On the modular G-metric spaces and fixed point theorems

Bahareh Azadifar*, Mahnaz Maramaei, Ghadir Sadeghi
Department of Mathematics and Computer Sciences, Hakim Sabzevari University, P.O. Box 397, Sabzevar, IRAN.

Abstract

We introduce the notion of modular G-metric spaces and obtain some fixed point theorems of contractive mappings defined on modular G -metric spaces.(C) 2013 All rights reserved.

Keywords: modular G-metric space, fixed point, contractive mapping.
2010 MSC: 47H09, 46A80.

1. Introduction and Preliminaries

The theory of modular spaces was initiated by Nakano [10] in 1950 in connection with the theory of order spaces and redefined and generalized by Musielak and Orlicz [11, 12] in 1959. The notion of a modular metric on an arbitrary set an the corresponding modular space, more general than a metric space were introduced and studied recently by Chistyakof [1]. There were any authors introduced the generalization of metric spaces such as Gahler [4], which called 2-metric spaces, and Dhage [3], which called D-metric spaces. In 2003, Mustafa and Sims [5] found that most of the claims concerning the fundemental topology properties of D -metric spaces are incorrect. They [6] introduced a generalization of metric spaces, which called G-metric spaces. In this paper, we introduce the notion of a modular G-metric spaces as the following:

Definition 1.1. Let X be a nonempty set, and let $\nu:(0, \infty) \times X \times X \times X \longrightarrow[0, \infty]$ be a function satisfying; (V1) $\nu_{\lambda}(x, y, z)=0$ for all $x, y \in X$ and $\lambda>0$ if $x=y=z$,
(V2) $\nu_{\lambda}(x, x, y)>0$ for all $x, y \in X$ and $\lambda>0$ with $x \neq y$,
(V3) $\nu_{\lambda}(x, x, y) \leq \nu_{\lambda}(x, y, z)$ for all $x, y, z \in X$ and $\lambda>0$ with $z \neq y$,
(V4) $\nu_{\lambda}(x, y, z)=\nu_{\lambda}(x, z, y)=\nu_{\lambda}(y, z, x)=\cdots$ for all $\lambda>0$ (symmetry in all three variables),
(V5) $\nu_{\lambda+\mu}(x, y, z) \leq \nu_{\lambda}(x, a, a)+\nu_{\mu}(a, y, z)$ for all $x, y, z, a \in X$ and $\lambda, \mu>0$,

[^0]then the function ν_{λ} is called a modular G-metric on X.
The note by setting $x=y=z$ and $\lambda=\mu>0$ in (V3), (V5) and taking into account (V1), for all $x, y, z \in X$, we fined
\[

$$
\begin{aligned}
0=\nu_{2 \lambda}(x, x, x) & \leq \nu_{\lambda}(x, a, a)+\nu_{\lambda}(a, x, x) \\
& \leq 2 \nu_{\lambda}(x, y, z)
\end{aligned}
$$
\]

Example 1.2. The following indexed objects ν are simple examples of modulars on a set X. Let $\lambda>0$ and $x, y, z \in X$, we have:
(a) $\nu_{\lambda}(x, y, z)=\infty$ if $x \neq y \neq z, \nu_{\lambda}(x, y, z)=0$ if $x=y=z$; and if (X,G) is a G-metric space, then we also have:
(b) $\nu_{\lambda}(x, y, z)=\frac{G(x, y, z)}{\varphi(\lambda)}$, where $\varphi:(0, \infty) \rightarrow(0, \infty)$ is a nondecreasing function;
(c) $\nu_{\lambda}(x, y, z)=\infty$ if $\lambda \leq G(x, y, z)$, and $\nu_{\lambda}(x, y, z)=0$ if $\lambda>G(x, y, z)$;
(d) $\nu_{\lambda}(x, y, z)=\infty$ if $\lambda<G(x, y, z)$, and $\nu_{\lambda}(x, y, z)=0$ if $\lambda \geq G(x, y, z)$.

Remark 1.3. Note that for $x, y, z \in X$ the function $0<\lambda \longmapsto \nu_{\lambda}(x, y, z) \in[0, \infty]$ is nonincreasing on $(0, \infty)$. Suppose $0<\mu<\lambda$, then (V1) and (V5) imply

$$
\nu_{\lambda}(x, y, z) \leq \nu_{\lambda-\mu}(x, x, x)+\nu_{\mu}(x, y, z)=\nu_{\mu}(x, y, z)
$$

It follows that each point $\lambda>0$ the right limit $\nu_{\lambda+0}(x, y, z)=\lim _{\varepsilon \rightarrow+0} \nu_{\lambda+\varepsilon}(x, y, z)$ and left limit $\nu_{\lambda-0}(x, y, z)=$ $\lim _{\varepsilon \rightarrow 0} \nu_{\lambda-\varepsilon}(x, y, z)$ exist in $[0, \infty)$ and following two inequalities hold:

$$
\nu_{\lambda+0}(x, y, z) \leq \nu_{\lambda}(x, y, z) \leq \nu_{\lambda-0}(x, y, z)
$$

Definition 1.4. Let ν be a modular G-metric on a set X. The binary relation $\stackrel{\nu}{\sim}$ on X defined for $x, y, z \in X$ by

$$
\begin{equation*}
x \stackrel{\nu}{\sim} y \quad \text { if and only if } \quad \lim _{\lambda \rightarrow \infty} \nu_{\lambda}(x, y, z)=0 \quad \text { for some } z \in X \tag{1.1}
\end{equation*}
$$

is, by virtue of axioms (V1), (V4) and (V5), an equivalence relation since, if $x \stackrel{\nu}{\sim} y$ and $y \stackrel{\nu}{\sim} a$, then there exist $z_{1}, z_{2} \in X$ such that $\lim _{\lambda \rightarrow \infty} \nu_{\lambda}\left(x, y, z_{1}\right)=0$ and $\lim _{\lambda \rightarrow \infty} \nu_{\lambda}\left(a, y, z_{2}\right)=0$, so $\nu_{\lambda}\left(a, y, z_{2}\right) \leq$ $\nu_{\frac{\lambda}{2}}(x, y, y)+\nu_{\frac{\lambda}{2}}\left(a, y, z_{2}\right) \leq \nu_{\frac{\lambda}{2}}\left(x, y, z_{1}\right)+\nu_{\frac{\lambda}{2}}\left(a, y, z_{2}\right) \rightarrow 0$ as $\lambda \rightarrow \infty$, and so, $x \stackrel{\nu}{\sim} y$. Denote by $X / \stackrel{\nu}{\sim}$ the quotient-set of X with respect to $\stackrel{\nu}{\sim}$ and by

$$
X_{\nu}^{\circ}(x)=\{y \in X: y \stackrel{\nu}{\sim} x\}
$$

the equivalence class of the element $x \in X$ in the quotient-set $X / \stackrel{\nu}{\sim}$. Note, in particular, that $x \in X_{\nu}^{\circ}(x)$ and that the transitivity property of $\stackrel{\nu}{\sim}$ implies $x \stackrel{\nu}{\sim} z$ if and only if $y, z \in X_{\nu}^{\circ}(x)$ for some $x \in X$ (e.g., $x=y$ or $x=z$).

It follows from Remark 1.3 that the function $\widetilde{G}:(X / \stackrel{\nu}{\sim}) \times(X / \stackrel{\nu}{\sim}) \times(X / \stackrel{\nu}{\sim}) \rightarrow[0, \infty]$ given by

$$
\widetilde{G}\left(X_{\nu}^{\circ}(x), X_{\nu}^{\circ}(y), X_{\nu}^{\circ}(z)\right)=\lim _{\lambda \rightarrow \infty} \nu_{\lambda}(x, y, z), \quad(x, y, z \in X)
$$

is well defined (the limit at the right-hand side does not depend on the representatives of the representatives of the equivalence classes) and satisfies the axioms of a G-metric, except, as Example 1.2 (a) shows, that it may take infinite values.

In what follows we are interested in the equivalence classes $X_{\nu}^{\circ}(x)$. Note that the quotient-pair $(X / \stackrel{\nu}{\sim}, \widetilde{G})$ may degenerate in interesting and important cases: e.g., in Example 1.2 (c) we have $X_{\nu}^{\circ}(x)=X$ for all $x \in X$ and $\widetilde{G} \equiv 0$.

