_{i=1}^m A_i$.

Finally, as $\bigcap_{i=1}^{m} A_i$ is closed (here, it is also used the fact that the sets A_i (i = 1, 2, ..., m) are closed) and so complete, the author reduces the problem to an operator of the complete metric space $\bigcap_{i=1}^{m} A_i$ into itself and he applies a result of [5].

The purpose of this paper is to give a version of Theorem 1 when X is a compact metric space.

2. Main results

Theorem 2.1. Let (X, d) be a compact metric space and $T : X \longrightarrow X$ a continuous operator. Suppose that m is a positive integer, A_1, A_2, \ldots, A_m nonempty subsets of $X, X = \bigcup_{i=1}^m A_i$ satisfying

- (i) $X = \bigcup_{i=1}^{m} A_i$ is a cyclic representation of X with respect to T.
- (*ii*) $d(Tx, Ty) \leq d(x, y) \varphi(d(x, y))$ for any $x \in A_i$ and $y \in A_{i+1}$, where $\varphi \in \mathfrak{F}$.

Then T has a unique fixed point.

Proof. Firstly, we will prove that $\inf\{d(x, Tx) : x \in X\} = 0$.

In fact, we take $x_0 \in X$ and consider the Picard iteration given by $x_{n+1} = Tx_n$.

If there exists $n_0 \in \mathbb{N}$ with $x_{n_0+1} = x_{n_0}$ then $x_{n_0+1} = Tx_{n_0} = x_{n_0}$ and, thus, the existence of the fixed point is proved.

Suppose that $x_{n+1} \neq x_n$ for all $n = 0, 1, 2 \dots$

Then, by (i), for any n > 0 there exists $i_n \in \{1, 2, ..., m\}$ such that $x_{n-1} \in A_{i_n}$ and $x_n \in A_{i_n}$ and using (ii) we get

$$d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n) \le d(x_{n-1}, x_n) - \varphi(d(x_{n-1}, x_n)) \le d(x_{n-1}, x_n).$$
(2.1)

Therefore, $\{d(x_n, x_{n+1})\}$ is a nondecreasing sequence of nonnegative real numbers. This fact implies the existence of $r \ge 0$ such that $\lim_{n\to\infty} d(x_n, x_{n+1}) = r$.

Now, taking $n \to \infty$ in (2.1), we obtain

$$r \le r - \lim_{n \to \infty} \varphi(d(x_{n-1}, x_n)) \le r$$

and, thus

$$\lim_{n \to \infty} \varphi(d(x_{n-1}, x_n)) = 0.$$
(2.2)

Suppose that r > 0.

Since that $r = \inf\{d(x_n, x_{n+1}) : n \in \mathbb{N}\},\$

 $0 < r \le d(x_n, x_{n+1})$ for n = 0, 1, 2...

and, since φ is nondecreasing and $\varphi(t) > 0$ for $t \in (0, \infty)$ we have

$$0 < \varphi(r) \le \varphi(d(x_n, x_{n+1}))$$

Letting $n \to \infty$ in the last inequality

$$0 < \varphi(r) \le \lim_{n \to \infty} \varphi(d(x_n, x_{n+1}))$$

and this contradicts to (2.2).

Therefore, r = 0, i.e., $\lim_{n \to \infty} d(x_n, x_{n+1}) = 0$.

This fact and, since $x_{n+1} = Tx_n$, gives us that

$$\inf\{d(x, Tx) : x \in X\} = 0. \tag{2.3}$$

Now, we consider the mapping

$$X \longrightarrow \mathbb{R}^+$$

$$x \mapsto d(x, Tx).$$

This mapping is, obviously, continuous and, as X is compact, we find $z \in X$ such that

$$d(z,Tz) = \inf\{d(x,Tx) : x \in X\}.$$

By (2.3), d(z, Tz) = 0 and, consequently, z = Tz.

This proves the existence of a fixed point of T.

