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Abstract

In this paper, we prove the existence and uniqueness of mild solutions for the impulsive fractional differential
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1. Introduction

Fractional calculus refers to integration or differentiation of any (i.e., non-integer) order. The field has a
history as old as calculus itself, which did not attract enough attention for a long time. In the past decades,
the theory of fractional differential equations has become an important area of investigation because of its
wide applicability in many branches of physics, economics and technical sciences. For a nice introduction,
we refer to the reader to [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and references cited therein.

Impulsive effects are common phenomena due to short-term perturbations whose duration is negligible
in comparison with the total duration of the original process. Such perturbations can be reasonably well
approximated as being instantaneous changes of state, or in the form of impulses. The governing equations
of such phenomena may be modeled as impulsive differential equations. In recent years, there has been a
growing interest in the study of impulsive differential equations as these equations provide a natural frame
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work for mathematical modelling of many real world phenomena, namely in the control theory, physics,
chemistry, population dynamics, biotechnology, economics and medical fields.

Due to the great development in the theory of fractional calculus and impulsive differential equations
as well as having wide applications in several fields. Recently, the study of fractional differential equations
with impulses has been studied by many authors (see [17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 38]).

In [16], the authors introduced a new class of abstract differential equations for which the impulses are
not instantaneous and investigated the existence of mild and classical solutions for the following system:

u′(t) = Au(t) + f(t, u(t)), t ∈ (si, ti+1], i = 0, 1, · · · , N, (1.1)

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · , N, (1.2)

u(0) = u0, (1.3)

where A is the infinitesimal generator of a C0-semigroup of bounded linear operators, {S(t), t ≥ 0} on a
Banach space (H, ‖.‖), the functions gi ∈ C((ti, si]×H;H) for each i = 1, 2, · · · , N and f : [0, T0]×H → H
is suitable function.

Motivated by the work [16], In this article, we consider the following impulsive fractional differential
equations in a Banach space (H, ‖.‖) for which impulses are not instantaneous:

CDβ
t u(t) +Au(t) = f(t, u(t), u(g(t))), t ∈ (si, ti+1], i = 0, 1, · · · , N, (1.4)

u(t) = hi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · , N, (1.5)

u(0) = u0 ∈ H, (1.6)

where CDβ
t is the Caputo fractional derivative of order β, −A is the infinitesimal generator of an analytic

semigroup of bounded linear operators, {S(t), t ≥ 0} on a Banach space H, the impulses start suddenly at
the points ti and their action continues on the interval [ti, si], 0 = t0 = s0 < t1 ≤ s1 ≤ t2 <, ..., < tN ≤
sN ≤< tN+1 = T0, the functions hi ∈ C((ti, si] × H;H) for each i = 1, 2, · · · , N , g : [0, T0] → [0, T0] and
f : [0, T0]×H ×H → H are suitable functions.

The paper is organized as follows. In “Preliminaries and Assumptions” section, we provide some basic
definitions, notations, lemmas and proposition which are used throughout the paper. In “Existence of mild
solutions” section, we will prove some existence and uniqueness results concerning the PC-mild solutions.
In the last (i.e., In “Application”) section, we give an example to demonstrate the application of the main
results.

2. Preliminaries and assumptions

In this section, we will introduce some basic definitions, notations, lemmas and proposition which are
used throughout this paper.

It is assume that −A generates an analytic semigroup of bounded operators, denoted by S(t), t ≥ 0. It
is known that there exist constants M̃ ≥ 1 and ω ≥ 0 such that

‖S(t)‖ ≤ M̃eωt, t ≥ 0.