Let us fix an element $x_{0} \in X$ arbitrarily and set $X_{\nu}=X_{\nu}^{\circ}\left(x_{0}\right)$. The set X_{ν} is call a modular set.

Theorem 1.5. If ν is G-metric modular on X, then the modular set X_{ν} is a G-metric space with G-metric given by

$$
G_{\nu}^{\circ}(x, y, z)=\inf \left\{\lambda>0: \nu_{\lambda}(x, y, z) \leq \lambda\right\}
$$

for all $x, y, z \in X_{\nu}$.
Proof. Given $x, y, z \in X_{\nu}$, the value $G_{\nu}^{\circ}(x, y, z) \in \mathbb{R}^{+}$is well defined: in fact, since $x \stackrel{\nu}{\sim} y$, then, by virtue of (1.1), there exists $\lambda_{0}>0$ such that $\nu_{\lambda}(x, y, z) \leq 1$ for all $\lambda \geq \lambda_{0}$, and so, setting $\lambda_{1}=\max \left\{1, \lambda_{0}\right\}$, we get

$$
\nu_{\lambda_{1}}(x, y, z) \leq 1 \leq \lambda_{1}
$$

which together with the definition of $G_{\nu}^{\circ}(x, y, z)$ gives

$$
G_{\nu}^{\circ}(x, y, z) \leq \lambda_{1}<\infty
$$

Given $x \in X_{\nu}$, (V1) implies

$$
\nu_{\lambda}(x, x, x)=0<\lambda \quad \text { for all } \quad \lambda>0
$$

and so, $G_{\nu}^{\circ}(x, x, x)=0$. Condition (G2) and (G3) are clear by axioms (V2) and (V3). Due to axiom (V4), the equalities $G_{\nu}^{\circ}(x, y, z)=G_{\nu}^{\circ}(x, z, y)=G_{\nu}^{\circ}(y, z, x)=\cdots, x, y, z \in X_{\nu}$, is clear.

Let us show that $G_{\nu}^{\circ}(x, y, z) \leq G_{\nu}^{\circ}(x, a, a)+G_{\nu}^{\circ}(a, y, z)$ for all $x, y, z, a \in X_{\nu}$. In fact, by the definition of G_{ν}°, for any $\lambda>G_{\nu}^{\circ}(x, a, a)$ and $\mu>G_{\nu}^{\circ}(y, z, a)$ we find $\nu_{\lambda}(x, a, a) \leq \lambda$ and $\nu_{\mu}(a, y, z) \leq \mu$, and so, axiom (V5) implies

$$
\nu_{\lambda+\mu}(x, y, z) \leq \nu_{\lambda}(x, a, a)+\nu_{\mu}(a, y, z) \leq \lambda+\mu
$$

It follows from the definition of G_{ν}° that $G_{\nu}^{\circ}(x, y, z) \leq \lambda+\mu$, and it remains to pass to the limits as $\lambda \longrightarrow G_{\nu}^{\circ}(x, a, a)$ and $\mu \longrightarrow G_{\nu}^{\circ}(a, y, z)$.

Theorem 1.6. Let ν be a modular G-metric on a set X. put

$$
G_{\nu}^{1}(x, y, z)=\inf _{\lambda>0}\left(\lambda+\nu_{\lambda}(x, y, z)\right)
$$

for all $x, y, z \in X_{\nu}$. Then G_{ν}^{1} is a G-metric on X_{ν} such that $G_{\nu}^{\circ} \leq G_{\nu}^{1} \leq 2 G_{\nu}^{\circ}$.
Proof. Since, for $x, y, z \in X_{\nu}$, the value $\nu_{\lambda}(x, y, z)$ is finite due to 1.1) for $\lambda>0$ large enough, then the set $\left\{\lambda+\nu_{\lambda}(x, y, z): \lambda>0\right\} \subset \mathbb{R}^{+}$is nonempty and bounded from below, and so, $G_{\nu}^{1}(x, y, z) \in \mathbb{R}^{+}$. Condition (G2) and (G3) are trivial by axioms (V2) and (V3). Axiom (V4) implies the symmetry of G_{ν}^{1}.

Let us establish the triangle inequality:

$$
G_{\nu}^{1}(x, y, z) \leq G_{\nu}^{1}(x, a, a)+G_{\nu}^{1}(a, y, z)
$$

By the definition of G_{ν}^{1}, for any $\varepsilon>0$ we find $\lambda=\lambda(\varepsilon)>0$ and $\mu=\mu(\varepsilon)>0$ such that

$$
\lambda+\nu_{\lambda}(x, a, a) \leq G_{\nu}^{1}(x, a, a)+\varepsilon \quad \text { and } \quad \mu+\nu_{\mu}(a, y, z) \leq G_{\nu}^{1}(a, y, z)+\varepsilon
$$

whence, applying axiom (V5),

$$
\begin{aligned}
G_{\nu}^{1}(x, y, z) & \leq(\lambda+\mu)+\nu_{\lambda+\mu}(x, y, z) \leq \lambda+\mu+\nu_{\lambda}(x, a, a)+\nu_{\mu}(a, y, z) \\
& \leq G_{\nu}^{1}(x, a, a)+\varepsilon+G_{\nu}^{1}(a, y, z)+\varepsilon
\end{aligned}
$$

and it remains to take into account the arbitrariness of $\varepsilon>0$.
Let us prove that metrics G_{ν}° and G_{ν}^{1} are equivalent on X_{ν}. In order to obtain the left-hand side inequality, suppose that $\lambda>0$ is arbitrary. If $\nu_{\lambda}(x, y, z) \leq \lambda$, then the definition of G_{ν}° implies $G_{\nu}^{\circ} \leq \lambda$. Now if $\nu_{\lambda}(x, y, z)>\lambda$, then $G_{\nu}^{\circ}(x, y, z) \leq \nu_{\lambda}(x, y, z)$: in fact, setting $\mu=\nu_{\lambda}(x, y, z)$ we find $\mu>\lambda$, and so, it follows from Remark 1.3 that $\nu_{\mu}(x, y, z) \leq \nu_{\lambda}(x, y, z)=\mu$, whence $G_{\nu}^{\circ}(x, y, z) \leq \mu=\nu_{\lambda}(x, y, z)$. Therefore, for any $\lambda>0$ we have

$$
G_{\nu}^{\circ}(x, y, z) \leq \max \left\{\lambda, \nu_{\lambda}(x, y, z)\right\} \leq \lambda+\nu_{\lambda}(x, y, z)
$$

and so, taking the infimum over all $\lambda>0$, we arrive at the inequality

$$
G_{\nu}^{\circ}(x, y, z) \leq G_{\nu}^{1}(x, y, z)
$$

To obtain the right-hand side inequality, we note that, given $\lambda>0$ such that $G_{\nu}^{\circ}(x, y, z)<\lambda$, by the definition of G_{ν}°, we get $\nu_{\lambda}(x, y, z) \leq \lambda$, and so, $G_{\nu}^{1}(x, y, z) \leq \lambda+\nu_{\lambda}(x, y, z) \leq 2 \lambda$. passing to the limit as $\lambda \rightarrow G_{\nu}^{\circ}(x, y, z)$, we get

$$
G_{\nu}^{1}(x, y, z) \leq 2 G_{\nu}^{\circ}(x, y, z)
$$

Theorem 1.7. Given a modular G-metric ν on $X, x, y, z \in X_{\nu}$ and $\lambda>0$, we have:
(a) if $G_{\nu}^{\circ}(x, y, z)<\lambda$, then $\nu_{\lambda}(x, y, z) \leq G_{\nu}^{\circ}(x, y, z)<\lambda$;
(b) if $\nu_{\lambda}(x, y, z)=\lambda$, then $G_{\nu}^{\circ}(x, y, z)=\lambda$;
(c) if $\lambda=G_{\nu}^{\circ}(x, y, z)>0$, then $\nu_{\lambda+0}(x, y, z) \leq \lambda \leq \nu_{\lambda-0}(x, y, z)$.

