
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 6 (2013), 285–292

Research Article

A fixed point theorem in a lattice ordered semigroup
cone valued cone metric spaces

K. P. R. Sastrya, Ch. Srinivasa Raob, A. Chandra Sekharc, M. Balaiahd,∗

a8-28-8/1, Tamil street, Chinna Waltair, Visakhapatnam - 530 017, India
bDepartment of Mathematics, Mrs. A. V. N. College, Visakhapatnam - 530 001, India
cDepartment of Mathematics, GIT, Gitam University, Visakhapatnam - 530 045, India
dDepartment of Mathematics, Srinivasa Institute of Engineering & Technology, N.H. 216, Cheyyeru, Amalapuram, East Godavari
(Dist), 533 222, India

Abstract

In this paper, we introduce the notion of a cone which is a lattice ordered semigroup (l.o.s.g. cone) in a
real Banach space, obtain certain preliminary results on such cones and obtain a fixed point theorem on
a cone metric space with l.o.s.g. cone which eventually extends a result of Filipovic et. al. [M. Filipović,
L. Paunović, S. Radenović and M. Rajović, Math. Compu. Model. 54 (2011), 1467–1472] to cone metric
spaces equipped with l.o.s.g. cone. c©2013 All rights reserved.
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1. Introduction

In 2007, Haung and Zhang [12] introduced the concept of cone metric spaces by replacing Banach space
instead of the set of real numbers as the co-domain of a metric. Later many authors (see [1]-[8] and [10]-[29] )
considered this concept and proved some fixed point theorems for contractive type mappings in cone metric
spaces.

In 2010, J.R. Morales and E. Rojas [20] proved fixed point theorems of T- Kannan and T- Chatterjea
contractions in cone metric spaces when the underlying cone is normal. Later M. Filipovic et.al.[11] proved
these results without using the normality of the cone. In this paper, we introduce the notion of a cone
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which is a lattice ordered semigroup (briefly, l.o.s.g. cone) in a real Banach space and obtain certain basic
properties of l.o.s.g. cones. We also prove a fixed point theorem (Theorem 3.1) for cone metric space with
values in a l.o.s.g. cone.

We observe that our result is an extension and generalization of the result of Filipovic et.al. [11] to
l.o.s.g. cone valued cone metric spaces. We also provide two examples to show that hypothesis in Theorem
3.1 can not be further relaxed. The following definitions and results will be needed in what follows.

Definition 1.1. [12] Let E be a real Banach space. A subset P of E is called a cone whenever the following
conditions hold.

(i) P is closed, nonempty and P 6= {0};
(ii) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply ax+ by ∈ P ;

(iii) P
⋂

(−P ) = {0}.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and only if y− x ∈ P .
We write x < y to indicate that x ≤ y but x 6= y, while x� y will stand for y − x ∈ Int P (Interior of P).

Definition 1.2. [12] Let X be a nonempty set. Suppose that the mapping d : X ×X → E satisfies

(i) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y.

(ii) d(x, y) = d(y, x) for all x, y ∈ X.
(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.3. [11] Let (X, d) be a cone metric space. We say that {xn} is

(i) a Cauchy sequence if for every c ∈ E with 0 � c, there is a natural number N such that for all
n,m ≥ N, d(xn, xm)� c .

(ii) a convergent sequence if for every c ∈ E with 0 � c, there is a natural number N such that for all
n ≥ N , d(xn, x)� c for some fixed x in X.

A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

Definition 1.4. [11] Let (X, d) be a cone metric space and T : X → X be a mapping. Then

(i) T is said to be continuous if lim
n→∞

xn = x implies that lim
n→∞

Txn = Tx for all {xn} in X.

(ii) T is said to be sequentially convergent if for every sequence {yn}, T (yn) is convergent implies {yn} is
also convergent.

(iii) T is said to be sub sequentially convergent, if for every sequence {yn}, T (yn) is convergent implies
{yn} has a convergent subsequence.

