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Abstract
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1. Introduction and Preliminaries

The common fixed point theorems for mappings satisfying certain contractive conditions in metric
spaces have been continually studied for decade (see [1, 3, 5, 6, 8, 9, 10, 11, 12, 14, 15] and references
contained therein). In 1976, Jungck [7] proved the existence of common fixed point theorems for commuting
mappings in metric spaces where the results require the continuity of one of two such mappings. In 1986,
Jungck [8] introduced the concept of compatible mappings and proved that weakly commuting mappings
are compatible mappings. After that, Jungck [10], generalized the notion of compatibility by introducing
the weakly compatibility.

Recently, Abbas et al. [1] introduced the generalized condition (B) as the following:
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Definition 1.1. Let X be a metric space. A mapping F : X → X is said to satisfy a generalized condition
(B) associated with a self mapping f on X if there exists δ ∈ (0, 1) and L ≥ 0 such that

d(Fx, Fy) ≤ δM(x, y) + Lmin{d(fx, Fx), d(fy, Fy), d(fx, Fy), d(fy, Fx)}, (1.1)

for all x, y ∈ X, where

M(x, y) = max{d(fx, fy), d(fx, Fx), d(fy, Fy),
1

2
[d(fx, Fy) + d(fy, Fx)]}.

Abbas et al. [1] established the existence of a unique common fixed point for two self mappings F and f
on X where F satisfies a generalized condition (B) associated with f . In this work, we assure the analogous
results proved by Abbas et al. [1] for four self mappings in partial metric spaces.

Mathews [13] introduced the notion of partial metric spaces. We now recall some definitions and lemmas
that will be used in the sequel.

Definition 1.2. A partial metric on a nonempty set X is a function p : X × X → R+ such that for all
x, y, z ∈ X,

(P1) x = y if and only if p(x, x) = p(x, y) = p(y, y);

(P2) p(x, x) ≤ p(x, y);

(P3) p(x, y) = p(y, x);

(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

A pair (X, p) is called a partial metric space and p is a partial metric on X.

If p is a partial metric on X, then p generates a T0 topology τp on X whose base is the family of open
p−balls

{Bp(x, ε) : x ∈ X and ε > 0},

where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}. For each partial metric p on X, the function ps : X ×X →
R+ defined by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) (1.2)

is a usual metric on X.

Definition 1.3. Let (X, p) be a partial metric space.

(1) A sequence {xn} in a partial metric space (X, p) converges to a point x ∈ X if limn→∞ p(x, xn) =
p(x, x).

(2) A sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence if limn,m→∞ p(xn, xm)
exists (and is finite).

(3) A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in X converges,
with respect to τp, to a point x ∈ X such that limn,m→∞ p(xn, xm) = p(x, x).

Lemma 1.4. [13] Let (X, p) be a partial metric space. Then

(1) A sequence {xn} in a partial metric space (X, p) is a Cauchy sequence if and only if it is a Cauchy
sequence in the metric space (X, ps).

(2) A partial metric space (X, p) is complete if and only if the metric space (X, ps) is complete. Moreover,

lim
n→∞

ps(x, xn) = 0 iff lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm) = p(x, x).
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(3) A subset E of a partial metric space (X, p) is closed if whenever {xn} is a sequence in E such that
{xn} converges to some x ∈ X, then x ∈ E.

Lemma 1.5. [2] Let (X, p) be a partial metric space. Then

(1) If p(x, y) = 0, then x = y.

(2) If x 6= y, then p(x, y) > 0.

Definition 1.6. Let (X, p) be a partial metric space. A mapping f : X → X is continuous at x ∈ X if the
sequence {fxn} converges to fx for every sequence {xn} in X converging to x.

Definition 1.7. Let f and g are self mappings on a set X. A point x ∈ X is called a coincidence point of
f and g if fx = gx = w where w is called a point of coincidence of f and g.

Definition 1.8. Two self mappings f and g on a set X are said to be weakly compatible if f and g commute
at their coincidence points. That is, if fx = gx for some x ∈ X, then fgx = gfx.

In this paper, we prove the uniqueness of a common fixed point of four self mappings on a partial metric
space (X, p) satisfying the certain contractive condition and being the weak compatibility. Moreover, we
also prove the result on the continuity in the set of common fixed points for self mappings.