If the function $\mu \mapsto \nu_{\mu}(x, y, z)$ is continuous from the right on $(0, \infty)$, then along with (a)-(c) we have:
(d) $G_{\nu}^{\circ}(x, y, z) \leq \lambda$ if and only if $\nu_{\lambda}(x, y, z) \leq \lambda$.

If the function $\mu \mapsto \nu_{\mu}(x, y, z)$ is continuous from the left on $(0, \infty)$, then along with (a)-(c) we have:
(e) $G_{\nu}^{\circ}(x, y, z)<\lambda$ if and only if $\nu_{\lambda}(x, y, z)<\lambda$.

If the function $\mu \mapsto \nu_{\mu}(x, y, z)$ is continuous on $(0, \infty)$, then along with (a)-(c) we have:
(f) $G_{\nu}^{\circ}(x, y, z)=\lambda$ if and only if $\nu_{\lambda}(x, y, z)=\lambda$.

Proof. (a) For any $\mu>0$ such that $G_{\nu}^{\circ}(x, y, z)<\mu<\lambda$, by the definition of G_{ν}° and Remark 1.3, we have $\nu_{\mu}(x, y, z) \leq \mu$ and $\nu_{\lambda}(x, y, z) \leq \nu_{\mu}(x, y, z)$, whence $\nu_{\lambda}(x, y, z) \leq \mu$, and it remains to pass to the limit as $\mu \longrightarrow G_{\nu}^{\circ}(x, y, z)$.
(b) By the definition, $G_{\nu}^{\circ}(x, y, z) \leq \lambda$, and item (a) implies $G_{\nu}^{\circ}(x, y, z)=\lambda$.
(c) For any $\mu>\lambda=G_{\nu}^{\circ}(x, y, z)$, the definition of G_{ν}° implies $\nu_{\mu}(x, y, z) \leq \mu$, and so,

$$
\nu_{\lambda+0}(x, y, z)=\lim _{\mu \rightarrow \lambda+0} \nu_{\mu}(x, y, z) \leq \lim _{\mu \rightarrow \lambda+0} \mu=\lambda .
$$

For any $0<\mu<\lambda$ we find $\nu_{\mu}(x, y, z)>\mu$ (otherwise, the definition of G_{ν}°, we have $\lambda=G_{\nu}^{\circ}(x, y, z) \leq \mu$), and so,

$$
\nu_{\lambda-0}(x, y, z)=\lim _{\mu \rightarrow \lambda-0} \nu_{\mu}(x, y, z) \geq \lim _{\mu \rightarrow \lambda-0} \mu=\lambda .
$$

(d) The implication \Leftarrow follows from the definition of G_{ν}°. Let us prove the reverse implication. If $G_{\nu}^{\circ}(x, y, z)<\lambda$, then, by virtue of item (a), $\nu_{\lambda}(x, y, z)<\lambda$, and if $G_{\nu}^{\circ}(x, y, z)=\lambda$, then

$$
\nu_{\lambda}(x, y, z)=\nu_{\lambda+0}(x, y, z) \leq \lambda,
$$

which is a consequence of the continuity from the right of the function $\mu \mapsto \nu_{\mu}(x, y, z)$ and item (c).
(e) By virtue of item (a), it suffices to prove the implication \Leftarrow. The definition of G_{ν}° gives $G_{\nu}^{\circ}(x, y, z) \leq \lambda$, but if, on the contrary, $\lambda=G_{\nu}^{\circ}(x, y, z)$, then, by item (c), we would have

$$
\nu_{\lambda}(x, y, z)=\nu_{\lambda-0}(x, y, z) \geq \lambda,
$$

which contradicts the assumption.
(f) \Leftarrow follows from (b). For the reverse assertion, the two inequalities

$$
\nu_{\lambda}(x, y, z) \leq \lambda \leq \nu_{\lambda}(x, y, z)
$$

follow from (c).

2. properties

Proposition 2.1. Let (X, ν) be a modular G-metric space, for any $x, y, z, a \in X$ it follows that:
(1) If $\nu_{\lambda}(x, y, z)=0$ for all $\lambda>0$, then $x=y=z$.
(2) $\nu_{\lambda}(x, y, z) \leq \nu_{\frac{\lambda}{2}}(x, x, y)+\nu_{\frac{\lambda}{2}}(x, x, z)$ for all $\lambda>0$.
(3) $\nu_{\lambda}(x, y, y) \leq 2 \nu_{\frac{\lambda}{2}}^{2}(x, x, y)$ for all $\lambda>0$.
(4) $\nu_{\lambda}(x, y, z) \leq \nu_{\frac{\lambda}{2}}(x, a, z)+\nu_{\frac{\lambda}{2}}(a, y, z)$ for all $\lambda>0$.
(5) $\nu_{\lambda}(x, y, z) \leq \frac{2}{3}\left(\nu_{\frac{\lambda}{2}}(x, y, a)+\nu_{\frac{\lambda}{2}}(x, a, z)+\nu_{\frac{\lambda}{2}}(a, y, z)\right)$ for all $\lambda>0$.
(6) $\nu_{\lambda}(x, y, z) \leq\left(\nu_{\frac{\lambda}{2}}(x, a, a)+\nu_{\frac{\lambda}{4}}(y, a, a)+\nu_{\frac{\lambda}{4}}(z, a, a)\right)$ for all $\lambda>0$.

If (X, ω) is an ordinary modular metric space, then (X, ω) can define modular G-metric on X by $\left(F_{s}\right) \nu_{\lambda}^{s}(x, y, z)=\frac{1}{3}\left\{\omega_{\lambda}(x, y)+\omega_{\lambda}(y, z)+\omega_{\lambda}(x, z)\right\}$,
$\left(F_{m}\right) \nu_{\lambda}^{m}(x, y, z)=\max \left\{\omega_{\lambda}(x, y), \omega_{\lambda}(y, z), \omega_{\lambda}(x, z)\right\}$, for all $\lambda>0$.
For any nonempty set X. We have seen that from any modular metric ω on X we can construct a modular G-metric (by $\left(F_{s}\right)$ or $\left(F_{m}\right)$), for any modular G-metric ν_{λ} on $X,\left(F_{\omega}\right) \quad \omega_{\lambda}^{\nu}(x, y)=\nu_{\lambda}(x, y, y)+\nu_{\lambda}(x, x, y)$, for all $\lambda>0$ is readily seen to define a modular metric on X, for all $\lambda>0$, which satisfies

$$
\nu_{\lambda}(x, y, z) \leq \nu_{\lambda}^{s}(x, y, z) \leq 2 \nu_{\lambda}(x, y, z)
$$

for all $\lambda>0$. Similarly,

$$
\frac{1}{2} \nu_{\lambda}(x, y, z) \leq \nu_{\lambda}^{m}(x, y, z) \leq 2 \nu_{\lambda}(x, y, z)
$$

for all $\lambda>0$. Further, starting from a modular metric ω on X, we have

$$
\omega_{\lambda}^{\nu^{s}}(x, y)=\frac{4}{3} \omega_{\lambda}(x, y), \text { and } \omega_{\lambda}^{\nu^{m}}(x, y)=2 \omega_{\lambda}(x, y)
$$

for all $\lambda>0$.
Definition 2.2. Let (X, ν) be a modular G-metric space then for $x_{0} \in X_{\nu}$ and $r>0$, the ν-ball with center x_{0} and radius r is

$$
B_{\nu}\left(x_{0}, r\right)=\left\{y \in X_{\nu}: \quad \nu_{\lambda}\left(x_{0}, y, y\right)<r \text { for all } \lambda>0\right\}
$$

Proposition 2.3. Let (X, ν) be a modular G-metric space, then for any $x_{0} \in X_{\nu}$ and $r>0$, we have
(1) if $\nu_{\lambda}\left(x_{0}, x, y\right)<r$, for all $\lambda>0$ then $x, y \in B_{\nu}\left(x_{0}, r\right)$.
(2) if $y \in B_{\nu}\left(x_{0}, r\right)$ then there exists a $\delta>0$ such that $B_{\nu}(y, \delta) \subseteq B_{\nu}\left(x_{0}, r\right)$.