For the uniqueness, suppose that z and y are two fixed points of T. As $X = \bigcup_{i=1}^{m} A_i$ is a cyclic representation of X with respect to T, we have that $z, y \in \bigcap_{i=1}^{m} A_i$. By (*ii*)

 $d(z,y) = d(Tz,Ty) \le d(z,y) - \varphi(d(z,y)) \le d(z,y).$

Therefore, $\varphi(d(z, y)) = 0$.

Since $\varphi \in \mathfrak{F}$, d(z, y) = 0 and, thus, z = y.

This finishes the proof.

Remark 2.2. Under assumption that X is compact, Theorem 1 is true under weaker assumptions. More precisely, the sets A_i (i = 1, 2, ..., m) are not necessarily closed and the function φ is not necessarily continuous.

Theorem 2.3. Under assumptions of Theorem 2, the fixed point problem for T is well posed, that is, if there exists a sequence $\{y_n\}$ in X with $d(y_n, Ty_n) \to 0$ as $n \to \infty$, then $y_n \to z$ as $n \to \infty$, where z is the unique fixed point of T (whose existence is guaranteed by Theorem 2).

Proof. As z is a fixed point of T, by (i) of Theorem 2, $z \in \bigcap_{i=1}^{m} A_i$.

Now, we take $\{y_n\}$ in X with $d(y_n, Ty_n) \to 0$ as $n \to \infty$.

Using the triangular inequality, (ii) of Theorem 2 and the fact that $z \in \bigcap_{i=1}^{m} A_i$ we get

 $d(y_n, z) \le d(y_n, Ty_n) + d(Ty_n, Tz) \le d(y_n, Ty_n) + d(y_n, z) - \varphi(d(y_n, z)).$

From the last inequality we have

$$\varphi(d(y_n, z)) \le d(y_n, Ty_n)$$

and letting $n \to \infty$ we obtain

$$\lim_{n \to \infty} \varphi(d(y_n, z)) = 0.$$
(2.4)

In order to prove that $\lim_{n\to\infty} d(y_n, z) = 0$, suppose, that this is false. Then there exists $\varepsilon > 0$ such that for any $n \in \mathbb{N}$ we can find $p_n \ge n$ with $d(y_{p_n}, z) \ge \varepsilon$.

Since ϕ is nondecreasing and $\phi(t) > 0$ for $t \in (0, \infty)$,

$$0 < \phi(\varepsilon) \le \phi(d(y_{p_n}, z)).$$

Letting $n \to \infty$, we get

$$0 < \phi(\varepsilon) \le \lim_{n \to \infty} \phi(d(y_{p_n}, z))$$

and this contradicts to (2.4).

Therefore, $\lim_{n\to\infty} d(y_n, z) = 0$. This finishes the proof.

Remark 2.4. In [3], the proof that $\lim_{n\to\infty} d(y_n, z) = 0$ in Theorem 3 is easily deduced from (2.4) because the author uses the continuity of φ .

3. Examples and some remarks

In the sequel, we relate our results with the ones appearing in [4]. Previously, we present the main result of [4]

Theorem 3.1. Let (X, d) be a complete metric space, m a positive integer, A_1, A_2, \dots, A_m nonempty closed subsets of $X, \varphi : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ a (c)-comparison function (this means that φ is increasing and the

- series $\sum_{k=0}^{\infty} \varphi^k(t)$ converges for any $t \in \mathbb{R}_+$) and $T: X \longrightarrow X$ an operator. Assume that
 - (i) $X = \bigcup_{i=1}^{m} A_i$ is a cyclic representation of X with respect to T.

(*ii*) $d(Tx,Ty) \leq \varphi(d(x,y))$ for any $x \in A_i$ and $y \in A_{i+1}$, $i = 1, 2, \cdot, m$, where $A_{m+1} = A_1$.

Then T has a unique fixed point $x^* \in \bigcap_{i=1}^m A_i$ and the Picard iteration $\{x_n\}$ converges to x^* for any starting point $x_0 \in X$.

Since compact metric space is a complete metric space, Theorem 4 can be applied when (X, d) is compact.

In what follows, we present an example which can be treated by Theorem 2 and Theorem 4 cannot be applied.