If necessary, we may assume without loss of generality that ‖S(t)‖ is uniformly bounded by M , i.e.,
‖S(t)‖ ≤M for t ≥ 0, and that 0 ∈ ρ(−A), implies −A is invertible. In this case, it is possible to define the
fractional power Aα for 0 ≤ α ≤ 1 as closed linear operator with domain D(Aα) ⊆ H. Furthermore, D(Aα)
is dense in H and the expression

‖x‖α = ‖Aαx‖,
defines a norm on D(Aα). Henceforth, we denote the space D(Aα) by Hα endowed with the norm ‖ · ‖α.
Also, for each α > 0, we define H−α = (Hα)∗, the dual space of Hα, is a ‖x‖−α = ‖A−αx‖. For more details,
we refer to the reader to the book by Pazy [1, pp. 69].
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Lemma 2.1. [1, pp. 72,74,195-196] Suppose that −A is the infinitesimal generator of an analytic semigroup
S(t), t ≥ 0 with ‖S(t)‖ ≤M for t ≥ 0 and 0 ∈ ρ(−A). Then we have the following:

(i) Hα is a Banach space for 0 ≤ α ≤ 1;

(ii) For any 0 < δ ≤ α implies D(Aα) ⊂ D(Aδ), the embedding Hα ↪→ Hδ is continuous;

(iii) The operator AαS(t) is bounded, i.e., there exists a constant N such that

‖AαS(t)‖ ≤ N

and
‖AαS(t)‖ ≤ Cαt−α

for each t > 0.

Lemma 2.2. [16, Lemma 1.1] A set B ⊆ PC(Hα) is relatively compact in PC(Hα) if and only if set B̃i is
relatively compact in C([ti, ti+1];Hα]), where PC(Hα) is the space of piecewise continuous functions from
[0, T0] into Hα to be specified later.

Definition 2.3. [37, Def. 2.7] By the mild solution of the following system

CDβ
t u(t) +Au(t) = h(t), t ∈ [t0, T0], (2.1)

u(t0) = u0, (2.2)

we mean a continuous function u : [t0, T0]→ H which satisfies the following integral equation

u(t) = T(t− t0)u0 +

∫ t

t0

(t− s)β−1P(t− s)h(s)ds, t ∈ [t0, T0],

where

T(t) =

∫ ∞
0

ξβ(θ)S(tβθ)dθ, P(t) = β

∫ ∞
0

θξβ(θ)S(tβθ)dθ,

ξβ(θ) =
1

β
θ
−1− 1

β ρβ(θ
− 1
β ) ≥ 0,

ρβ(θ) =
1

π

∞∑
n=1

(−1)n−1θ−nβ−1 Γ(nβ + 1)

n!
sin(nπβ), θ ∈ (0,∞),

ξβ is a probability density function defined on (0,∞), that is

ξβ(θ) ≥ 0, θ ∈ (0,∞),

∫ ∞
0

ξβ(θ) = 1,

and ∫ ∞
0

θγξβ(θ) =

∫ ∞
0

1

θγβ
ρβ(θ) =

Γ(1 + γ)

Γ(1 + γβ)
, for any γ ∈ [0, 1].

Lemma 2.4. The operators T(.) and P(.) have the following properties:

(i). {T(t), t ≥ 0} and {P(t), t ≥ 0} are strongly continuous.

(ii). If {S(t), t > 0} is compact, then T(t) and P(t) are also compact operators for every t > 0.

(iii). For any fixed t ≥ 0, T(t) and P(t) are linear and bounded operators, i.e., for any x ∈ H,

‖T(t)x‖ ≤M‖x‖ and ‖P(t)x‖ ≤ βM

Γ(1 + β)
‖x‖.

Remark 2.5. Since T(.) and P(.) are associated with the β, there are no analogue of the semigroup property,
i.e., T(t+ s) 6= T(t)T(s), P(t+ s) 6= P(t)P(s) for t, s > 0.
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3. Existence of mild solutions

In this section, we prove the existence of mild solutions for the impulsive system (1.4)-(1.6). To begin,
we use the following definition.

Definition 3.1. [16, Def. 2.1] A function u ∈ PC(H) is said to be a mild solution of the problem (1.4)-(1.6)
if u(0) = u0, u(t) = hi(t, u(t)) for all t ∈ (ti, si], for each i = 1, · · · , N and

u(t) =

∫ ∞
0

ξβ(θ)S(tβθ)u0dθ

+ β

∫ t

0

∫ ∞
0

θξβ(θ)(t− s)β−1S((t− s)βθ)f(s, u(s), u(g(s)))dθds,

for all t ∈ [0, t1] and

u(t) =

∫ ∞
0

ξβ(θ)S((t− si)βθ)hi(si, u(si))dθ

+ β

∫ t

si

∫ ∞
0

θξβ(θ)(t− s)β−1S((t− s)βθ)f(s, u(s), u(g(s)))dθds,

for all t ∈ [si, ti+1], for each i = 1, · · · , N .