2. Main results

We now prove the existence of the unique common fixed point theorems for four self mappings which are
weakly compatible on a partial metric space (X, p). The proofs of the mentioned theorems have been taken
from the technique used in [1] in the setting of metric spaces.

Theorem 2.1. Let (X, p) be a complete partial metric space. Suppose that f, g, F and G are self mappings
on X satisfying the following conditions:

(a) f(X) ⊆ g(X) and F (X) ⊆ G(X).

(b) There exist δ > 0 and L ≥ 0 with δ + 2L < 1 such that

p(Fx, fy) ≤ δM(x, y) + Lmin{p(gx, Fx), p(Gy, fy), p(gx, fy), p(Gy, Fx)}, (2.1)

for all x, y ∈ X, where

M(x, y) = max{p(gx,Gy), p(gx, Fx), p(Gy, fy),
1

2
[p(gx, fy) + p(Gy, Fx)]}.

(c) f(X) or g(X) is closed.

If {f,G} and {g, F} are weakly compatible, then f, g, F and G have a unique common fixed point in X.

Proof. Suppose that x0 is an arbitrary point in X. Since f(X) ⊆ g(X) and F (X) ⊆ G(X), we can construct
a sequence {yn} in X satisfying

yn = Fxn = Gxn+1 and yn+1 = fxn+1 = gxn+2 for all n ∈ N ∪ {0}.

By applying (2.1), we have

p(Fxn, fxn+1) ≤ δM(xn, xn+1) + Lmin{p(gxn, Fxn), p(Gxn+1, fxn+1),

p(gxn, fxn+1), p(Gxn+1, Fxn)}.
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Since

M(xn, xn+1) = max{p(gxn, Gxn+1), p(gxn, Fxn), p(Gxn+1, fxn+1),

1

2
[p(gxn, fxn+1) + p(Gxn+1, Fxn)]}

= max{p(yn−1, yn), p(yn−1, yn), p(yn, yn+1),

1

2
[p(yn−1, yn+1) + p(yn, yn)]}

≤ max{p(yn−1, yn), p(yn, yn+1),

1

2
[p(yn−1, yn) + p(yn, yn+1)− p(yn, yn) + p(yn, yn)]}

≤ max{p(yn−1, yn), p(yn, yn+1)},

and
min{p(gxn, Fxn), p(Gxn+1, fxn+1), p(gxn, fxn+1) + p(Gxn+1, Fxn)}

= min{p(yn−1, yn), p(yn, yn+1), p(yn−1, yn+1), p(yn, yn)}
= min{p(yn−1, yn+1), p(yn, yn)},

we obtain that

p(yn, yn+1) = p(Fxn, fxn+1)

≤ δmax{p(yn−1, yn), p(yn, yn+1)}+ Lmin{p(yn−1, yn+1), p(yn, yn)}.

We separate the proof into the following cases.
Case I : If max{p(yn−1, yn), p(yn, yn+1)} = p(yn−1, yn) and min{p(yn−1, yn+1), p(yn, yn)} = p(yn−1, yn+1),
then

p(yn, yn+1) ≤ δp(yn−1, yn) + Lp(yn−1, yn+1)

≤ δp(yn−1, yn) + L(p(yn−1, yn) + p(yn, yn+1)− p(yn, yn))

≤ δp(yn−1, yn) + Lp(yn−1, yn) + Lp(yn, yn+1).

This implies that

p(yn, yn+1) ≤
δ + L

1− L
p(yn−1, yn).

Let k1 = δ+L
1−L . Since δ + 2L < 1, we have k1 < 1. Therefore

p(yn, yn+1) ≤ k1p(yn−1, yn).

Case II : If max{p(yn−1, yn), p(yn, yn+1)} = p(yn−1, yn) and min{p(yn−1, yn+1), p(yn, yn)} = p(yn, yn), then

p(yn, yn+1) ≤ δp(yn−1, yn) + Lp(yn, yn)

≤ δp(yn−1, yn) + Lp(yn, yn+1).

This implies that

p(yn, yn+1) ≤
δ

1− L
p(yn−1, yn).