M. Filipovic et.al. [11] proved the following fixed point theorem.

Theorem 1.5. [11] Let (X, d) be a complete cone metric space and P be a solid cone (that is, IntP 6= φ), in
addition let T : X → X be a one to one continuous mapping and f : X → X a T - Hardy- Rogers contraction

that is, there exist ai ≥ 0, i = 1, 5 with
5∑

i=1
ai < 1 such that for all x, y ∈ X

d(Tfx, Tfy) ≤ a1d(Tx, Ty) + a2d(Tx, Tfx) + a3d(Ty, Tfy) + a4d(Tx, Tfy) + a5d(Ty, Tfx)

Then

(1) For every x0 ∈ X the sequence {Tfnx0} is Cauchy.

(2) There is vx0 ∈ X such that lim
n→∞

Tfnx0 = vx0 .

(3) If T is sub sequentially convergent then {fnx0} has a convergent subsequence.

(4) There is a unique ux0 ∈ X such that fux0 = ux0 .

(5) If T is sequentially convergent then for each x0 ∈ X the iterate sequence {fnx0} converges to ux0.
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2. Preliminary results on lattices

Before going to prove the main result we need the following definitions and lemmas on lattices and lattice
ordered semigroups.

Definition 2.1. [9] A lattice is a partially ordered set S in which any two elements a, b ∈ S have the
supremum (a ∪ b) and the infimum (a ∩ b).

Definition 2.2. Let (S,+) be a semi group and (S,∪,∩) be a lattice. Then (S,∪,∩,+) is called a lattice
ordered semi group if it satisfies the following conditions:

(i) a+ (b ∪ c) = (a+ b) ∪ (a+ c); (a ∪ b) + c = (a+ c) ∪ (b+ c)

(ii) a+ (b ∩ c) = (a+ b) ∩ (a+ c); (a ∩ b) + c = (a+ c) ∩ (b+ c) for all a, b, c ∈ S.

Definition 2.3. [24] Let f, g : X → X be two mappings. If w = f(x) = g(x) for some x ∈ X, then x is
called a coincidence point of f and g, and w is called a point of coincidence of f and g.

Definition 2.4. [24] Let (X, d) be a cone metric space with cone P . A non decreasing function ϕ : P → P
is called a comparison function if it satisfies

(i) ϕ(0) = 0 and 0 < ϕ(x) < x for all x ∈ P \ {0}
(ii) If x ∈ Int P then x− ϕ(x) ∈ Int P
(iii) lim

n→∞
ϕn(x) = 0 for all x ∈ P \ {0}.

Lemma 2.5. [26] Let (X, d) be a cone metric space with cone P . Assume that P is a lattice. Let ϕ be a
comparison function satisfying

(i) ϕ : P → P is a lattice homomorphism i.e. ϕ(a ∪ b) = ϕ(a) ∪ ϕ(b) ∀ a, b ∈ P
(ii) 0 ≤ an and an → 0⇒ x ∪ an → x for every x ∈ P

Then a, b ∈ P and b ≤ ϕ(a ∪ b)⇒ b ≤ ϕ(a).

Proof. Suppose a, b ∈ P and b ≤ ϕ(a ∪ b) = ϕ(a) ∪ ϕ(b)
Then b ≤ ϕ(a) ∪ ϕ(b) (2.5.1)

Claim: For any positive integer k, b ≤ ϕ(a) ∪ ϕk(b)
The result is true for k = 1 by (2.5.1).
Assume it to be true for k. Then b ≤ ϕ(a) ∪ ϕk(b)

Now ϕ(b) ≤ ϕ(ϕ(a) ∪ ϕk(b))

= ϕ2(a) ∪ ϕk+1(b)

≤ ϕ(a) ∪ ϕk+1(b)

So that b ≤ ϕ(a) ∪ ϕk+1(b)
∴ By induction for every positive integer k, we have b ≤ ϕ(a) ∪ ϕk(b)

