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Abstract

Recently, Wang and Xie [T. Wang, F. Xie, J. Nonlinear Sci. Appl., 1 (2009), 206–212] developed monotone
iterative method for Riemann-Liouville fractional differential equations with integral boundary conditions
with the strong hypothesis of locally Hölder continuity and obtained existence and uniqueness of a solution
for the problem. In this paper, we apply the comparison result without locally Hölder continuity due to
Vasundhara Devi to develop monotone iterative method for the problem and obtain existence and uniqueness
of a solution of the problem. c©2014 All rights reserved.
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1. Introduction

The fractional calculus was developed during nineteenth century [13, 22, 28]. The study of theory of
differential equations of fractional order [17, 20] parallel to the well-known theory of ordinary differential
equations [15, 19] has been growing independently since last three decades. Lakshmikantham and Vatsala
[16, 18] obtained local and global existence of solutions of Riemann-Liouville fractional differential equations
and uniqueness of solutions. Monotone method for Riemann-Liouville fractional differential equations with
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initial conditions is developed by McRae [22] involving study of qualitative properties of solutions of initial
value problem. Jankwoski [12] formulated some comparison results and obtained existence and uniqueness
of solutions of differential equations with integral boundary conditions . Recently, Wang and Xie [29]
developed monotone method and obtained existence and uniqueness of solution of fractional differential
equation with integral boundary condition. Vasundhara Devi developed [6] the general monotone method
for periodic boundary value problem of Caputo fractional differential equation when the function is sum
of nondecreasing and nonincreasing function. The Caputo fractional differential equations with periodic
boundary conditions have been studied by present authors [8, 9, 23] and developed monotone method for
the problem. Existence and uniqueness of solution of Riemann-Liouville fractional differential equations
with integral boundary conditions is also obtained by Nanware and Dhaigude in [23, 24, 25, 26, 27]. The
qualitative properties such as existence, periodicity, ergodicity, almost periodic, pseudo-almost periodic etc.
of solutions of fractional differential equations and fractional integro-differential equations was studied by
many researchers. For more details see [1, 2, 3, 4, 5, 10, 11, 14, 21].

In this paper, we consider the Riemann-Liouville fractional differential equations with integral boundary
conditions and develop monotone iterative method for Riemann-Liouville fractional differential equations
with integral boundary conditions without locally Hölder continuity and obtained existence and uniqueness
of solution of the problem.

The paper is organized in the following manner: In section 2, we consider some definitions and lemmas
required in next section. In section 3, monotone iterative method is developed for the problem. As an
application of the method existence and uniqueness results for Riemann-Liouville fractional differential
equations with integral boundary conditions are obtained.

2. Preliminaries

In 2009, Wang and Xie [29] developed monotone iterative method for the following fractional differential
equations with integral boundary conditions with Hölder continuity and obtained existence and uniqueness
of solution of the problem

Dqu(t) = f(t, u), t ∈ J = [0, T ], T ≥ 0,

u(0) = λ

∫ T

0
u(s)ds+ d, d ∈ R

(2.1)

where 0 < q < 1, λ is 1 or −1 and f ∈ C[J ×R,R], Dq is Riemann-Liouville fractional derivative of order q.

Lemma 2.1. ([7]) Let m ∈ Cp([t0, T ],R) and for any t1 ∈ (t0, T ] we have m(t1) = 0 and m(t) < 0 for
t0 ≤ t ≤ t1. Then it follows that Dqm(t1) ≥ 0.

Lemma 2.2. ([16]) Let {uε(t)} be a family of continuous functions on [t0, T ], for each ε > 0 where
Dquε(t) = f(t, uε(t)), uε(t0) = uε(t)(t− t0)1−q}t=t0 and |f(t, uε(t))| ≤M for t0 ≤ t ≤ T . Then the family
{uε(t)} is equicontinuous on [t0, T ].

Theorem 2.3. ([29]) Assume that:

(i) v(t) and w(t) in Cp(J,R) are lower and upper solutions of (2.1)

(ii) f(t, u(t)) satisfy one-sided Lipschitz condition:

f(t, u)− f(t, v) ≤ L(u− v), L ≥ 0

Then v(0) ≤ w(0) implies that v(t) ≤ w(t), 0 ≤ t ≤ T .