Let k2 = δ
1−L . Since δ + 2L < 1, we have k2 < 1. Therefore

p(yn, yn+1) ≤ k2p(yn−1, yn).
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Case III : If max{p(yn−1, yn), p(yn, yn+1)} = p(yn, yn+1) and min{p(yn−1, yn+1), p(yn, yn)} = p(yn−1, yn+1),
then

p(yn, yn+1) ≤ δp(yn, yn+1) + Lp(yn−1, yn+1)

≤ δp(yn, yn+1) + L(p(yn−1, yn) + p(yn, yn+1)− p(yn, yn))

≤ δp(yn, yn+1) + Lp(yn−1, yn) + Lp(yn, yn+1).

This implies that

p(yn, yn+1) ≤
L

1− (δ + L)
p(yn−1, yn).

Let k3 = L
1−(δ+L) . Since δ + 2L < 1, we have k3 < 1. Therefore

p(yn, yn+1) ≤ k3p(yn−1, yn).

Case IV : If max{p(yn−1, yn), p(yn, yn+1)} = p(yn, yn+1) and min{p(yn−1, yn+1), p(yn, yn)} = p(yn, yn), then

p(yn, yn+1) ≤ δp(yn, yn+1) + Lp(yn, yn)

≤ δp(yn, yn+1) + Lp(yn−1, yn).

This implies that

p(yn, yn+1) ≤
L

1− δ
p(yn−1, yn).

Let k4 = L
1−δ . Since δ + 2L < 1, we have k4 < 1. Therefore

p(yn, yn+1) ≤ k4p(yn−1, yn).

Choose k = max{k1, k2, k3, k4}. Therefore 0 < k < 1. For each n ∈ N, we obtain that

p(yn, yn+1) ≤ knp(y0, y1). (2.2)

We will prove that {yn} is a Cauchy sequence in (X, ps). Let m,n ∈ N with m > n. By applying (2.2), we
have

p(ym, yn) ≤ [p(yn, yn+1) + p(yn+1, yn+2) + · · ·+ p(ym−1, ym)]

−[p(yn+1, yn+1) + p(yn+2, yn+2) + p(ym−1, ym−1)]

≤ p(yn, yn+1) + p(yn+1, yn+2) + · · ·+ p(ym−1, ym)

≤ [kn + kn+1 + ·+ km−1]p(y0, y1)

≤ kn

1− k
p(y0, y1).

It follows that
lim

n,m→∞
p(ym, yn) = 0. (2.3)

Using (1.2), we have

ps(ym, yn) = 2p(ym, yn)− p(ym, ym)− p(yn, yn)

≤ 2p(ym, yn).

Applying (2.3), we obtain that
lim

n,m→∞
ps(ym, yn) = 0. (2.4)

This implies that {yn} is a Cauchy sequence in (X, ps). Since X is complete, we have

lim
n→∞

yn = z for some z ∈ X. (2.5)
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By Lemma 1.4 and (2.5), we obtain that

p(z, z) = lim
n→∞

p(yn, z) = lim
n,m→∞

p(ym, yn) (2.6)

From (2.3) and (2.6), we can conclude that p(z, z) = 0. Assume that g(X) is closed. Therefore there exists
a point u ∈ X such that z = gu. Using (2.1), this yields

p(z, Fu) ≤ p(z, yn+1) + p(yn+1, Fu)− p(yn+1, yn+1)

≤ p(z, yn+1) + p(Fu, fxn+1)

≤ p(z, yn+1) + δmax{p(gu,Gxn+1), p(gu, Fu), p(Gxn+1, fxn+1),

1

2
[p(gu, fxn+1) + p(Gxn+1, Fu)]}+ Lmin{p(gu, Fu), p(Gxn+1, fxn+1),

p(gu, fxn+1), p(Gxn+1, Fu)}
= p(z, yn+1) + δmax{p(z, yn), p(z, Fu), p(yn, yn+1),

1

2
[p(z, yn+1) + p(yn, Fu)]}+ Lmin{p(z, Fu), p(yn, yn+1), p(z, yn+1), p(yn, Fu)}

≤ p(z, yn+1) + δmax{p(z, yn), p(z, Fu), p(yn, z) + p(z, yn+1)− p(z, z),
1

2
[p(z, yn+1) + p(yn, z) + p(z, Fu)− p(z, z)]}+ Lmin{p(z, Fu), p(yn, z) + p(z, yn+1)

−p(z, z), p(z, yn+1), p(yn, z) + p(z, Fu)− p(z, z)}
≤ p(z, yn+1) + δmax{p(z, yn), p(z, Fu), p(yn, z) + p(z, yn+1),

1

2
[p(z, yn+1) + p(yn, z) + p(z, Fu)]}+ Lmin{p(z, Fu), p(yn, z) + p(z, yn+1),

p(z, yn+1), p(yn, z) + p(z, Fu)}.