Proof. (1) follow directly from (V3), while (2) follows from (V5) with $\delta=r-\nu_{\lambda}\left(x_{0}, y, y\right)$.
It follows from Proposition 2.3 that the familly of all ν-balls

$$
\beta=\left\{B_{\nu}(x, r) \mid x \in X, r>0\right\}
$$

is the base of a topology $\tau\left(\nu_{\lambda}\right)$ on X_{ν}.
Proposition 2.4. Let (X, ν) be a modular G-metric space, then for any $x_{0} \in X_{\nu}$ and $r>0$, we have

$$
B_{\nu}\left(x_{0}, \frac{1}{3} r\right) \subseteq B_{\omega_{\lambda}^{\nu}}\left(x_{0}, r\right)=\left\{y \in X_{\omega}: \omega_{\lambda}^{\nu}\left(x_{0}, y\right)<r \text { for all } \lambda>0\right\} \subseteq B_{\nu}\left(x_{0}, r\right)
$$

Definition 2.5. Let (X, ν) be a modular G-metric space. The sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in X_{ν} is ν-convergent to x, if it converges to x in the topology $\tau\left(\nu_{\lambda}\right)$.

Proposition 2.6. Let (X, ν) be a modular G-metric space and $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in X_{ν}. Then the following are equivalent:
(1) $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is ν-convergent to x,
(2) $\omega_{\lambda}^{\nu}\left(x_{n}, x\right) \longrightarrow 0$ as $n \longrightarrow \infty$, i.e., $\left\{x_{n}\right\}_{n}$ converges to x relative to the modular metric ω_{λ}^{ν}.
(3) $\nu_{\lambda}\left(x_{n}, x_{n}, x\right) \longrightarrow 0$ as $n \longrightarrow \infty$ for all $\lambda>0$,
(4) $\nu_{\lambda}\left(x_{n}, x, x\right) \longrightarrow 0$ as $n \longrightarrow \infty$ for all $\lambda>0$,
(5) $\nu_{\lambda}\left(x_{m}, x_{n}, x\right) \longrightarrow 0$ as $m, n \longrightarrow \infty$ for all $\lambda>0$.

Proof. The equivalence of (1) and (2) follows from proposition 2.4. That (2) implies (3) (and(4)) follows from the definition of ω_{λ}^{ν}. (3) implies (4) is a consequence of (3) of proposition 2.1, while (4) entails (5) follows from (2) of proposition 2.1. Finally, that (5) implies (2) follows from (F_{ω}) and axiom (V3).

Definition 2.7. Let (X, ν) be a modular G-metric space, then a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subseteq X_{\nu}$ is said to be ν-cauchy if for every $\varepsilon>0$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that $\nu_{\lambda}\left(x_{n}, x_{m}, x_{l}\right)<\varepsilon$ for all $n, m, l \geq n_{\varepsilon}$ and $\lambda>0$. A modular G-metric space X is said to be ν-complete if every ν-Cauchy sequence in X is a ν-convergen sequence in X.

Proposition 2.8. Let (X, ν) be a modular G-metric space and $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in X_{ν}. Then the following are equivalent:
(1) $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is ν-Cauchy.
(2) For every $\varepsilon>0$, there exist $n_{\varepsilon} \in \mathbb{N}$ such that $\nu_{\lambda}\left(x_{n}, x_{m}, x_{m}\right)<\varepsilon$, for any $n, m \geq n_{\varepsilon}$ and $\lambda>0$.
(3) $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a cauchy sequence in the modular metric space $\left(X, \omega_{\lambda}^{\nu}\right)$.

Proof. $1 \longrightarrow 2$) It is trivial by axiom (V3). $2 \longrightarrow 3$) By definition ω_{λ}^{ν} is trivial.
$3 \longrightarrow 2)$ By definition $\omega_{\lambda}^{\nu}\left(x_{n}, x_{m}\right)$ is trivial.
$2 \longrightarrow 1$) By axiom (V5) and put $a=x_{m}$ is trivial.
Theorem 2.9. Let ν be a modular G-metric on a set X. Given a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq X_{\nu}$ and $x \in X_{\nu}$, we have: $G_{\nu}^{\circ}\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$ if and only if $\nu_{\lambda}\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$ for all $\lambda>0$. A similar assertion holds for Cauchy sequences.

Proof. Given arbitrary $\varepsilon>0$. Let $\nu_{\lambda}\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$ for all $\lambda>0$. We put $\lambda=\varepsilon$ then $\nu_{\varepsilon}\left(x_{n}, x_{n}, x\right) \rightarrow 0$, there is a number $n_{0}(\varepsilon)$ such that $\nu_{\varepsilon}\left(x_{n}, x_{n}, x\right) \leq \varepsilon$ for all $n \geq n_{0}(\varepsilon)$, whence $G_{\nu}^{\circ}\left(x_{n}, x_{n}, x\right) \leq$ ε for all $n \geq n_{0}(\varepsilon)$.

Necessity. Let us fix $\lambda>0$ arbitrarily. Then, for each $\varepsilon>0$, we have: either (a) $0<\varepsilon<\lambda$, or (b) $\varepsilon \geq \lambda$. In case (a), by the assumption, there is a number $n_{0}(\varepsilon)$ such that $G_{\nu}^{\circ}\left(x_{n}, x_{n}, x\right)<\varepsilon$ for all $n \geq n_{0}(\varepsilon)$, and so, by theorem 1.7(a), we get $\nu_{\varepsilon}\left(x_{n}, x_{n}, x\right)<\varepsilon$ for all $n \geq n_{0}(\varepsilon)$. Since $\varepsilon<\lambda$, then, in view of Remark 1.3 , we find

$$
\nu_{\lambda}\left(x_{n}, x_{n}, x\right) \leq \nu_{\epsilon}\left(x_{n}, x_{n}, x\right)<\varepsilon
$$

for all $n \geq n_{0}(\varepsilon)$.
In case (b) we set $n_{1}(\varepsilon)=n_{0}\left(\frac{\lambda}{2}\right)$. From Remark 1.3 and the just established fact (when $\varepsilon=\frac{\lambda}{2}<\lambda$), we get:

$$
\nu_{\lambda}\left(x_{n}, x_{n}, x\right) \leq \nu_{\frac{\lambda}{2}}\left(x_{n}, x_{n}, x\right)<\frac{\lambda}{2}<\frac{\varepsilon}{2}<\varepsilon \quad \text { forall } \quad n \geq n_{1}(\varepsilon)
$$

Hence, $\nu_{\lambda}\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$ for all $\lambda>0$.

3. Fixed point theorems

In this section we will prove the existence of fixed point of contractive mapping defined on modular G-metric spaces, where the completeness is replaced with weaker conditions.

Definition 3.1. A function $T: X_{\nu} \longrightarrow X_{\nu}$ at $x \in X_{\nu}$ is called ν-continuous if $\nu_{\lambda}\left(x_{n}, x, x\right) \longrightarrow 0$ then $\nu_{\lambda}\left(T x_{n}, T x, T x\right) \longrightarrow 0$, for all $\lambda>0$.

Theorem 3.2. Let (X, ν) be a modular G-metric space and let $T: X_{\nu} \longrightarrow X_{\nu}$ be a mapping such that T satisfies that
(I1) $\nu_{\lambda}(T x, T y, T z) \leq a \nu_{\lambda}(x, T x, T x)+b \nu_{\lambda}(y, T y, T y)+c \nu_{\lambda}(z, T z, T z)$ for all $x, y, z \in X_{\nu}$ and $\lambda>0$ where $0<a+b+c<1$,
(I2) T is ν-continuous at a point $u \in X_{\nu}$,
(I3) there is $x \in X_{\nu} ;\left\{T^{n}(x)\right\}_{n \in \mathbb{N}}$ has a subsequence $\left\{T^{n i}(x)\right\}_{n \in \mathbb{N}} \nu$-converges to u. Then u is a unique fixed point.