In this paper, we consider the problem (2.1) and develop monotone iterative method without assuming
locally Hölder continuity.
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Definition 2.4. A pair of functions v(t) and w(t) in Cp(J,R) are said to be lower and upper solutions of
the problem (2.1) if

Dqv(t) ≤ f(t, v(t)), v(0) ≤
∫ T

0
v(s)ds

Dqw(t) ≥ f(t, w(t)), w(0) ≥
∫ T

0
w(s)ds.

3. Monotone Iterative Method

In this section we develop monotone iterative method for the problem (2.1) and obtain the existence and
uniqueness of solution of the problem (2.1).

CASE-I (λ = 1)

Theorem 3.1. Assume that:

(i) f(t, u(t)) is nondecreasing in u for each t.

(ii) v0(t) and w0(t) in Cp(J,R) are lower and upper solutions of (2.1) such that v0(t) ≤ w0(t) on J = [0, T ]

(iii) f(t, u) satisfies one-sided Lipschitz condition,

f(t, u)− f(t, v) ≤ −L(u− v), L ≥ 0

Then there exists monotone sequences {vn(t)} and {wn(t)} in Cp(J,R) such that

{vn(t)} → v(t) and {wn(t)} → w(t) as n→∞

where v(t) and w(t) are minimal and maximal solutions of (2.1) respectively that satisfy

Dqv(t) = f(t, v(t))

Dqw(t) = f(t, w(t))

on J .

Proof. For any η and µ in Cp(J,R) such that for v0(0) ≤ η and w0(0) ≤ µ on J , consider the following linear
fractional differential equation

Dqu(t) +Mu(t) = f(t, η) +Mη, u(0) =

∫ T

0
u(s)ds+ d. (3.1)

Firstly, prove the uniqueness of solution of linear fractional differential equation (3.1). For this, let u1(t)
and u2(t) be two solutions of (3.1). Then we have

Dqu1(t) +Mu1(t) = f(t, η) +Mη, u1(0) =

∫ T

0
u1(s)ds+ d

Dqu2(t) +Mu2(t) = f(t, η) +Mη, u2(0) =

∫ T

0
u2(s)ds+ d.

where η ∈ Cp[J,R]. Hence
Dq(u1(t)− u2(t)) = −M(u1(t)− u2(t))
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and u1(0)− u2(0) = 0. This implies u1(t) = u2(t).
Define the sequences as follows:

Dqvn+1(t) = f(t, vn)−M(vn+1 − vn), vn+1(0) =

∫ T

0
vn(s)ds+ d

Dqwn+1(t) = f(t, wn)−M(wn+1 − wn), wn+1(0) =

∫ T

0
wn(s)ds+ d

Now

Dqvn+1(t) +Mvn+1(t) = f(t, vn) +Mvn(t), vn+1(0) =

∫ T

0
vn(s)ds+ d

Dqwn+1(t) +Mwn+1(t) = f(t, wn) +Mwn(t), wn+1(0) =

∫ T

0
wn(s)ds+ d

(3.2)

It follows that there exist unique solutions vn+1(t) and wn+1(t) for above equation. Putting n = 0 in (3.2),
the existence of solutions of v1(t) and w1(t) is clear. Next show that v0(t) ≤ v1(t) ≤ w1(t) ≤ w0(t). Setting
p(t) = v0(t)− v1(t) we have

Dqp(t) = Dqv0(t)−Dqv1(t)

≤ −Mp(t)

and p(0) ≤ 0.

Thus we have Dqp(t) ≤ −Mp(t)

and p(t) ≤ 0.

Hence v0(t) ≤ v1(t). Similarly, we prove w0(t) ≥ w1(t) and v1(t) ≤ w1(t). Thus v0(t) ≤ v1(t) ≤ w1(t) ≤ w0(t).
Assume that for some k > 1, vk−1(t) ≤ vk(t) ≤ wk(t) ≤ wk−1(t). We claim that vk(t) ≤ vk+1(t) ≤
wk+1(t) ≤ wk(t) on J. To prove this, set p(t) = vk(t) − vk+1(t). Since f(t, u) + Mu is nondecreasing in u,
we have

Dqp(t) = Dqvk(t)−Dqvk+1(t)

≤ −M(vk − vk+1)

≤ −Mp(t)

and p(0) ≤ 0.

Thus we have Dqp(t) ≤ −Mp(t)

and p(t) ≤ 0.