Taking the limit as n→∞ and using the fact that p(z, z) = 0, we have

p(z, Fu) ≤ δp(z, Fu) + Lp(z, Fu) = (δ + L)p(z, Fu).

It follows that p(z, Fu) = 0 and so Fu = z = gu. Since F and g are weakly compatible, we obtain that
gFu = Fgu. Therefore gz = Fz.
Since F (X) ⊆ G(X), there exists a point v ∈ X such that z = Gv. Applying (2.1), we have

p(z, fv) = p(Fu, fv)

≤ δmax{p(gu,Gv), p(gu, Fu), p(Gv, fv),
1

2
[p(gu, fv) + p(Gv, Fu)]}+

Lmin{p(gu, Fu), p(Gv, fv), p(gu, fv), p(Gv, Fu)}

= δmax{p(z, z), p(z, z), p(z, fv),
1

2
[p(z, fv) + p(z, z)]}+

Lmin{p(z, z), p(z, fv), p(z, fv), p(z, z)}
≤ δp(z, fv).

This implies that p(z, fv) = 0 and so fv = z = Gv. Since G and f are weakly compatible, we obtain that
fGv = Gfv. Therefore fz = Gz. We next prove that z is a common fixed point of f, g, F and G. Using
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(2.1), this yields

p(Fz, z) = p(Fz, fv)

≤ δmax{p(gz,Gv), p(gz, Fz), p(Gv, fv),
1

2
[p(gz, fv) + p(Gv, Fz)]}+

Lmin{p(gz, Fz), p(Gv, fv), p(gz, fv), p(Gv, Fz)}

= δmax{p(Fz, z), p(Fz, Fz), p(z, z), 1

2
[p(Fz, z) + p(z, Fz)]}+

Lmin{p(Fz, Fz), p(z, z), p(Fz, z), p(z, Fz)}

≤ δmax{p(Fz, z), p(Fz, z), p(z, z), 1

2
[p(Fz, z) + p(z, Fz)]}+

Lmin{p(Fz, Fz), p(z, z), p(Fz, z), p(z, Fz)}
≤ δp(Fz, z).

This implies that p(Fz, z) = 0 and so gz = Fz = z. Similarly, applying (2.1), we obtain that

p(z, fz) = p(Fz, fz)

≤ δmax{p(gz,Gz), p(gz, Fz), p(Gz, fz), 1

2
[p(gz, fz) + p(Gz, Fz)]}+

Lmin{p(gz, Fz), p(Gz, fz), p(gz, fz), p(Gz, Fz)}

= δmax{p(z, fz), p(z, z), p(fz, fz), 1

2
[p(z, fz) + p(fz, z)]}+

Lmin{p(z, z), p(fz, fz), p(z, fz), p(fz, z)}

≤ δmax{p(z, fz), p(z, z), p(fz, z), 1

2
[p(z, fz) + p(fz, z)]}+

Lmin{p(z, z), p(fz, fz), p(z, fz), p(fz, z)}
≤ δp(z, fz).

This implies that p(z, fz) = 0 and so Gz = fz = z. Therefore z is a common fixed point of f, g, F and G.
We will prove the uniqueness of a common fixed point of f, g, F and G. Let w be any common fixed point
of f, g, F and G. By applying (2.1), it follows that

p(z, w) = p(Fz, fw)

≤ δmax{p(gz,Gw), p(gz, Fz), p(Gw, fw),
1

2
[p(gz, fw) + p(Gw,Fz)]}+

Lmin{p(gz, Fz), p(Gw, fw), p(gz, fw), p(Gw,Fz)}

= δmax{p(z, w), p(z, z), p(w,w),
1

2
[p(z, w) + p(w, z)]}+

Lmin{p(z, z), p(w,w), p(z, w), p(w, z)}
≤ δp(z, w).