We define the set of functions as follows

PC(Hα) = {u : [0, T0]→ Hα : u(.) is continuous at t 6= ti, u(t−k ) = u(tk), u(t+k )

exists for all i = 1, 2, · · · , N}.

PC(Hα) is a Banach space endowed with the supremum norm

‖u‖PC := sup
t∈I
‖u(t)‖α.

Now, we define the functions ũi ∈ C([ti, ti+1];Hα) given by

ũi(t) =

{
u(t), for t ∈ (ti, ti+1],
u(t+i ), for t = ti

Let B ⊆ PC(Hα), we define
B̃i = {ũi : u ∈ B}.

We shall use the following conditions on f and hi in its arguments:

(H1) Let W ⊂ Dom(f) be an open subset of R+×Hα×Hα, where 0 ≤ α < 1. For each (t, u, v) ∈W , there
is a neighborhood V1 ⊂ W of (t, u, v), such that the nonlinear map f : R+ ×Hα ×Hα → H satisfies
the following condition,

‖f(t, u, v)− f(t, u1, v1)‖ ≤ Lf{‖u− u1‖α + ‖v − v1‖α}

for all (t, u, v), (t, u1, v1) ∈ V1, Lf = Lf (t, u, v, V1) > 0 is a constant.

(H2) Let g : [0, T0]→ [0, T0] is continuous and satisfies the delay property g(t) ≤ t for t ∈ [0, T0].



P. Kumar, D. N. Pandey, D. Bahuguna, J. Nonlinear Sci. Appl. 7 (2014), 102–114 106

(H3) The functions hi : [ti, si]×Hα → Hα are continuous and there are positive constants Lhi such that

‖hi(t, x)− hi(t, y)‖α ≤ Lhi‖x− y‖α,

for all x, y ∈ Hα, t ∈ [ti, si] and each i = 0, 1, · · · , N.
(H4) For u, v ∈ Hα, the function f(., u, v) is strongly measurable on [0, T0] and f(t, ., .) ∈ C(Hα×Hα, H) ∈

for t ∈ [0, T0]. There exists a constant β1 ∈ [0, β) and mf ∈ L
1
β1 ([0, T0],R+) such that ‖f(t, u, v)‖ ≤

mf (t) for all (t, u, v) ∈ [0, T0]×Hα ×Hα.

Theorem 3.2. Suppose the assumptions (H1)-(H3) hold and

L = max
{
MLhi +

2CαLfΓ(2− α)

(1− α)Γ(1 + β(1− α))
T
β(1−α)
0 : i = 1, · · · , N

}
< 1.

(3.1)

Then there exists a unique mild solution u ∈ PC(Hα) of the problem (1.4)-(1.6).

Proof. Let us define a map Υ : PC(Hα) → PC(Hα), given by Υu(0) = u0, Υu(t) = hi(t, u(t)) for t ∈
(ti, si], i = 1, 2, · · · , N and

Υu(t) =

∫ ∞
0

ξβ(θ)S(tβθ)u0dθ

+ β

∫ t

0

∫ ∞
0

θξβ(θ)(t− s)β−1S((t− s)βθ)f(s, u(s), u(g(s)))dθds,

for all t ∈ [0, t1] and

Υu(t) =

∫ ∞
0

ξβ(θ)S((t− si)βθ)hi(si, u(si))dθ

+ β

∫ t

si

∫ ∞
0

θξβ(θ)(t− s)β−1S((t− s)βθ)f(s, u(s), u(g(s)))dθds,

t ∈ [si, ti+1], i = 1, 2, · · · , N. (3.2)

Clearly, Υ is well defined.
Next we show that Υ is contraction on PC(Hα).
Let φ, ψ ∈ PC(Hα), i ∈ {1, · · · , N} and t ∈ [si, ti+1], we have