Hence p(t) ≤ 0 which implies vk ≤ vk+1. Similarly we prove that vk+1(t) ≤ wk+1(t).
Using corresponding fractional Volterra integral equations

vn+1(t) = v0 +
1

Γ(q)

∫ T

t0

(t− s)q−1{f(s, vn+1(s))−M(vn+1 − vn)}ds

wn+1(t) = w0 +
1

Γ(q)

∫ T

t0

(t− s)q−1{f(s, wn+1(s))−M(wn+1 − wn)}ds

it follows that v(t) and w(t) are solutions of (3.1).
Next claim that v(t) and w(t) are the minimal and maximal solution of (2.1). Let u(t) be any solution
of (2.1) different from v(t) and w(t), so that there exists k such that vk(t) ≤ uk(t) ≤ wk(t) on J and set
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p(t) = vk+1(t)− uk(t) so that

Dqp(t) = Dqvk+1(t)−Dquk(t)

≤ −M(vk+1(t)− uk(t))
≤ −Mp(t)

and p(0) ≤ 0.

Thus we have Dqp(t) ≤ −Mp(t)

and p(t) ≤ 0.

Thus vk+1(t) ≤ uk(t) on J . Since v0(t) ≤ u0(t) on J , by induction it follows that vk(t) ≤ uk(t) for all k.
Similarly we can prove uk(t) ≤ wk(t) for all k on J . Thus vk(t) ≤ uk(t) ≤ wk(t) on J . Taking limit as
n→∞, it follows that v(t) ≤ u(t) ≤ w(t) on J .

Next we obtain the uniqueness of solutions of (2.1) in the following

Theorem 3.2. Assume that:

(i) f(t, u(t)) in C[J × R,R], is nondecreasing in u for each t.

(ii) v0(t) and w0(t) in C(J,R) are lower and upper solutions of (2.1) such that v0(t) ≤ w0(t) on J

(iii) functions f(t, u) satisfy Lipschitz condition,

|f(t, u)− f(t, v)| ≤ L|u− v|, L ≥ 0

(iv) limn→∞ ||wn(t)− vn(t)|| = 0, where the norm is defined by ||f || =
∫ T
0 |f(s)|ds

then the solution of (2.1) is unique.

Proof. Since v(t) ≤ w(t), it is sufficient to prove v(t) ≥ w(t). Consider p(t) = w(t)− v(t) we find that

Dqp(t) = Dqw(t)−Dqv(t)

≤M(w(t)− v(t))

≤ −Mp(t)

and p(0) ≤ 0.

Thus we have Dqp(t) ≤ −Mp(t)

and p(t) ≤ 0.

Thus, p(t) ≤ 0 implies w(t) ≤ v(t). Hence v(t) = w(t) is the unique solution of (2.1) on J .

CASE-II (λ = −1)

Definition 3.3. A pair of functions v(t) and w(t) in Cp(J,R) are said to be weakly coupled lower and upper
solutions of the problem (2.1) if

Dqv(t) ≤ f(t, v(t)), v(0) ≤ −
∫ T

0
w(s)ds

Dqw(t) ≥ f(t, w(t)), w(0) ≥ −
∫ T

0
v(s)ds.

Theorem 3.4. Assume that:

(i) f(t, u(t)) is nondecreasing in u for each t.
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(ii) v0(t) and w0(t) in Cp(J,R) are weakly coupled lower and upper solutions of (2.1) such that v0(t) ≤ w0(t)
on J = [0, T ]

(iii) f(t, u) satisfies one-sided Lipschitz condition,

f(t, u)− f(t, v) ≤ −L(u− v), L ≥ 0

Then there exist monotone sequences {vn(t)} and {wn(t)} in Cp(J,R) such that

{vn(t)} → v(t) and {wn(t)} → w(t) as n→∞

where v(t) and w(t) are minimal and maximal solutions of (2.1) respectively.