Thus our claim is established.
Now letting k →∞ and using (ii) we get b ≤ ϕ(a)

Lemma 2.6. [26] Let P be a cone in E. Suppose (P,≤) is a lattice. Suppose a, b ∈ P, and α ∈ R. Then
α ≥ 0⇒ (αa) ∪ (αb) = α(a ∪ b)

Proof. We may suppose that α > 0

Now 0 ≤ a ≤ a ∪ b and α > 0 ⇒ α((a ∪ b)− a) ≥ 0

⇒ α(a ∪ b)− αa ≥ 0

⇒ α(a ∪ b) ≥ αa
Similarly α(a ∪ b) ≥ αb

∴ α(a ∪ b) ≥ (αa) ∪ (αb)
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Further

αa ≤ x and αb ≤ x ⇒ a ≤ 1

α
x and b ≤ 1

α
x

⇒ a ∪ b ≤ 1

α
x

⇒ α(a ∪ b) ≤ x
∴ (αa) ∪ (αb) = α(a ∪ b)

Lemma 2.7. [26] Let P be a cone in E. Suppose (P,≤,+) is a lattice ordered semigroup. Then
a, b ∈ P ⇒ a ∪ b ∪ (a+b

2 ) = a ∪ b

Proof.

a ∪ b ∪
(a+ b

2

)
= a ∪

( b
2

+
b

2

)
∪
(a

2
+
b

2

)
= a ∪

( b
2

+
(a

2
∪ b

2

))
(since P is a lattice ordered semigroup)

=
(a

2
+
a

2

)
∪
( b

2
+
(a

2
∪ b

2

))
≤

(a
2

+
(a

2
∪ b

2

))
∪
( b

2
+
(a

2
∪ b

2

))
=

(a
2
∪ b

2

)
+
(a

2
∪ b

2

)
=

(a ∪ b)
2

+
(a ∪ b)

2
( By lemma 2.6)

= a ∪ b

≤ a ∪ b ∪
(a+ b

2

)
∴ a ∪ b ∪

(a+ b

2

)
= a ∪ b

Lemma 2.8. [26] Let (X, d) be a cone metric space with cone P . Assume that P is a lattice ordered semi
group. Let ϕ be a comparison function satisfying

(i) ϕ : P → P is a lattice homomorphism. i.e. ϕ(a ∪ b) = ϕ(a) ∪ ϕ(b) ∀ a, b ∈ P
(ii) 0 ≤ an and an → 0⇒ x ∪ an → x for all x ∈ P .

Then a, b ∈ P and b ≤ ϕ(a ∪ b ∪ (a+b
2 ))⇒ b ≤ ϕ(a)

Proof.

b ≤ ϕ
(
a ∪ b ∪

(a+ b

2

))
= ϕ(a ∪ b) (By Lemma 2.7)

⇒ b ≤ ϕ(a) (By Lemma 2.5)
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3. Main results

Now we state and prove our main result.

Theorem 3.1. Suppose P is a cone in a real Banach space E such that

(1) P is a lattice ordered semigroup

(2) 0 ≤ an and an → 0⇒ x ∪ an → x for all x ∈ P.

Suppose ϕ is a comparison function such that ϕ : P → P is a lattice homomorphism and
∑
ϕn(t) converges

on X for t ∈ P . Suppose (X, d) is a complete cone metric space, T : X → X is a continuous mapping and
f : X → X is a mapping such that, for some comparision function ϕ,

d(Tf(x), T f(y)) ≤ ϕ
(
max

{
d(Tx, Ty), d(Tx, Tf(x)), d(Ty, Tf(y)),

d(Tx, Tf(y)) + d(Ty, Tf(x))

2

})
(3 .1 .1 )

for all x, y ∈ P . Then
(3.1.2) x0 ∈ X ⇒ {Tfnx0} is a Cauchy sequence and hence converges
(3.1.3) If fnx = x for some n ≥ 1 then T is constant on the sequence x, fx, f2x, · · ·

In other words Tx = Tfx = Tf2x = · · ·
(3.1.4) If T is sub sequentially convergent then

(i) Tf and T have a coincidence point.
(ii) Tf and T have a unique point of coincidence
(iii) If further T is one to one then f has a unique fixed point.