‖Υφ(t)−Υψ(t)‖ ≤ ‖
∫ ∞

0
ξβ(θ)‖S((t− si)βθ)‖ ‖hi(si, φ(si))− hi(si, ψ(si))‖αds

+ β

∫ t

si

∫ ∞
0

θξβ(θ)(t− s)β−1‖AαS((t− s)βθ)‖

×‖f(s, φ(s), φ(g(s)))− f(s, ψ(s), ψ(g(s)))‖dθds

≤ MLhi‖φ− ψ‖PC +
CαLfβΓ(2− α)

Γ(1 + β(1− α))

∫ t

si

(t− s)β(1−α)−1[‖φ(s)− ψ(s)‖α

+‖φ(g(s))− ψ(g(s))‖α]ds

≤ [MLhi +
2CαLfΓ(2− α)

(1− α)Γ(1 + β(1− α))
T
β(1−α)
0 ]‖φ− ψ‖PC .
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Thus, we have

‖Υφ−Υψ‖C([si,ti+1];Hα) ≤ [MLhi +
2CαLfΓ(2− α)

(1− α)Γ(1 + β(1− α))
T
β(1−α)
0 ]‖φ− ψ‖PC .

(3.3)

Continuing in this fashion, we get

‖Υφ−Υψ‖C([0,t1];Hα) ≤
2CαLfΓ(2− α)

(1− α)Γ(1 + β(1− α))
T
β(1−α)
0 ‖φ− ψ‖PC , (3.4)

‖Υφ−Υψ‖C([si,ti];Hα) ≤ Lhi‖φ− ψ‖PC , i = 1, · · · , N. (3.5)

Hence, from (3.3)-(3.5), we have

‖Υφ−Υψ‖PC ≤ L‖φ− ψ‖PC ,

i.e., Υ(.) is a contraction and there exists a unique mild solution of (1.4)-(1.6).

The next result concerning the existence and uniqueness of mild solutions for the impulsive system
(1.4)-(1.6) under the assumptions (H3) and (H4).

Theorem 3.3. Suppose the assumptions (H3) and (H4) hold. The semigroup {S(t); t ≥ 0} is compact, the
functions hi(., 0) are bounded, (3.1) holds and for each u0 ∈ Hα, let r > 1 and 0 < δ < 1 be such that


M‖u0‖α + (1 +M) maxi=1,··· ,N ‖hi(., 0)‖α ≤ (1− δ)r,

maxi=1,··· ,N

{
Lhi(1 +M)‖u‖PC + Cα

Γ(2−α)
Γ(1+β(1−α))

T
β(1−α)
0
1−α ℵ

}
≤ δr,

CαΓ(2−α)
Γ(1+β(1−α))

T
β(1−α)
0
1−α sups∈[0,t1],v∈Br(0,PC(Hα))‖f(s, v(s), v(g(s)))‖ ≤ δr,

(3.6)

where ℵ = sups∈[si,ti+1],v∈Br(0,PC(Hα)) ‖f(s, v(s), v(g(s)))‖.
Then there exists a mild solution u ∈ PC(Hα) of the impulsive problem (1.4)-(1.6).

Proof. Let

Υ =
N∑
i=0

Υ1
i +

N∑
i=0

Υ2
i , where Υj

i : PC(Hα)→ PC(Hα), i = 0, 1, · · · , N, j = 1, 2,

are given by

Υ1
iu(t) =



hi(t, u(t)), for t ∈ (ti, si], i ≥ 1,∫∞
0 ξβ(θ)S((t− si)βθ)hi(si, u(si))ds, for t ∈ (si, ti+1], i ≥ 1,

0, for t /∈ [ti, ti+1], i ≥ 0,∫∞
0 ξβ(θ)S(tβθ)u0dθ, for t ∈ [0, t1], i = 1,

Υ2
iu(t) =


β
∫ t
si

∫∞
0 θξβ(θ)(t− s)β−1S((t− s)βθ)

×f(s, u(s), u(g(s)))dθds, for t ∈ (si, ti+1], i ≥ 0,

0, for t /∈ (si, ti+1], i ≥ 0.
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Also, let λ = β−1
1−β1 ∈ (−1, 0), b = β(1−α)−1

1−β1 > 0, M1 = ‖mf‖
L

1
β1 [0,T0]

, where β1 ∈ [0, β), 0 < α ≤ 1.