This implies that p(z, w) = 0 and so z = w. Hence f, g, F and G have a unique common fixed point in
X.

Letting F = f and G = g in Theorem 2.1, we immediately obtain the following corollary:

Corollary 2.2. Let (X, p) be a partial metric space. Suppose that f and g are self mappings on X satisfying
the following conditions:

(a) f(X) ⊆ g(X).

(b) There exist δ > 0 and L ≥ 0 with δ + 2L < 1 such that

p(fx, fy) ≤ δM(x, y) + Lmin{p(gx, fx), p(gy, fy), p(gx, fy), p(gy, fx)}, (2.7)
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for all x, y ∈ X, where

M(x, y) = max{p(gx, gy), p(gx, fx), p(gy, fy),
1

2
[p(gx, fy) + p(gy, fx)]}.

(c) f(X) or g(X) is complete.

If {f, g} is weakly compatible, then f and g have a unique common fixed point in X.

Theorem 2.3. Let (X, p) be a complete partial metric space. Suppose that f, g, F and G are self mappings
on X satisfying the following conditions:

(a) f(X) ⊆ g(X) and F (X) ⊆ G(X).

(b) There exist δ > 0 and L ≥ 0 with δ + 2L < 1 such that

p(Fx, fy) ≤ δM(x, y) + Lmin{p(gx, Fx), p(Gy, fy), p(gx, fy), p(Gy, Fx)}, (2.8)

for all x, y ∈ X, where

M(x, y) = max{p(gx,Gy),
1

2
[p(gx, Fx) + p(Gy, fy)],

1

2
[p(gx, fy) + p(Gy, Fx)]}.

(c) f(X) or g(X) is closed.

If {f,G} and {g, F} are weakly compatible, then f, g, F and G have a unique common fixed point in X.

Proof. Since the inequality (2.8) implies the inequality (2.1), we have the result obtained from Theorem
2.1.

Theorem 2.4. Let (X, p) be a complete partial metric space. Suppose that f, g, F and G are self mappings
on X satisfying the following conditions:

(a) f(X) ⊆ g(X) and F (X) ⊆ G(X).

(b) There exist δ > 0 and L ≥ 0 with δ + L < 1
2 such that

p(Fx, fy) ≤ δM(x, y) + Lmin{p(gx, Fx), p(Gy, fy), p(gx, fy), p(Gy, Fx)}, (2.9)

for all x, y ∈ X, where

M(x, y) = max{p(gx,Gy), p(gx, Fx), p(Gy, fy), p(gx, fy), p(Gy, Fx)}.

(c) f(X) or g(X) is closed.

If {f,G} and {g, F} are weakly compatible, then f, g, F and G have a unique common fixed point in X.

Proof. Suppose that x0 is an arbitrary point in X. Since f(X) ⊆ g(X) and F (X) ⊆ G(X), we can construct
a sequence {yn} in X satisfying

yn = Fxn = Gxn+1 and yn+1 = fxn+1 = gxn+2 for all n ∈ N ∪ {0}.

Applying (2.9), this yields

p(Fxn, fxn+1) ≤ δM(xn, xn+1) + Lmin{p(gxn, Fxn), p(Gxn+1, fxn+1),

p(gxn, fxn+1), p(Gxn+1, Fxn)}.
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Since

M(xn, xn+1) = max{p(gxn, Gxn+1), p(gxn, Fxn), p(Gxn+1, fxn+1),

p(gxn, fxn+1), p(Gxn+1, Fxn)}
= max{p(yn−1, yn), p(yn−1, yn), p(yn, yn+1), p(yn−1, yn+1), p(yn, yn)}
= max{p(yn−1, yn), p(yn, yn+1), p(yn−1, yn+1)}
≤ max{p(yn−1, yn), p(yn, yn+1), p(yn−1, yn) + p(yn, yn+1)− p(yn, yn)}
≤ max{p(yn−1, yn), p(yn, yn+1), p(yn−1, yn) + p(yn, yn+1)}
= p(yn−1, yn) + p(yn, yn+1),

and
min{p(gxn, Fxn), p(Gxn+1, fxn+1), p(gxn, fxn+1) + p(Gxn+1, Fxn)}

= min{p(yn−1, yn), p(yn, yn+1), p(yn−1, yn+1), p(yn, yn)}
= min{p(yn−1, yn+1), p(yn, yn)},

we obtain that

p(yn, yn+1) = p(Fxn, fxn+1)

≤ δ(p(yn−1, yn) + p(yn, yn+1)) + Lmin{p(yn−1, yn+1), p(yn, yn)}.