Proof. Let x0 ∈ X and define the sequence of iterates by xn = fnx0 for n = 1, 2, 3, · · ·
Now, from (3 .1 .1 ) we have

d(Txn, Txn+1) = d(Tfnx0, Tf
n+1x0)

= d(Tffn−1x0, T ff
nx0)

≤ ϕ
(
max

{
d(Tfn−1x0, T f

nx0), d(Tfn−1x0, T f
nx0),

d(Tfnx0, T f
n+1x0),

d(Tfn−1x0, Tf
n+1x0) + d(Tfnx0, Tf

nx0)

2

})
≤ ϕ

(
max

{
d(Txn−1, Txn), d(Txn, Txn+1),

d(Txn−1, Txn) + d(Txn, Txn+1)

2

})
Hence by Lemma 2.8,

d(Txn, Txn+1) ≤ ϕ
(
d(Txn−1, Txn)

)
Consequently d(Txn, Txn+1) ≤ ϕn(d(Tx0, Tx1))

For ε� 0 choose a natural number n0 and a real number δ such that

ε− ϕ(ε) + {u ∈ E : ||u|| < δ} ⊂ IntP

Now there exists n0 such that

||
n+k∑
m=n

ϕm(d(Tx0, Tx1))|| < δ for all n ≥ n0 and k = 1, 2, · · ·

n+k∑
m=n

ϕm(d(Tx0, Tx1))� ε− ϕ(ε) < ε (3.1.5)
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for all n ≥ n0 and k = 1, 2, · · · .

d(Txn, Txn+k) ≤ d(Txn, Txn+1) + d(Txn+1, Txn+2) + · · ·+ d(Txn+k−1, Txn+k)

≤ ϕn(d(Tx0, Tx1)) + ϕn+1(d(Tx0, Tx1)) + · · ·+ ϕn+k−1(d(Tx0, Tx1))

� ε− ϕ(ε) (By (3.1.5))

< ε

Thus {Tfnx0} is a Cauchy sequence. Since (X, d) is a complete cone metric space, there is vx0 ∈ X such
that

lim
n→∞

Tfnx0 = vx0 (3.1.6)

Thus (3 .1 .2 ) is established.
To prove (3 .1 .3 ), we use induction on n.

That is, if fnx = x for some n ≥ 1, T is constant on the sequence x, fx, f2x, · · · .
If n = 1, fx = x, and hence Tfnx = Tx for n = 1, 2, 3, · · ·

Thus the result is true when n = 1
Assume that fnx = x for some n ≥ 1 implies T is constant on the sequence x, fx, f2x, · · ·

Suppose fn+1y = y. If fny = y then by induction T is a constant on the sequence y, fy, f2y, · · ·
Now suppose fny 6= y = fn+1y and suppose d(Ty, Tfy) 6= 0. Then by (3.1.1), we have

d(Ty, Tfy) = d(Tffny, Tf2fny)

= d(Tffny, Tffn+1y)

≤ ϕ
(
max

{
d(Tfny, Tfn+1y), d(Tfny, Tfn+1y), d(Tfn+1y, Tfn+2y),

d(Tfny, Tfn+2y) + d(Tfn+1y, Tfn+1y)

2

})
≤ ϕ

(
max

{
d(Tfny, Ty),

d(Tfny, Ty)

2

})
≤ ϕ

(
d(Tfny, Tfn+1y)

)
≤ ϕn(d(Ty, Tfy)) ( Since φ(t) ≤ t, ∀ t ≥ 0)

< d(Ty, Tfy)

a contradiction.
∴ Ty = Tfy
That is, T is a constant on the sequence x, fx, f2x, · · ·
Thus, by induction, (3 .1 .3 ) is established.