It is easy to see that (t− s)β−1 ∈ L
1

1−β1 [0, t], for t ∈ [0, T0].
By using Hölder inequality and (H4), for t ∈ [t1, t2] ⊆ [0, T0], we get∫ t

t1

|(t− s)β−1f(s, u(s), u(g(s)))|ds ≤
(∫ t

t1

(t− s)λds
)1−β1

‖mf‖
L

1
β1 [t1,t]

≤ M1

(1 + λ)1−β1 T
(1+λ)(1−β1)
0 .

Then, we have

β

∫ t

t1

∫ ∞
0

θξβ(θ)|(t− s)β−1S((t− s)βθ)f(s, u(s), u(g(s)))|dθds

≤Mβ

∫ t

t1

∫ ∞
0

θξβ(θ)|(t− s)β−1f(s, u(s), u(g(s)))|dθds

≤ Mβ

Γ(1 + β)

∫ t

t1

|(t− s)β−1f(s, u(s), u(g(s)))|ds

≤ Mβ

Γ(1 + β)

(∫ t

t1

(t− s)λds
)1−β1

‖mf‖
L

1
β1 [t1,t]

≤ βMM1

Γ(1 + β)(1 + λ)1−β1 T
(1+λ)(1−β1)
0 . (3.7)

Our aim is to prove that the map Υ is a condensing map from Br(0,PC(Hα)) into Br(0,PC(Hα)). For
this we have divided our proof into four steps.

Step 1. First we show that ΥBr(0,PC(Hα)) ⊂ Br(0,PC(Hα)), where

Br(0,PC(Hα)) = {u ∈ PC(Hα) : ‖u‖α ≤ r},

for r > 0.
Let u ∈ Br(0,PC(Hα)). For i ≥ 1 and t ∈ (ti, ti+1], we get

‖Υu(t)‖α ≤ ‖hi(t, u(t))− hi(t, 0)‖α + ‖hi(t, 0)‖α

+

∫ ∞
0

ξβ(θ)‖S((t− si)βθ)‖ ‖hi(si, u(si))− hi(si, 0)‖αds (3.8)

+

∫ ∞
0

ξβ(θ)‖S((t− si)βθ)‖‖hi(si, 0)‖αds

+ β

∫ t

si

∫ ∞
0

θξβ(θ)(t− s)β−1‖AαS((t− s)βθ)‖ ‖f(s, u(s), u(g(s)))‖dθds

≤ Lhi‖u(t)‖+ ‖hi(t, 0)‖α +MLhi‖u(t)‖+M‖hi(t, 0)‖α

+ Cαβ
(∫ t

si

(t− s)β(1−α)−1 sup
s∈[si,ti+1],v∈Br(0,PC(Hα))

‖f(s, v(s), v(g(s)))‖ds
)

×
(∫ ∞

0
θ1−αξβ(θ)dθ

)
≤ Lhi(1 +M)‖u‖PC + (1 +M)‖hi(t, 0)‖α

+ Cα
Γ(2− α)

Γ(1 + β(1− α))

T
β(1−α)
0

1− α
sup

s∈[si,ti+1],v∈Br(0,PC(Hα))
‖f(s, v(s), v(g(s)))‖
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which implies that ‖Υu‖α ≤ r for all i ≥ 1. Similarly, for each t ∈ [0, t1], we find that

‖Υu(t)‖α ≤
∫ ∞

0
ξβ(θ)‖S(tβθ)‖ ‖Aαu0‖dθ

+ β

∫ t

0

∫ ∞
0

θξβ(θ)(t− s)β−1‖AαS((t− s)βθ)‖‖f(s, u(s), u(g(s)))‖dθds

≤ M‖u0‖α +
CαΓ(2− α)

Γ(1 + β(1− α))

T
β(1−α)
0

1− α
sup

s∈[0,t1],v∈Br(0,PC(Hα))
‖f(s, v(s), v(g(s)))‖

from which we get ‖Υu‖α ≤ r and Υ has values in Br(0,PC(Hα)).
Step 2. The map Υ1 =