Example 3.2. Consider ([0,1],d) where *d* is the usual distance given by d(x,y) = |x-y|. Let $T: [0,1] \longrightarrow [0,1]$ be the mapping defined by $Tx = \frac{x}{1+x}$.

In this case, m = 1. Moreover, for $x, y \in [0, 1]$

$$d(Tx, Ty) = \left|\frac{x}{1+x} - \frac{y}{1+y}\right| = \frac{|x-y|}{(1+x)(1+y)} \le \frac{|x-y|}{1+|x-y|}$$
$$= T(|x-y|) = d(x,y) - (d(x,y) - T(|x-y|)).$$

Therefore, condition (*ii*) of Theorem 2 is satisfied for the function $\varphi : [0, \infty) \longrightarrow [0, \infty)$ given by

$$\varphi(t) = t - \frac{t}{1+t} = \frac{t^2}{1+t}.$$

Moreover, it is easily seen that $\varphi \in \mathfrak{F}$.

By Theorem 2, T has a unique fixed point (which is x = 0).

On the other hand, the function $\Psi : [0, \infty) \longrightarrow [0, \infty)$ given by $\Psi(t) = \frac{t}{1+t}$, is not a (c)-comparison function since $\Psi^n(t) = \frac{t}{1+nt}$ and, consequently, for t > 0 the series $\sum_{k=0}^{\infty} \Psi^k(t)$ diverges.

This proves that our example cannot be treated by Theorem 4.

For the following example, we need the following lemma whose proof appears in [2].

Lemma 3.3. Let $\rho: [0,\infty) \longrightarrow [0,\frac{\pi}{2})$ be the function defined by $\rho(x) = \arctan(x)$. Then

$$\rho(x) - \rho(y) \le \rho(x - y) \quad for \quad x \ge y.$$

Now, we consider the function $\Psi: [0,\infty) \longrightarrow [0,\infty)$ given by

$$\Psi(x) = \begin{cases} \arctan x & if \quad 0 \le x \le 1\\ \alpha & if \quad 1 < x, \end{cases}$$

where $1 - \frac{\pi}{4} < \alpha < 1$.

Example 3.4. Consider the same metric space ([0,1],d) that in Example 1 and the operator $T:[0,1] \longrightarrow [0,1]$ given by

$$Tx = \arctan x.$$

In this case, m = 1. Moreover, taking into account Lemma 1, for $x, y \in [0, 1]$ we can obtain

$$d(Tx, Ty) = |\arctan x - \arctan y| \le \arctan(|x - y|)$$
$$= \Psi(|x - y|) = d(x, y) - (d(x, y) - \Psi(d(x, y)))$$
$$= d(x, y) - \varphi(d(x, y)),$$

where $\varphi : [0, \infty) \longrightarrow [0, \infty)$ is defined as $\varphi(x) = x - \Psi(x)$.

Notice that

$$\varphi(x) = \begin{cases} x - \arctan x & \text{if } 0 \le x \le 1\\ x - \alpha & \text{if } x > 1 \end{cases}$$

It is easily seen that $\varphi \in \mathfrak{F}$ and φ is not continuous. Therefore, this example can be studied by Theorem 2 while Theorem 4 cannot be applied.

Acknowledgements:

Research partially supported by "Ministerio de Educación y Ciencia", Project MTM 2007/65706.

References

- [1] Ya. I. Alber, S. Guerre-Delabriere, *Principle of weakly contractive maps in Hilbert space*, in: I. Gohberg, Yu. Lyubich (Eds), New Results in Operator Theory, Advances and Appl., **98**, Birkhauser. Verlag, 1997, 7–22.
- [2] J. Caballero, J. Harjani, K. Sadarangani, Uniqueness of positive solutions for a class of fourth-order boundary value problems, Abs. Appl. Anal., vol(2011), Article ID 543035, 13 pages. 3.2
- [3] E. Karapinar, Fixed point theory for cyclic weak φ -contraction, Appl. Math. Lett., 24 (2011), 822–825.
- [4] M. Pacurar, I.A.Rus, Fixed point theory for cyclic φ-contractions, Nonlinear Anal., 72 (2010), 1181–1187. 3
- [5] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683–2693.