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Abstract

In this paper we introduce the notion of E-b-metric space and we present a singlevalued and multivalued
nonlinear fixed point theorem in an E-b-metric space using the Picard and weak Picard operators technique.
The proofs are based on the concept of strict positivity in a Riesz space introduced by Páles and Petre.
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1. Introduction, Notations and Terminology

In this work we extend the results obtained by Páles and Petre in [12]. Thus, the aim of this paper is
to develop some new fixed point theorems for operators defined on a vector b-metric space into itself, which
satisfies a nonlinear ϕ-contraction condition.

The workspace is based on the concept of strict order unit elements, which generalizes the concept of
order unit elements under mild assumptions. Hence, we are able to use a kind of “ε–δ” formalism for the
vector metric space setting to prove our main results in Section 3.

The proofs incorporate several recent improvements and use the Picard and weak Picard operators
technique. For instance, the invalidity of an inequality a ≤ b in a Riesz space E does not mean that
b < a must be valid. Therefore, for the vector-comparison operator ϕ, the property ϕ(t) < t for t ∈ E+

cannot be obtained as the consequence of the iteration property ϕn(t) −→
n→∞

0 contrary to the real case.
In general, we follow the notation and terminology of Aliprantis and Border [1]. Briefly, we recall the

basic concepts and notations introduced therein and Çevik and Altun [3] (see also [2, 4, 6]–[11] and [13]–[21]).
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Given a partially ordered set (E,≤), the notation x < y means x ≤ y and x 6= y. An order interval [x, y] is
the set {z ∈ E : x ≤ z ≤ y}.

A partially ordered set (E,≤) is a lattice if each pair of elements has a supremum and an infimum. A
real linear space E with an order relation "≤" on E which is compatible with the algebraic structure of E is
called an ordered linear space. An ordered linear space E for which (E,≤) is a lattice is called a Riesz space
or linear lattice. The cone of nonnegative elements in a Riesz space E is denoted by E+. For an element
x ∈ E, the absolute value |x| of x is defined as |x| := x ∨ (−x). Many familiar spaces are Riesz spaces, see
[1].

The notation xn ↓ x means that (xn) is a decreasing sequence and x is the greatest lower bound (i.e.,
infimum) for the set {xn : n ∈ N}. A Riesz space E is said to be Archimedean if 1

nx ↓ 0 holds for every
x ∈ E+. A Riesz space E is called order complete or Dedekind complete if every nonempty subset of
E which is bounded from above (below) has a supremum (infimum). Any order complete Riesz space is
Archimedean. The converse is false in general (e.g. C[0, 1]). We recall now some useful definitions.

Definition 1.1 ([3]). Let E be a Riesz space. A sequence (bn) in E is called order-convergent (or o-
convergent) to b (we write bn

o−→ b) if, there exists a sequence (an) in E+ satisfying an ↓ 0 and |bn− b| ≤ an
for all n ∈ N.

Definition 1.2 ([3]). Let X be a nonempty set and E be a Riesz space. The function d : X ×X → E+ is
said to be a vector metric or E-metric if, for any x, y, z ∈ X the following conditions are satisfied:

(a) d (x, y) = 0 if and only if, x = y;

(b) d (x, y) = d (y, x);

(c) d (x, z) ≤ d (x, y) + d (y, z).

In this case, the triple (X, d,E) is said to be a vector metric space or an E-metric space.

A Riesz space E is always an E-metric space with the E-metric d : E × E → E+, defined by d (x, y) =
|x− y|. This E-metric is called the absolute valued metric on E. For more examples of E-metric spaces, see
[3].

Definition 1.3 ([3]). Let (X, d,E) be an E-metric space. A sequence (xn) in X, E-converges to some
x ∈ E, written xn

d,E−→ x, if there is a sequence (an) in E such that an ↓ 0 and d (xn, x) ≤ an for all n ∈ N.
A subset Y ⊂ X is said to be E-closed if, (xn) ⊂ Y and xn

d,E−→ x implies x ∈ Y .
A sequence (xn) in X is called E-Cauchy, if there is a sequence (an) in E such that an ↓ 0 and

d (xn, xn+p) ≤ an, for all n ∈ N and p ∈ N∗. An E-metric space X is called E-complete if each E-Cauchy
sequence in X E-converges to a limit in X.

For a nonempty set X, we denote P (X) = {Y | ∅ 6= Y ⊆ X} and in the context of an E-metric space
(X, d,E) we use the notation Pcl(X) = {Y ∈ P (X) | Y is E-closed}.

Given a multivalued operator F : X → P (X), the fixed point set and the graph of F are defined by

Fix(F ) := {x ∈ X | x ∈ F (x)},
Graph(F ) := {(x, y) | x ∈ X and y ∈ F (x)}.

A sequence (xn)n∈N ⊂ X is said to be a successive approximation of F with initial pair (x, y) if it satisfies{
x0 = x, x1 = y,
xn+1 ∈ F (xn) for all n ∈ N.
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2. E-b-metric spaces and strict order unit elements

First, we describe the notion of an E-b-metric space, which we will use in the proofs of Section 3. Notice
that d is defined as in Definition 1.2.