∑N
i=0 Υ1

i is a contraction on Br(0,PC(Hα)).
Let t ∈ (ti, ti+1] and u, v ∈ Br(0,PC(Hα)), i = 1, · · · , N , we have

‖Υ1
iu(t)−Υ1

i v(t)‖PC(Hα) ≤ (1 +M)Lhi‖u− v‖C((ti,ti+1],Hα),

which implies that ‖
∑N

i=0 Υ1
iu−

∑N
i=0 Υ1

i v‖PC ≤ L‖u− v‖PC , i.e., Υ1 is a contraction on Br(0,PC(Hα)).
Let Υ2

iBr(0,PC(Hα))(t) = {Υ2
iu(t) : u ∈ Br(0,PC(Hα))}.

Step 3. Next, we prove that the set
⋃

Υ2
iBr(0,PC(Hα))(t) is relatively compact in Hα.

Let t ∈ (si, ti+1], for i = 0, 1, · · · , N, then for each ε ∈ (si, s) and for each δ > 0, we define an operator
(Υ2

i )ε,δ on Br(0,PC(Hα)) by

((Υ2
i )ε,δu)(t) = S(εβδ)

∫ t−ε

si

(t− s)β−1
{
β

∫ ∞
δ

θξβ(θ)S((t− s)βθ − εβδ)dθ
}

× f(s, u(s), u(g(s)))ds,

where u ∈ Br(0,PC(Hα)). The set

(Br)ε,δ(0,PC(Hα))(t) = {((Υ2
i )ε,δu)(t) : u ∈ Br(0,PC(Hα))}

is relatively compact in Hα. Since the operator S(εβδ), is compact.
Also, for each u ∈ Br(0,PC(Hα)), we have

‖(Υ2
iu)(t)− ((Υ2

i )ε,δu)(t)‖α

≤ β‖
∫ t

si

∫ δ

0
θξβ(θ)(t− s)β−1S((t− s)βθ)f(s, u(s), u(g(s)))dθds

+

∫ t

si

∫ ∞
δ

θξβ(θ)(t− s)β−1S((t− s)βθ)f(s, u(s), u(g(s)))dθds

−
∫ t−ε

si

∫ ∞
δ

θξβ(θ)(t− s)β−1S((t− s)βθ)f(s, u(s), u(g(s)))dθds‖α

≤ β

∫ t

si

∫ δ

0
θξβ(θ)(t− s)β−1‖AαS((t− s)βθ)‖‖f(s, u(s), u(g(s)))‖dθds

+ β

∫ t

t−ε

∫ ∞
δ

θξβ(θ)(t− s)β−1‖AαS((t− s)βθ)‖‖f(s, u(s), u(g(s)))‖dθds

≤ Cαβ
(∫ t

si

(t− s)bds
)1−β1

‖mf‖
L

1
β1 [si,t]

∫ δ

0
θ1−αξβ(θ)dθ

+Cαβ
(∫ t

t−ε
(t− s)bds

)1−β1
‖mf‖

L
1
β1 [t−ε,t]

∫ ∞
0

θ1−αξβ(θ)dθ

≤ βM1CαT
(1+b)(1−β1)
0

(1 + b)(1−β1)

∫ δ

0
θξβ(θ)dθ +

βM1CαΓ(2− α)

Γ(1 + β(1− α))(1 + b)(1−β1)
ε(1+b)(1−β1).

Therefore, there exists relatively compact sets arbitrarily close to the set
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⋃
Υ2
iBr(0,PC(Hα))(t). Thus, the set

⋃
Υ2
iBr(0,PC(Hα))(t) is relatively compact in Hα.