Now we prove (3 .1 .4 ). Suppose T is sub sequentially convergent. Then {fnx0} has a convergent subse-
quence. So there are ux0 and (xni) such that
lim
i→∞

fnix0 = ux0 . Since T is continuous

lim
i→∞

Tfnix0 = Tux0 (3.1.7)

From (3.1.6) and (3.1.7) we have Tux0 = vx0 .
Now we show that Tfux0 = Tux0 .
Suppose Tfux0 6= Tux0 . Then there exists M such that for i ≥M we have

d(Tux0 , Tf
ni−1x0) <

d(Tux0 , T fux0)

2
= ε (say)

d(Tfni−1x0, Tf
nix0) <

d(Tux0 , Tfux0)

2
= ε

d(Tux0 , T f
ni−1x0) <

d(Tux0 , T fux0)

2
= ε
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and
d(Tfni−1x0, Tfux0) < d(Tux0 , T fux0) + ε = 3ε (say)

By using (3 .1 .1 ) we have

d(Tfux0 , T f
nix0) = d(Tfux0 , Tff

ni−1x0)

≤ ϕ
(
max

{
d(Tux0 , Tf

ni−1x0), d(Tux0 , Tfux0),

d(Tfni−1x0, Tf
nix0),

d(Tux0 , T f
nix0) + d(Tfni−1x0, T fux0)

2

})
≤ ϕ

(
max

{
ε, 2ε, ε,

ε+ 3ε

2

})
= ϕ(max{ε, 2ε})
= ϕ(d(Tux0 , T fux0))

∴ d(Tfux0 , T f
nix0) ≤ ϕ(d(Tfux0 , Tux0)) for i ≥M

On letting i→∞ we get

d(Tfux0 , Tux0) ≤ ϕ(d(Tfux0 , Tux0)), a contradiction

∴ Tfux0 = Tux0

Consequently ux0 is a coincidence point of T and Tf.
Thus (3 .1 .4 )(i) is established.

Suppose x and y are coincidence points of Tf and T and Tx 6= Ty. Then

d(Tx, Ty) = d(Tfx, Tfy) ≤ ϕ
(
max

{
d(Tx, Ty), d(Tx, Tf(x)), d(Ty, Tf(y)),

d(Tx, Tf(y)) + d(Ty, Tf(x))

2

})
≤ ϕ(d(Tx, Ty))

< d(Tx, Ty)

a contradiction
∴ Tfx = Tx = Ty = Tfy.
Hence Tf and T have unique point of coincidence.

Thus (3 .1 .4 )(ii) is established.
Now suppose further that T is one to one. Then clearly, by (3 .1 .4 )(i) and (3 .1 .4 )(ii) f has a unique

fixed point. Thus (3 .1 .4 )(iii) is established.
Thus the theorem is completely proved.

Note: If T is not one to one then f may not have unique fixed point when T is sub sequentially convergent
even in a metric space.

Example 3.2. Let X = R with the usual metric T ≡ 0 and f = I. Then T is not sub sequentially
convergent and (3.1.4) fails.

Example 3.3. Let X = {0, 1} with usual metric, T0 = T1 = 0, f(0) = 0, f(1) = 1 then T is sub sequentially
convergent but not one to one and (3.1.4)(iii) fails.

Remark 3.4. By setting ϕ(t) = λt, 0 ≤ λ < 1 in Theorem 3.1 we have the generalized version of Theorem
1.5 when the underlying cone is a lattice ordered semigroup.
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[11] M. Filipović, L. Paunović, S. Radenović and M. Rajović, Remarks on ”Cone metric spaces and fixed point theorems
of T -Kannan and T - Chatterjea contractive mappings, Math. Compu. Model. 54 (2011), 1467-1472. 1, 1.3, 1.4,
1, 1.5

[12] L. G. Haung and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal.
Appl. 332 no.2 (2007), 1468-1476. 1, 1.1, 1.2
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