We separate the proof into the following cases.
Case I : If min{p(yn−1, yn+1), p(yn, yn)} = p(yn−1, yn+1), then

p(yn, yn+1) ≤ δ(p(yn−1, yn) + p(yn, yn+1)) + Lp(yn−1, yn+1)

≤ δp(yn−1, yn) + δp(yn, yn+1) + L(p(yn−1, yn) + p(yn, yn+1)− p(yn, yn))

≤ δp(yn−1, yn) + δp(yn, yn+1) + Lp(yn−1, yn) + Lp(yn, yn+1).

This implies that

p(yn, yn+1) ≤
δ + L

1− (δ + L)
p(yn−1, yn).

Let k1 = δ+L
1−(δ+L) . Since δ + L < 1

2 , we have k1 < 1. Therefore

p(yn, yn+1) ≤ k1p(yn−1, yn).

Case II : If min{p(yn−1, yn+1), p(yn, yn)} = p(yn, yn), then

p(yn, yn+1) ≤ δ(p(yn−1, yn) + p(yn, yn+1)) + Lp(yn, yn)

≤ δp(yn−1, yn) + δp(yn, yn+1) + Lp(yn−1, yn).

This implies that

p(yn, yn+1) ≤
δ + L

1− δ
p(yn−1, yn).

Let k2 = δ+L
1−δ . Since δ + L < 1

2 , we have k2 < 1. Therefore

p(yn, yn+1) ≤ k2p(yn−1, yn).

Choose k = max{k1, k2}. Therefore 0 < k < 1. For each n ∈ N, we obtain that

p(yn, yn+1) ≤ knp(y0, y1). (2.10)

We can complete the proof by the same arguments appeared in Theorem 2.1.

Letting F = f and G = g in Theorem 2.4, we immediately have the following result:
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Corollary 2.5. Let (X, p) be a partial metric space. Suppose that f and g are self mappings on X satisfying
the following conditions:

(a) f(X) ⊆ g(X).

(b) There exist δ > 0 and L ≥ 0 with δ + L < 1
2 such that

p(fx, fy) ≤ δM(x, y) + Lmin{p(gx, fx), p(gy, fy), p(gx, fy), p(gy, fx)}, (2.11)

for all x, y ∈ X, where

M(x, y) = max{p(gx, gy), p(gx, fx), p(gy, fy), p(gx, fy), p(gy, fx)}.

(c) f(X) or g(X) is complete.

If {f,G} is weakly compatible, then f and g have a unique common fixed point in X.

We finally prove the result on the continuity in the set of common fixed points for self mappings in
partial metric spaces.

Theorem 2.6. Let (X, p) be a partial metric space. Suppose that f, g and T are self mappings on X
satisfying the following conditions:

(a) There exist δ ∈ (0, 1) and L ≥ 0 such that

p(Tx, fy) ≤ δM(x, y) + Lmin{p(gx, Tx), p(gy, fy), p(gx, fy), p(gy, Tx)}, (2.12)

for all x, y ∈ X, where

M(x, y) = max{p(gx, gy), p(gx, Tx), p(gy, fy),
1

2
[p(gx, fy) + p(gy, Tx)]}.

(b) The set F (f, g, T ) = {z ∈ X : fz = gz = Tz = z, p(z, z) = 0} of all common fixed points of f, g and T
is nonempty.

If g is continuous at z ∈ F (f, g, T ), then f and T are continuous at z.

Proof. Assume that z ∈ F (f, g, T ) and {xn} is a sequence in X converging to z. Using (2.12), we obtain
that

p(Tz, fxn) ≤ δM(z, xn) + Lmin{p(gz, Tz), p(gxn, fxn), p(gz, fxn), p(gxn, T z)},

where

M(z, xn) = max{p(gz, gxn), p(gz, Tz), p(gxn, fxn),
1

2
[p(gz, fxn) + p(gxn, T z)]}.