Step 4. In this step, our aim is to prove that the set of functions

[Υ2
i

˜Br(0,PC(Hα))]i, i = 0, 1, · · · , N is an equicontinuous subset of C([ti, ti+1], Hα).
Let t1, t2 ∈ [si, ti+1], t1 < t2 and u ∈ Br(0,PC(Hα)), we get

‖(Υ2
iu)(t2)− (Υ2

iu)(t1)‖α

≤ β

∫ t2

t1

∫ ∞
0

θξβ(θ)(t2 − s)β−1‖AαS((t2 − s)βθ)‖‖f(s, u(s), u(g(s)))‖dθds

+ β

∫ t1

si

∫ ∞
0

θξβ(θ)[(t2 − s)β−1 − (t1 − s)β−1]‖AαS((t2 − s)βθ)‖

×‖f(s, u(s), u(g(s)))‖dθds

+ β

∫ t1

si

∫ ∞
0

θξβ(θ)(t1 − s)β−1‖Aα[S((t2 − s)βθ)− S((t1 − s)βθ)]‖

× ‖f(s, u(s), u(g(s)))‖dθds. (3.9)

For the first term on the right hand side of (3.9), we have

β

∫ t2

t1

∫ ∞
0

θξβ(θ)(t2 − s)β−1‖AαS((t2 − s)βθ)‖‖f(s, u(s), u(g(s)))‖dθds

≤ βCαM1Γ(2− α)

Γ(1 + β(1− α))

(∫ t2

t1

(t2 − s)bds
)1−β1

≤ βCαM1Γ(2− α)

(1 + b)(1−β1)Γ(1 + β(1− α))
(t2 − t1)(1+b)(1−β1) (3.10)

For the second term on the right hand side of (3.9), we have

β

∫ t1

si

∫ ∞
0

θξβ(θ)[(t2 − s)β−1 − (t1 − s)β−1]‖AαS((t2 − s)βθ)‖

×‖f(s, u(s), u(g(s)))‖dθds

≤ βNM1

Γ(1 + β)

(∫ t1

si

[(t2 − s)β−1 − (t1 − s)β−1]
1

1−β1 ds
)1−β1

≤ βNM1

Γ(1 + β)

(∫ t1

si

[(t1 − s)λ − (t2 − s)λ]ds
)1−β1

≤ βNM1

Γ(1 + β)(1 + λ)1−β1

(
(t2 − t1)1+λ − ((t2 − si)1+λ − (t1 − si)1+λ)

)1−β1

≤ βNM1

Γ(1 + β)(1 + λ)1−β1 (t2 − t1)(1+λ)(1−β1) (3.11)

For t1 = si, it is easy to see that the third term on the right hand side of (3.9) will be zero. For t1 > si
and ε > 0 be sufficiently small, we have
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β

∫ t1−ε

si

∫ ∞
0

θξβ(θ)(t1 − s)β−1‖Aα[S((t2 − s)βθ)− S((t1 − s)βθ)]‖

×‖f(s, u(s), u(g(s)))‖dθds

+β

∫ t1

t1−ε

∫ ∞
0

θξβ(θ)(t1 − s)β−1‖Aα[S((t2 − s)βθ)− S((t1 − s)βθ)]‖

×‖f(s, u(s), u(g(s)))‖dθds

≤ M1(t1+λ
1 − ε1+λ)(1−β1)

Γ(1 + β)(1 + λ)1−β1 sup
s∈[si,t1−ε]

‖Aα[S((t2 − s)βθ)− S((t1 − s)βθ)]‖

+
2βNM1

Γ(1 + β)(1 + λ)1−β1 ε
(1+λ)(1−β1) (3.12)

Thus, from (3.10)-(3.12) we see that ‖Υ2
iu(t2) − Υ2

iu(t1)‖α tends to zero as t2 → t1 for any u ∈
Br(0,PC(Hα)), which means that [Υ2

i
˜Br(0,PC(Hα))]i is equicontinuous.

Lemma (2.2) and the above steps shows that Υ1 is a contraction, Υ2 is completely continuous and
Υ = Υ1 + Υ2 is a condensing map on Br(0,PC(Hα)). Then Krasnoselskii’s fixed point theorem ensures that
Υ has a fixed point, which gives rise to a mild solution.

4. Application

Consider the following impulsive system of fractional partial differential equations

CDβ
t u(t, x) =

∂2u

∂x2
+ F (t, x, u(t, x), u(g(t), x)), (t, x) ∈

N⋃
i=1

[si, ti+1]× [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, T0]
u(0, x) = u0(x), x ∈ [0, π],
u(t, x) = Hi(t, u(t, x)), x ∈ [0, π], t ∈ (ti, si]


(4.1)

where 0 = t0 = s0 < t1 ≤ s1 < · · · < tN ≤ sN < tN+1 = T0 are fixed real numbers, u0 ∈ H, F ∈
([0, T0]× R× R,R) and Hi ∈ C((ti, si]× R,R) for all i = 1, · · · , N .