Proof. ν-continuity of T at u implies that $\left\{T^{n i+1}(x)\right\}_{n \in \mathbb{N}} \nu$-convergent to $T(u)=u$. Suppose $T(u) \neq u$, consider the two ν-open balls $B_{1}=B(u, \varepsilon)$ and $B_{2}=B(T u, \varepsilon)$ where $\varepsilon<\frac{1}{6} \min \left\{\nu_{\lambda}(u, T u, T u), \nu_{\lambda}(T u, u, u)\right\}$ for all $\lambda>0$.
Since $T^{n i}(x) \longrightarrow u$ and $T^{n i+1}(x) \longrightarrow T u$, then there exist $N_{1} \in \mathbb{N}$ such that if $i>N_{1}$ implies $T^{n i}(x) \in B_{1}$ and $T^{n i+1}(x) \in B_{2}$. Hence our assumption implies that we must have

$$
\begin{equation*}
\nu_{\lambda}\left(T^{n i}(x), T^{n i+1}(x), T^{n i+1}(x)\right)>\varepsilon \quad\left(i>N_{1}\right) \tag{3.1}
\end{equation*}
$$

for all $\lambda>0$. We have from (I1),

$$
\begin{aligned}
\nu_{\lambda}\left(T^{n i+1}(x), T^{n i+2}(x), T^{n i+3}(x)\right) \leq & a \nu_{\lambda}\left(T^{n i}(x), T^{n i+1}(x), T^{n i+1}(x)\right) \\
& +b \nu_{\lambda}\left(T^{n i+1}(x), T^{n i+2}(x), T^{n i+2}(x)\right) \\
& +c \nu_{\lambda}\left(T^{n i+2}(x), T^{n i+3}(x), T^{n i+3}(x)\right)
\end{aligned}
$$

for all $\lambda>0$. By axioms of modular G-metric (V3), we have

$$
\begin{align*}
& \nu_{\lambda}\left(T^{n i+1}(x), T^{n i+2}(x), T^{n i+2}(x)\right) \leq \nu_{\lambda}\left(T^{n i+1}(x), T^{n i+2}(x), T^{n i+3}(x)\right) \tag{3.2}\\
& \nu_{\lambda}\left(T^{n i+2}(x), T^{n i+3}(x), T^{n i+3}(x)\right) \leq \nu_{\lambda}\left(T^{n i+1}(x), T^{n i+2}(x), T^{n i+3}(x)\right) \tag{3.3}
\end{align*}
$$

for all $\lambda>0$. Whence, from (3.2) and (3.3), we get

$$
\begin{equation*}
\nu_{\lambda}\left(T^{n i+1}(x), T^{n i+2}(x), T^{n i+3}(x)\right) \leq r \nu_{\lambda}\left(T^{n i}(x), T^{n i+1}(x), T^{n i+1}(x)\right) \tag{3.4}
\end{equation*}
$$

for all $\lambda>0$ where $r=\frac{a}{(1-(b+c))}$ and $r<1$, since $0<a+b+c<1$. On the other hand by inequality 3.2 and (3.4 we get

$$
\begin{equation*}
\nu_{\lambda}\left(T^{n i+1}(x), T^{n i+2}(x), T^{n i+2}(x)\right) \leq r \nu_{\lambda}\left(T^{n i}(x), T^{n i+1}(x), T^{n i+1}(x)\right) \tag{3.5}
\end{equation*}
$$

for all $\lambda>0$. For $k>j>N_{1}$ and by repeated application of (3.5) we have

$$
\begin{aligned}
\nu_{\lambda}\left(T^{n_{k}}(x), T^{n_{k}+1}(x), T^{n_{k}+1}(x)\right) & \leq r \nu_{\lambda}\left(T^{n_{k}-1}(x), T^{n_{k}}(x), T^{n_{k}}(x)\right) \\
& \leq r^{2} \nu_{\lambda}\left(T^{n_{k}-2}(x), T^{n_{k}-1}(x), T^{n_{k}-1}(x)\right) \\
& \leq \cdots \\
& \leq r^{n_{k}-n_{j}} \nu_{\lambda}\left(T^{n_{j}}(x), T^{n_{j}+1}(x), T^{n_{j}+1}(x)\right),
\end{aligned}
$$

for all $\lambda>0$. Thus $\lim _{k \longrightarrow \infty} \nu_{\lambda}\left(T^{n_{k}}(x), T^{n_{k}+1}(x), T^{n_{k}+1}(x)\right)=0$ for all $\lambda>0$, which contradict 3.1), hence $T u=u$.
Suppose there is $w \in X_{\nu} ; T w=w$, then from (I1), we have

$$
\nu_{\lambda}(u, w, w)=\nu_{\lambda}(T u, T w, T w) \leq a \nu_{\lambda}(u, T u, T u)+(b+c) \nu_{\lambda}(w, T w, T w)=0
$$

for all $\lambda>0$. This prove the uniqueness of u.

Theorem 3.3. Let (X, ν) be a ν-complete modular G-metric space and let $T: X_{\nu} \longrightarrow X_{\nu}$ be a mapping satisfies the following condition for all $x, y, z \in X_{\nu}$

$$
\begin{align*}
\nu_{\lambda}(T x, T y, T z) \leq & a \nu_{\lambda}(x, T x, T x) \\
& +b \nu_{\lambda}(y, T y, T y)+c \nu_{\lambda}(z, T z, T z)+d \nu_{\lambda}(x, y, z) \tag{3.6}
\end{align*}
$$

for any $\lambda>0$ where $0 \leq a+b+c+d<1$, then T has a unique fixed point, say u, and T is ν-continuous at u.

Proof. Let $x_{0} \in X_{\nu}$ be an arbitrary point and define the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ by $x_{n}=T^{n}\left(x_{0}\right)$. By inequality (3.6) we have

$$
\nu_{\lambda}\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq a \nu_{\lambda}\left(x_{n-1}, x_{n}, x_{n}\right)+(b+c) \nu_{\lambda}\left(x_{n}, x_{n+1}, x_{n+1}\right)+d \nu_{\lambda}\left(x_{n-1}, x_{n}, x_{n}\right)
$$

for all $\lambda>0$. Whence

$$
\nu_{\lambda}\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq \frac{a+d}{1-(b+c)} \nu_{\lambda}\left(x_{n-1}, x_{n}, x_{n}\right)
$$

for all $\lambda>0$. Let $r=\frac{a+d}{1-(b+c)}$ then $0 \leq r<1$ since $0 \leq a+b+c+d<1$. So

$$
\nu_{\lambda}\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq r \nu_{\lambda}\left(x_{n-1}, x_{n}, x_{n}\right)
$$

, for all $\lambda>0$. Continuing in the same argument, we will get

$$
\nu_{\lambda}\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq r^{n} \nu_{\lambda}\left(x_{n-1}, x_{n}, x_{n}\right)
$$

, for all $\lambda>0$. Moreover for all $n, m \in \mathbb{N} ; n<m$ we have by axiom (V5)

$$
\begin{aligned}
\nu_{\lambda}\left(x_{n}, x_{m}, x_{m}\right) \leq & \nu_{\frac{\lambda}{m-n}}\left(x_{n}, x_{n+1}, x_{n+1}\right)+\nu_{\frac{\lambda}{m-n}}\left(x_{n+1}, x_{n+2}, x_{n+2}\right) \\
& +\nu_{\lambda}\left(x_{n+2}, x_{n+3}, x_{n+3}\right)+\cdots+\nu_{\frac{\lambda}{m-n}}\left(x_{m-1}, x_{m}, x_{m}\right) \\
\leq & \left(r^{n}+r^{n+1}+\cdots+r^{m-1}\right) \nu_{\lambda}\left(x_{0}, x_{1}, x_{1}\right) \\
\leq & \frac{r^{n}}{1-r} \nu_{\lambda}\left(x_{0}, x_{1}, x_{1}\right)
\end{aligned}
$$

for all $\lambda>0$. Hence $\nu_{\lambda}\left(x_{n}, x_{m}, x_{m}\right) \longrightarrow 0$ as $n \longrightarrow \infty$ for all $\lambda>0$. Thus $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is ν-cauchy sequence. Due to the completeness of X_{ν} there exists $u \in X_{\nu}$ such that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is ν-converge to u. Suppose that $T u \neq u$, then

$$
\nu_{\lambda}\left(x_{n}, T u, T u\right) \leq a \nu_{\lambda}\left(x_{n-1}, x_{n}, x_{n}\right)+(b+c) \nu_{\lambda}(u, T u, T u)+d \nu_{\lambda}\left(x_{n-1}, u, u\right)
$$