Proof. For any η(t) and µ(t) in Cp(J,R) such that for v0(0) ≤ η(t) and w0(0) ≤ µ(t) on J , consider the
following linear fractional differential equation

Dqu(t) +Mu(t) = f(t, η) +Mη, u(0) =

∫ T

0
u(s)ds+ d. (3.3)

Uniqueness of solution of linear fractional differential equation (3.3) can be proved as in Theorem 3.1. Define
the sequences as follows:

Dqvn+1(t) = f(t, vn)−M(vn+1 − vn), vn+1(0) =

∫ T

0
wn(s)ds+ d

Dqwn+1(t) = f(t, wn)−M(wn+1 − wn), wn+1(0) =

∫ T

0
vn(s)ds+ d

Now

Dqvn+1(t) +Mvn+1(t) = f(t, vn) +Mvn(t), vn+1(0) =

∫ T

0
wn(s)ds+ d

Dqwn+1(t) +Mwn+1(t) = f(t, wn) +Mwn(t), wn+1(0) =

∫ T

0
vn(s)ds+ d

(3.4)

It follows that there exist unique solutions vn+1(t) and wn+1(t) for above equation. Putting n = 0 in (3.4),
we get the existence of solutions of v1(t) and w1(t). Next we show that v0(t) ≤ v1(t) ≤ w1(t) ≤ w0(t).
Setting p(t) = v0(t)− v1(t) we have

Dqp(t) = Dqv0(t)−Dqv1(t)

≤ −Mp(t)

and p(0) ≤ 0.

Thus we have Dqp(t) ≤ −Mp(t)

and p(t) ≤ 0.

Hence v0(t) ≤ v1(t). Similarly, we prove w0(t) ≥ w1(t) and v1(t) ≤ w1(t). Thus v0(t) ≤ v1(t) ≤ w1(t) ≤ w0(t).
Assume that for some k > 1, vk−1(t) ≤ vk(t) ≤ wk(t) ≤ wk−1(t). We claim that vk(t) ≤ vk+1(t) ≤
wk+1(t) ≤ wk(t) on J. To prove this, set p(t) = vk(t) − vk+1(t). Since f(t, u) + Mu is nondecreasing in u,
we have

Dqp(t) = Dqvk(t)−Dqvk+1(t)

≤ −M(vk − vk+1)

≤ −Mp(t)

and p(0) ≤ 0.

Thus we have Dqp(t) ≤ −Mp(t)

and p(t) ≤ 0.
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Hence p(t) ≤ 0 which implies vk ≤ vk+1. Similarly we prove that vk+1(t) ≤ wk+1(t).
Using corresponding fractional Volterra integral equations

vn+1(t) = v0 +
1

Γ(q)

∫ T

t0

(t− s)q−1{f(s, vn+1(s))−M(vn+1 − vn)}ds

wn+1(t) = w0 +
1

Γ(q)

∫ T

t0

(t− s)q−1{f(s, wn+1(s))−M(wn+1 − wn)}ds

it follows that v(t) and w(t) are solutions of (3.3).
Next we claim that v(t) and w(t) are the minimal and maximal solution of (2.1). Let u(t) be any solution
of (2.1) different from v(t) and w(t), so that there exists k such that vk(t) ≤ uk(t) ≤ wk(t) on J and set
p(t) = vk+1 − uk so that

Dqp(t) = Dqvk+1 −Dquk

≤ −M(vk+1 − uk)
≤ −Mp(t)

and p(t) ≤ 0.

Thus we have Dqp(t) ≤ −Mp(t)

and p(t) ≤ 0.

Thus vk+1(t) ≤ uk(t) on J . Since v0(t) ≤ u0(t) on J , by induction it follows that vk(t) ≤ uk(t) for all k.
Similarly we can prove uk(t) ≤ wk(t) for all k on J . Thus vk(t) ≤ uk(t) ≤ wk(t) on J . Taking limit as
n→∞, it follows that v(t) ≤ u(t) ≤ w(t) on J .

Next we obtain the uniqueness of solutions of (2.1) in the following

Theorem 3.5. Assume that:

(i) f(t, u(t)) in C[J × R,R], is nondecreasing in u for each t.

(ii) v0(t) and w0(t) in Cp(J,R) are weakly coupled lower and upper solutions of (2.1) such that v0(t) ≤ w0(t)
on J

(iii) functions f(t, u) satisfy Lipschitz condition,

|f(t, u)− f(t, v)| ≤ L|u− v|, L ≥ 0

(iv) limn→∞ ||wn(t)− vn(t)|| = 0, where the norm is defined by ||f || =
∫ T
0 |f(s)|ds

then the solution of (2.1) is unique.

Proof. This can be proved as in Theorem 3.2.
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