This implies that

p(Tz, fxn) ≤ δmax{p(gz, gxn), p(z, z), p(gxn, fxn),
1

2
[p(fz, fxn) + p(gxn, gz)]}+

Lmin{p(z, z), p(gxn, fxn), p(fz, fxn), p(gxn, gz)}

≤ δmax{p(gz, gxn), p(gxn, gz) + p(fz, fxn)− p(z, z), 1

2
[p(fz, fxn) + p(gxn, gz)]}

≤ δmax{p(gz, gxn), p(gxn, gz) + p(fz, fxn),
1

2
[p(fz, fxn) + p(gxn, gz)]}

= δ(p(gxn, gz) + p(fz, fxn)).

It follows that
p(fz, fxn) ≤ δ(p(gxn, gz) + p(fz, fxn)).
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Therefore

p(fz, fxn) ≤ δ

1− δ
p(gxn, gz). (2.13)

By continuity of g, we obtain that

lim
n→∞

p(gxn, gz) = p(gz, gz) = p(z, z) = 0.

Using (2.13), this yields
lim
n→∞

p(fz, fxn) = 0.

This implies that f is continuous at z. Similarly, by applying (2.12), we have

p(Txn, fz) ≤ δM(xn, z) + Lmin{p(gxn, Txn), p(gz, fz), p(gxn, fz), p(gz, Txn)},

where

M(xn, z) = max{p(gxn, gz), p(gxn, Txn), p(gz, fz),
1

2
[p(gxn, fz) + p(gz, Txn)]}.

This implies that

p(Txn, fz) ≤ δmax{p(gxn, gz), p(gxn, Txn), p(z, z),
1

2
[p(gxn, gz) + p(Tz, Txn)]}+

Lmin{p(gxn, Txn), p(z, z), p(gxn, gz), p(Tz, Txn)}

≤ δmax{p(gxn, gz), p(gxn, gz) + p(Tz, Txn)− p(z, z), 1

2
[p(gxn, gz) + p(Tz, Txn)]}

≤ δmax{p(gxn, gz), p(gxn, gz) + p(Tz, Txn),
1

2
[p(gxn, gz) + p(Tz, Txn)]}

= δ(p(gxn, gz) + p(Tz, Txn)).

Therefore

p(Txn, T z) ≤
δ

1− δ
p(gxn, gz). (2.14)

By continuity of g, we obtain that
lim
n→∞

p(Txn, T z) = 0.

This implies that T is continuous at z.

If T = f in Theorem 2.6, then we obtain the following results:

Corollary 2.7. Let (X, p) be a partial metric space. Suppose that f and g are self mappings on X satisfying
the following conditions:

(a) There exist δ ∈ (0, 1) and L ≥ 0 such that

p(fx, fy) ≤ δM(x, y) + Lmin{p(gx, fx), p(gy, fy), p(gx, fy), p(gy, fx)}, (2.15)

for all x, y ∈ X, where

M(x, y) = max{p(gx, gy), p(gx, fx), p(gy, fy),
1

2
[p(gx, fy) + p(gy, fx)]}.

(b) The set F (f, g) = {z ∈ X : fz = gz = z, p(z, z) = 0} of all common fixed points of f and g is
nonempty.

If g is continuous at z ∈ F (f, g), then f is continuous at z.
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Corollary 2.8. (Theorem 2.7, [1]) Let (X, d) be a metric space. Suppose that f and g are self mappings
on X satisfying the following conditions:

(a) There exist δ ∈ (0, 1) and L ≥ 0 such that

d(fx, fy) ≤ δM(x, y) + Lmin{d(gx, fx), d(gy, fy), d(gx, fy), d(gy, fx)}, (2.16)

for all x, y ∈ X, where

M(x, y) = max{d(gx, gy), d(gx, fx), d(gy, fy),
1

2
[d(gx, fy) + d(gy, fx)]}.

(b) The set F (f, g) = {z ∈ X : fz = gz = z} of all common fixed points of f and g is nonempty.

If g is continuous at z ∈ F (f, g), then f is continuous at z.
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