for all $\lambda>0$. Taking the limit as $n \longrightarrow \infty$ then $\nu_{\lambda}(u, T u, T u) \leq(b+c) \nu_{\lambda}(u, T u, T u)$ for all $\lambda>0$. This is contradiction implies that $T u=u$. To prove uniqueness, suppose $u \neq w$ such that $T w=w$, then

$$
\begin{aligned}
\nu_{\lambda}(u, w, w) & \leq a \nu_{\lambda}(u, T u, T u)+(b+c) \nu_{\lambda}(w, T w, T w)+d \nu_{\lambda}(u, w, w) \\
& =d \nu_{\lambda}(u, w, w)
\end{aligned}
$$

for all $\lambda>0$ which implies that $u=w$. To show that T is ν-continuous at u, let $\left\{y_{n}\right\}_{n \in \mathbb{N}} \subseteq X_{\nu}$ be a sequence such that $\lim _{n \longrightarrow \infty} y_{n}=u$. We can deduce that

$$
\begin{aligned}
\nu_{\lambda}\left(u, T y_{n}, T y_{n}\right) & \leq a \nu_{\lambda}(u, T u, T u)+(b+c) \nu_{\lambda}\left(y_{n}, T y_{n}, T y_{n}\right)+d \nu_{\lambda}\left(u, y_{n}, y_{n}\right) \\
& =(b+c) \nu_{\lambda}\left(y_{n}, T y_{n}, T y_{n}\right)+d \nu_{\lambda}\left(u, y_{n}, y_{n}\right)
\end{aligned}
$$

and since $\nu_{\lambda}\left(y_{n}, T y_{n}, T y_{n}\right) \leq \nu_{\frac{\lambda}{2}}\left(y_{n}, u, u\right)+\nu_{\frac{\lambda}{2}}\left(u, T y_{n}, T y_{n}\right)$, for all $\lambda>0$. We have that

$$
\begin{aligned}
\nu_{\lambda}\left(u, T y_{n}, T y_{n}\right)-(b+c) \nu_{\lambda}\left(u, T y_{n}, T y_{n}\right) & \leq \nu_{\lambda}\left(u, T y_{n}, T y_{n}\right)-(b+c) \nu_{\frac{\lambda}{2}}\left(u, T y_{n}, T y_{n}\right) \\
& \leq(b+c) \nu_{\frac{\lambda}{2}}\left(y_{n}, u, u\right)+d \nu_{\lambda}\left(u, y_{n}, y_{n}\right)
\end{aligned}
$$

for all $\lambda>0$, whence

$$
\nu_{\lambda}\left(u, T y_{n}, T y_{n}\right) \leq \frac{(b+c)}{1-(b+c)} \nu_{\frac{\lambda}{2}}\left(y_{n}, u, u\right)+\frac{d}{1-(b+c)} \nu_{\lambda}\left(u, y_{n}, y_{n}\right)
$$

for all $\lambda>0$. Taking the limit as $n \longrightarrow \infty$ from which we see that $\nu_{\lambda}\left(u, T y_{n}, T y_{n}\right) \longrightarrow 0$ and so by definition ν-continuous $T y_{n} \longrightarrow u=T u$. If is proved that T is ν-continuous at u.

We see that if we take $d=0$, the following theorem becomes a direct result.
Theorem 3.4. Let (X, ν) be a ν-complete modular G-metric space and let $T: X_{\nu} \longrightarrow X_{\nu}$ be a mapping satisfies for all $x, y, z \in X_{\nu}$

$$
\nu_{\lambda}(T x, T y, T z) \leq a \nu_{\lambda}(x, T x, T x)+b \nu_{\lambda}(y, T y, T y)+c \nu_{\lambda}(z, T z, T z)
$$

for any $\lambda>0$ where $0<a+b+c<1$, then T has a unique fixed point, say u, and T is ν-continuous at u.
The following examples support that condition (I2) and (I3) in theorem 3.2 do not guarantee the completeness of the modular G-metric space.
Example 3.5. Let $X=[0,1), \lambda \in(0, \infty), T(x)=\frac{x}{4}$ and $\nu_{\lambda}(x, y, z)=\frac{G(x, y, z)}{\lambda}$ such that $G(x, y, z)=$ $\max \{|x-y|,|y-z|,|x-z|\}$. Then (X, ν) is modular G-metric space but not complete, since the sequence $x_{n}=1-\frac{1}{n}$ is ν-cauchy which is not ν-convergent in (X, ν). However, condition (I2) and (I3) in theorem 3.2 are satisfied.

Theorem 3.6. Let (X, ν) be a modular G-metric space and let $T: X_{\nu} \longrightarrow X_{\nu}$ be a G-continuous mapping satisfies the following conditions:
(II1) $\nu_{\lambda}(T x, T y, T z) \leq k\left\{\nu_{\lambda}(x, T x, T x)+\nu_{\lambda}(y, T y, T y)+\nu_{\lambda}(z, T z, T z)\right\}$ for all $x, y, z \in M$ and $\lambda>0$ where M is an every where dense subset of X_{ν} (whit respect the topology of modular G-metric convergence) and $0<k<\frac{1}{6}$,
(II2) there is $x \in X_{\nu} ;\left\{T^{n}(x)\right\}_{n \in \mathbb{N}} \longrightarrow u$. Then u is a unique fixed point.
Proof. It is enough to show that condition (I1) in theorem 3.2 holds for any $x, y, z \in X_{\nu}$ and $\lambda>0$.
Case 1: If $x, y, z \in X_{\nu} \backslash M$, let $\left\{x_{n}\right\}_{n},\left\{y_{n}\right\}_{n}$, and $\left\{z_{n}\right\}_{n}$ be a sequences in M such that $x_{n} \longrightarrow x, y_{n} \longrightarrow y$ and $z_{n} \longrightarrow z$. By axioms of modular G-metric (V5), we have

$$
\nu_{\lambda}(T x, T y, T z) \leq \nu_{\frac{\lambda}{2}}(T x, T y, T y)+\nu_{\frac{\lambda}{2}}(T z, T y, T y)
$$

for all $\lambda>0$, also

$$
\begin{equation*}
\nu_{\frac{\lambda}{2}}(T z, T y, T y) \leq \nu_{\frac{\lambda}{4}}\left(T z, T z_{n}, T z_{n}\right)+\nu_{\frac{\lambda}{8}}\left(T z_{n}, T y_{n}, T y_{n}\right)+\nu_{\frac{\lambda}{8}}\left(T y_{n}, T y, T y\right) \tag{3.7}
\end{equation*}
$$

for any $\lambda>0$ and by (II1), we get

$$
\begin{equation*}
\nu_{\frac{\lambda}{8}}\left(T z_{n}, T y_{n}, T y_{n}\right) \leq k\left\{\nu_{\frac{\lambda}{8}}\left(z_{n}, T z_{n}, T z_{n}\right)+2 \nu_{\frac{\lambda}{8}}\left(y_{n}, T y_{n}, T y_{n}\right)\right\} \tag{3.8}
\end{equation*}
$$

for all $\lambda>0$, again by (V5) we have

$$
\begin{align*}
& \nu_{\frac{\lambda}{8}}\left(z_{n}, T z_{n}, T z_{n}\right) \leq \nu_{\frac{\lambda}{16}}\left(z_{n}, z, z\right)+\nu_{\frac{\lambda}{32}}(z, T z, T z)+\nu_{\frac{\lambda}{32}}\left(T z, T z_{n}, T z_{n}\right), \tag{3.9}\\
& \nu_{\frac{\lambda}{8}}\left(y_{n}, T y_{n}, T y_{n}\right) \leq \nu_{\frac{\lambda}{16}}\left(y_{n}, y, y\right)+\nu_{\frac{\lambda}{32}}(y, T y, T y)+\nu_{\frac{\lambda}{32}}\left(T y, T y_{n}, T y_{n}\right) \tag{3.10}
\end{align*}
$$