(A1). Let H = L2([0, π]) and Au = − ∂2

∂x2
u with

D(A) = {u ∈ H :
∂u

∂x
,
∂2u

∂x2
∈ H,u(0) = u(π) = 0} = H2(0, π) ∩H1

0 (0, π),

clearly, the operator A is the infinitesimal generator of a compact analytic semigroup S(t). Taking α = 1/2,
we have D(A1/2) is Banach space endowed with norm

‖u‖1/2 = ‖A1/2u‖, u ∈ D(A1/2).

We can formulate the impulsive system (4.1) in the abstract form (1.4)-(1.6), where u(t) = u(t, .), i.e.,
u(t)(x) = u(t, x) and the functions f : [0, T0]×H1/2 ×H1/2 → H and hi : (ti, si]×H1/2 → H are given by

f(t, u(t), u(g(t)))(x) = F (t, x, u(t, x), u(g(t), x)),

hi(t, u(t))(x) = Hi(t, u(t, x)).

Case 1. Define

(A2). f(t, u(t), u(g(t)))(x) =
e−t{|u(t, x)|+ |u(g(t), x)|]}

(γ + et){1 + |u(t, x)|+ |u(g(t), x)|]}
, γ > −1,

t ∈ [0, T0], u ∈ H1/2, x ∈ (0, π).
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Clearly, f : [0, T0]×H1/2 ×H1/2 → H is continuous function, such that

‖f(t, u1, v1)− f(t, u2, v2)‖ ≤ Lf{‖u1 − u2‖1/2 + ‖v1 − v2‖1/2},

with Lf = 1
γ+1 .

(A3). hi(t, u(t))(x) =
cos t|u(t, x)|

2(1 + |u(t, x)|)
, t ∈ (ti, si], i = 1, 2, · · · , N,

u ∈ H1/2, x ∈ (0, π). (4.2)

Clearly, hi : (ti, si]×H1/2 → H are continuous functions, such that

‖hi(t, u1)− f(t, u2)‖ ≤ Lhi‖u1 − u2‖1/2,

with Lhi = 1
2 .

(A4). We can choose g as follows

(i). g(t) = kt for t ∈ [0, T0], k ∈ [0, 1],

(ii). g(t) = k sin t for t ∈ [0, π/2], k ∈ [0, 1].

Hence, (A1)+(A2)+(A3)+(A4) implies that the assumptions in Theorem (3.2) are satisfied. For more
details, we refer to [18].

Case 2. Define

(A5). f(t, u(t), u(g(t)))(x) =
e−t(sin(u(t, x)) + cos(u(g(t), x)))

(1 + t)(et + e−t)
+ e−t,

t ∈ [0, t1] ∪ (s1, t2] · · · ∪ (sN , T0], u ∈ H, x ∈ (0, π).

Satisfies,

‖f(t, u)‖ ≤ 2e−t

et + e−t
+ e−t = mf (t), with mf (t) ∈ L∞([0, T0],R+).

Hence, (A1)+(A3)+(A4)+(A5) implies that the assumptions in Theorem (3.3) are also satisfied.
System (4.1) has a mild solution u ∈ PC(H) if u(.) is a mild solution of the associated abstract form

(1.4)-(1.6).
The following theorem follows immediately from Theorem 3.2 and Theorem 3.3.

Theorem 4.1. If any of the following assumption is hold. Then there exists a mild solution u ∈ PC(H) of
(4.1)

(i). The functions F and Hi are Lipschitz with Lipschitz constant LF and LHi respectively and max{MLHi+
2CαLFΓ(2−α)

(1−α)Γ(1+β(1−α))T
β(1−α)
0 : i = 1, · · · , N} < 1.

(ii). The functions Hi(.) are Lipschitz with Lipschitz constant LHi, the function F (.) is bounded with LHi <
1 for all i = 1, · · · , N .
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