for all $\lambda>0$. So from (3.8), (3.9) and (3.10) we get

$$
\begin{align*}
\nu_{\frac{\lambda}{2}}(T z, T y, T y) \leq & \nu_{\frac{\lambda}{4}}\left(T z, T z_{n}, T z_{n}\right)+\nu_{\frac{\lambda}{8}}\left(T y_{n}, T y, T y\right) \\
& +k \nu_{\frac{\lambda}{16}}\left(z_{n}, z, z\right)+k \nu_{\frac{\lambda}{32}}\left(T z, T z_{n}, T z_{n}\right)+2 k \nu_{\frac{\lambda}{16}}\left(y_{n}, y, y\right) \\
& +2 k \nu_{\frac{\lambda}{32}}\left(T y, T y_{n}, T y_{n}\right)+k \nu_{\frac{\lambda}{32}}(z, T z, T z)+2 k \nu_{\frac{\lambda}{32}}(y, T y, T y) \\
\leq & (1+k) \nu_{\frac{\lambda}{32}}\left(T z, T z_{n}, T z_{n}\right)+\nu_{\frac{\lambda}{8}}\left(T y_{n}, T y, T y\right) \tag{3.11}\\
& +k \nu_{\frac{\lambda}{16}}\left(z_{n}, z, z\right)+2 k \nu_{\frac{\lambda}{16}}\left(y_{n}, y, y\right)+2 k \nu_{\frac{\lambda}{32}}\left(T y, T y_{n}, T y_{n}\right) \\
& +k \nu_{\frac{\lambda}{32}}(z, T z, T z)+2 k \nu_{\frac{\lambda}{32}}(y, T y, T y)
\end{align*}
$$

for all $\lambda>0$, similarly we deduce that

$$
\begin{align*}
\nu_{\frac{\lambda}{2}}(T x, T y, T y) \leq & (1+k) \nu_{\frac{\lambda}{32}}\left(T x, T x_{n}, T x_{n}\right)+\nu_{\frac{\lambda}{8}}\left(y_{n}, T y, T y\right) \\
& +k \nu_{\frac{\lambda}{16}}\left(x_{n}, x, x\right)+2 k \nu_{\frac{\lambda}{16}}\left(y_{n}, y, y\right) \tag{3.12}\\
& +2 k \nu_{\frac{\lambda}{32}}\left(T y, T y_{n}, T y_{n}\right)+k \nu_{\frac{\lambda}{32}}(x, T x, T x)+2 k \nu_{\frac{\lambda}{32}}(y, T y, T y)
\end{align*}
$$

for all $\lambda>0$. Hence, by inequality (3.11) and (3.12) we get

$$
\begin{aligned}
\nu_{\lambda}(T x, T y, T z) \leq & \nu_{\frac{\lambda}{2}}(T x, T y, T y)+\nu_{\frac{\lambda}{2}}(T z, T y, T y) \\
\leq & \left\{(1+k) \nu_{\frac{\lambda}{32}}\left(T x, T x_{n}, T x_{n}\right)+\nu_{\frac{\lambda}{8}}\left(y_{n}, T y, T y\right)\right. \\
& +k \nu_{\frac{\lambda}{16}}\left(x_{n}, x, x\right)+2 k \nu_{\frac{\lambda}{16}}\left(y_{n}, y, y\right)+2 k \nu_{\frac{\lambda}{}}^{32}\left(T y, T y_{n}, T y_{n}\right) \\
& \left.+k \nu_{\frac{\lambda}{32}}(x, T x, T x)+2 k \nu_{\frac{\lambda}{32}}(y, T y, T y)\right\} \\
& +\left\{(1+k) \nu_{\frac{\lambda}{32}}\left(T z, T z_{n}, T z_{n}\right)+\nu_{\frac{\lambda}{8}}\left(T y_{n}, T y, T y\right)\right. \\
& +k \nu_{\frac{\lambda}{16}}\left(z_{n}, z, z\right)+2 k \nu_{\frac{\lambda}{16}}\left(y_{n}, y, y\right)+2 k \nu_{\frac{\lambda}{32}}\left(T y, T y_{n}, T y_{n}\right) \\
& \left.+k \nu_{\frac{\lambda}{32}}(z, T z, T z)+2 k \nu_{\frac{\lambda}{32}}(y, T y, T y)\right\}
\end{aligned}
$$

for all $\lambda>0$. Since T is ν-continuous as $n \longrightarrow \infty$ in the above inequality we obtain

$$
\nu_{\lambda}(T x, T y, T z) \leq k\left\{\nu_{\frac{\lambda}{32}}(x, T x, T x)+4 \nu_{\frac{\lambda}{32}}(y, T y, T y)+\nu_{\frac{\lambda}{32}}(z, T z, T z)\right\}
$$

for all $\lambda>0$.
Case 2: If $x, y \in M, z \in X_{\nu} \backslash M$, let $\left\{z_{n}\right\}_{n}$ be a sequence in M such that $z_{n} \longrightarrow z$ then by (V5) we have

$$
\nu_{\lambda}(T x, T y, T z) \leq \nu_{\frac{\lambda}{2}}(T x, T y, T y)+\nu_{\frac{\lambda}{2}}(T z, T y, T y)
$$

for all $\lambda>0$. On the other hand by (II1) and (V5) we have

$$
\begin{align*}
\nu_{\frac{\lambda}{2}}(T x, T y, T y) & \leq k\left\{\nu_{\frac{\lambda}{2}}(x, T x, T x)+2 \nu_{\frac{\lambda}{2}}(y, T y, T y)\right\} \tag{3.13}\\
\nu_{\frac{\lambda}{2}}(T z, T y, T y) & \leq \nu_{\frac{\lambda}{4}}\left(T z, T z_{n}, T z_{n}\right)+\nu_{\frac{\lambda}{4}}\left(T z_{n}, T y, T y\right) \tag{3.14}
\end{align*}
$$

for all $\lambda>0$. Again by (II1) and (V5) we have

$$
\begin{equation*}
\nu_{\frac{\lambda}{4}}\left(T z_{n}, T y, T y\right) \leq k\left\{\nu_{\frac{\lambda}{4}}\left(z_{n}, T z_{n}, T z_{n}\right)+2 \nu_{\frac{\lambda}{4}}(y, T y, T y)\right\} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{\frac{\lambda}{4}}\left(z_{n}, T z_{n}, T z_{n}\right) \leq \nu_{\frac{\lambda}{8}}\left(z_{n}, z, z\right)+\nu_{\frac{\lambda}{16}}(z, T z, T z)+\nu_{\frac{\lambda}{16}}\left(T z, T z_{n}, T z_{n}\right) \tag{3.16}
\end{equation*}
$$

for all $\lambda>0$. By inequality (3.13), (3.14), (3.15) and (3.16) we get

$$
\begin{aligned}
\nu_{\lambda}(T x, T y, T z) \leq & k \nu_{\frac{\lambda}{2}}(x, T x, T x)+2 k \nu_{\frac{\lambda}{2}}(y, T y, T y)+k \nu_{\frac{\lambda}{8}}\left(z_{n}, z, z\right)+k \nu_{\frac{\lambda}{16}}(z, T z, T z) \\
& +k \nu_{\frac{\lambda}{16}}\left(T z, T z_{n}, T z_{n}\right)+\nu_{\frac{\lambda}{4}}\left(T z, T z_{n}, T z_{n}\right)+2 k \nu_{\frac{\lambda}{4}}(y, T y, T y)
\end{aligned}
$$

for all $\lambda>0$. Since ν is nonincreasing function we have

$$
\begin{aligned}
\nu_{\lambda}(T x, T y, T z) \leq & k \nu_{\frac{\lambda}{2}}(x, T x, T x)+2 k \nu_{\frac{\lambda}{4}}(y, T y, T y)+k \nu_{\frac{\lambda}{8}}\left(z_{n}, z, z\right)+k \nu_{\frac{\lambda}{16}}(z, T z, T z) \\
& \left.+k \nu_{\frac{\lambda}{16}}\left(T z, T z_{n}, T z_{n}\right)\right\}+\nu_{\frac{\lambda}{4}}\left(T z, T z_{n}, T z_{n}\right)+2 k \nu_{\frac{\lambda}{4}}(y, T y, T y)
\end{aligned}
$$

for all $\lambda>0$. Now letting $n \longrightarrow \infty$ in the inequality, we get

$$
\begin{aligned}
\nu_{\lambda}(T x, T y, T z) & \leq k\left\{\nu_{\frac{\lambda}{2}}(x, T x, T x)+4 \nu_{\frac{\lambda}{4}}(y, T y, T y)+\nu_{\frac{\lambda}{16}}(z, T z, T z)\right\} \\
& \leq k\left\{\nu_{\frac{\lambda}{32}}(x, T x, T x)+4 \nu_{\frac{\lambda}{32}}(y, T y, T y)+\nu_{\frac{\lambda}{32}}(z, T z, T z)\right\}
\end{aligned}
$$

for all $\lambda>0$.
Case 3: If $y \in M$ and $x, z \in X_{\nu} \backslash M$, let $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be a sequences in M such that $x_{n} \longrightarrow x$ and $z_{n} \longrightarrow z$, but by (V5) we have

$$
\begin{array}{r}
\nu_{\lambda}(T x, T y, T z) \leq \nu_{\frac{\lambda}{2}}(T x, T y, T y)+\nu_{\frac{\lambda}{2}}(T z, T y, T y) \\
\nu_{\frac{\lambda}{2}}(T x, T y, T y) \leq \nu_{\frac{\lambda}{4}}\left(T x, T x_{n}, T x_{n}\right)+\nu_{\frac{\lambda}{4}}\left(T x_{n}, T y, T y\right) \tag{3.18}
\end{array}
$$

for all $\lambda>0$. Also from (II1) and (V5) we have

$$
\begin{align*}
& \nu_{\frac{\lambda}{4}}\left(T x_{n}, T y, T y\right) \leq k\left\{\nu_{\frac{\lambda}{4}}\left(x_{n}, T x_{n}, T x_{n}\right)+2 \nu_{\frac{\lambda}{4}}(y, T y, T y)\right\} \tag{3.19}\\
& \nu_{\frac{\lambda}{4}}\left(x_{n}, T x_{n}, T x_{n}\right) \leq \nu_{\frac{\lambda}{8}}\left(x_{n}, x, x\right)+\nu_{\frac{\lambda}{16}}(x, T x, T x)+\nu_{\frac{\lambda}{16}}\left(T x, T x_{n}, T x_{n}\right) \tag{3.20}
\end{align*}
$$

for all $\lambda>0$. So, by (3.19) and (3.20), we have

$$
\begin{align*}
\nu_{\frac{\lambda}{4}}\left(T x_{n}, T y, T y\right) \leq & k \nu_{\frac{\lambda}{8}}\left(x_{n}, x, x\right)+k \nu_{\frac{\lambda}{16}}(x, T x, T x) \tag{3.21}\\
& +k \nu_{\frac{\lambda}{16}}\left(T x, T x_{n}, T x_{n}\right)+2 k \nu_{\frac{\lambda}{4}}(y, T y, T y)
\end{align*}
$$

for all $\lambda>0$. Then from (3.17) and (3.21) we have

$$
\begin{align*}
\nu_{\frac{\lambda}{2}}(T x, T y, T y) \leq & k \nu_{\frac{\lambda}{8}}\left(x_{n}, x, x\right)+k \nu_{\frac{\lambda}{16}}(x, T x, T x) \tag{3.22}\\
& +(1+k) \nu_{\frac{\lambda}{16}}\left(T x, T x_{n}, T x_{n}\right)+2 k \nu_{\frac{\lambda}{4}}(y, T y, T y)
\end{align*}
$$

for all $\lambda>0$. By similaly

$$
\begin{align*}
\nu_{\frac{\lambda}{2}}(T z, T y, T y) \leq & k \nu_{\frac{\lambda}{8}}\left(z_{n}, z, z\right)+k \nu_{\frac{\lambda}{16}}(z, T z, T z) \tag{3.23}\\
& +(1+k) \nu_{\frac{\lambda}{16}}\left(T z, T z_{n}, T z_{n}\right)+2 k \nu_{\frac{\lambda}{4}}(y, T y, T y)
\end{align*}
$$

for all $\lambda>0$. Then from (3.22) and (3.23), we get

$$
\begin{aligned}
\nu_{\lambda}(T x, T y, T z) \leq & \nu_{\frac{\lambda}{2}}(T x, T y, T y)+\nu_{\frac{\lambda}{2}}(T z, T y, T y) \\
\leq & (1+k) \nu_{\frac{\lambda}{16}}\left(T x, T x_{n}, T x_{n}\right)+2 k \nu_{\frac{\lambda}{4}}(y, T y, T y) \\
& +k \nu_{\frac{\lambda}{8}}\left(x_{n}, x, x\right)+k \nu_{\frac{\lambda}{16}}(x, T x, T x) \\
& +(1+k) \nu_{\frac{\lambda}{16}}\left(T z, T z_{n}, T z_{n}\right)+k \nu_{\frac{\lambda}{8}}\left(z_{n}, z, z\right) \\
& +k \nu_{\frac{\lambda}{16}}(z, T z, T z)+2 k \nu_{\frac{\lambda}{4}}(y, T y, T y)
\end{aligned}
$$

for all $\lambda>0$. Now letting $n \longrightarrow \infty$ in the above inequality and using the fact that T is ν-continuous, we get

$$
\begin{aligned}
\nu_{\lambda}(T x, T y, T z) & \leq k\left\{\nu_{\frac{\lambda}{16}}(x, T x, T x)+4 \nu_{\frac{\lambda}{4}}(y, T y, T y)+\nu_{\frac{\lambda}{16}}(z, T z, T z)\right\} \\
& \leq k\left\{\nu_{\frac{\lambda}{32}}(x, T x, T x)+4 \nu_{\frac{\lambda}{32}}(y, T y, T y)+\nu_{\frac{\lambda}{32}}(z, T z, T z)\right\}
\end{aligned}
$$

for all $\lambda>0$. So, in all case we have for any $x, y, z \in X_{\nu}$ and $\lambda>0$

$$
\nu_{\lambda}(T x, T y, T z) \leq a \nu_{\frac{\lambda}{32}}(x, T x, T x)+b \nu_{\frac{\lambda}{32}}(y, T y, T y)+c \nu_{\frac{\lambda}{32}}(z, T z, T z)
$$

where $a=k, b=4 k, c=k$ and $a+b+c<1$ since $0<k<\frac{1}{6}$ then by theorem,T has a unique fixed point.

References

[1] V. V. Chistyakov, Modular metric spaces I Basic concepts, Nonlinear Anal. 72 (2010), 1-14. 1
[2] Y.J.E. Cho, R. Saadati and Gh. Sadeghi, Quasi-Contractive Mappings in Modular Metric Spaces, J. Appl. Math. Volume 2012, Article ID 907951, 5 pages.
[3] B.C. Dhage, Generalized metric space and mapping with fixed point, Bull. Calcutta. Math. 74503 (1992), 7 pages. 1
[4] S. Gahler, 2-metrische Räume und ihre topologische struktur, Math. Nacher.. 26 (1966), 665-667. 1
[5] Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, Proceeding of the International Conference on Fixed Point Theory and Applications, Valencia (spain), July (2003), 198-198. 1
[6] Z. Mustafa and B. Sims, A new approach to generalized metric spaces1, J. Nonlinear and convex Anal. Volume 7, Number 2, 2006, 289-297. 1
[7] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric spaces, International. J. Math. Math. Sci., Volume 2009, Article ID 283028, 10 pages.
[8] Z. Mustafa, M. Khandaqji and W. Shatanawi, Fixed point reasults on complete G-metric spaces, Studia Sci. Math. Hungar., 48 (2011), 304-319.
[9] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory and Application, vol. 2008, Article ID 189870, 12 pages, 2008.
[10] H. Nakano, On the stability of functional equations, Aequationes Math. 77 (2009), 33-88. 1
[11] J. Musielak, Orlicz Spaces and Modular Spaces, in: Lecture Notes in Math. Vol. 1034, Springer-verlag, Berlin, 1983. 1
[12] W. Orlicz, Collected Papers, Vols. I, II, PWN, Warszawa, 1988. 1

[^0]: * Corresponding author

 Email addresses: bahareazadifar@yahoo.com (Bahareh Azadifar), mmaramaiy@yahoo.com (Mahnaz Maramaei), ghadir54@gmail.com, g.sadeghi@hsu.ac.ir (Ghadir Sadeghi)