Definition 2.1. Let X be a nonempty set and s ≥ 1 be a real number. A functional d : X ×X → E+ is
called an E-b-metric if, for any x, y, z ∈ X the following conditions are satisfied:

(a) d(x, y) = 0 if and only if, x = y;

(b) d (x, y) = d (y, x);

(c) d(x, z) ≤ s[d(x, y) + d(y, z)].

The triple (X, d,E) is called an E-b-metric space.

For several examples of b-metric spaces, see [5]. Next, we recall from [1] that an element e ∈ E+ in a
Riesz space E is called an order unit element if, for any x ∈ E, there exists λ ∈ R+ such that |x| ≤ λe.
However, this notion of strict positiveness is insufficient for our purposes. Therefore, we recall the following
concept and some auxiliary results, which we will use in Section 3.

Definition 2.2 ([12]). We say that e ∈ E+ is a strict order unit element, written e � 0 if, for any subset
H ⊂ E+ with infH = 0, there exist h1, . . . , hn ∈ H such that min (h1, . . . , hn) ≤ e.

For example, if E = R2, E+ = R2
+, then e = (e1, e2)� 0 if and only if e1 > 0 and e2 > 0. Thus, in this

case, we can see that order unit elements are strict order unit elements as well.

Proposition 2.3 ([12]). If E is Archimedean and e is a strict order unit element, then e is an order unit
element.

The reverse implication in the above proposition is not true, in general, as is shown by the next propo-
sition.

Proposition 2.4 ([12]). In the space E = `∞ with the positive cone

E+ = {(e1, e2, . . .) : ei ≥ 0} ⊂ `∞,

e ∈ E+ is an order unit element if and only if inf {e1, e2, . . .} > 0. However, there is no strict order unit
element in E.

Let us denote by E++ the set of strict order unit elements in E.

Proposition 2.5 ([12]). E++ is a convex cone.

Lemma 2.6 ([12]). Let E be order complete and assume that E++ is nonempty. Then hn
o−→ 0 if and only

if, for all e ∈ E++, there exists n0 ∈ N such that

|hn| ≤ e, for all n ≥ n0.

3. Main Results

First, in the context of E-b-metric spaces, we prove an auxiliary result which characterize the convergence
of sequences in terms of strict order unit elements.

Lemma 3.1. Let (X, d,E) be an E-b-metric space, where E is order complete and E++ is nonempty. Then
(xn)n∈N is an E-Cauchy sequence if and only if, for any e ∈ E++, there exists n0 ∈ N such that

d (xn, xm) ≤ e, for all m > n ≥ n0.
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Proof. Assume that (xn)n∈N is an E-Cauchy sequence. This means that there exists a decreasing null-
sequence hn ↓ 0 such that d (xn, xm) ≤ hn for m ≥ n. Let e ∈ E++ be arbitrary. Then, by Lemma 2.6, there
exists n0 ∈ N such that hn0 ≤ e. Hence, for m > n ≥ n0, we get d (xn, xm) ≤ hn ≤ hn0 ≤ e, which completes
the proof of the necessity.

For the sufficiency, let e ∈ E++. Then, there exists n0 ∈ N such that d (xn0 , xm) ≤ e for all m > n0.
This implies that the sequence d (xn0 , xm)m∈N is E-bounded, i.e., there is an element h ∈ E+ such that
d (xn0 , xm) ≤ h for all m ∈ N. Hence, d (xn, xm) ≤ s[d (xn, xn0) + d (xn0 , xm)] ≤ 2sh for all m,n ∈ N.
In other words, the set {d (xn, xm) : m,n ∈ N} is E-bounded. Thus, by taking advantage of the order
completeness of E, we may define the sequence (hk) by

hk := sup{d (xn, xm) : m > n ≥ k}.

Obviously, (hk) is a decreasing sequence. By the assumption, there exist indices n1 < n2 < · · · < nk < · · ·
such that

d (xn, xm) ≤ 1

k
e, for all m > n ≥ nk.

By this inequality, we get that hnk
≤ 1

ke. Hence (hnk
) is a null-sequence which implies that (hk) is also a

null-sequence. On the other hand, by the definition of (hk), we have that d (xk, xm) ≤ hk for all k ∈ N.
Thus, the proof of the sufficiency is complete.

Definition 3.2. An increasing map ϕ : E+ → E+ is called an o-comparison operator if, for all t ∈ E+,
ϕn (t)

o−→ 0.

Now, we present a nonlinear fixed point principle for singlevalued and multivalued operators in E-b-metric
spaces using the Picard and weak Picard operators technique, which extends the Banach type fixed point
theorem given by several authors: J. Matkowski [11], C. Çevik and I. Altun [3], and Zs. Páles and I.-R. Petre
[12]. Moreover, in the following results we do not need to impose the condition ϕ(t) < t on the o-comparison
operator ϕ, which is usually necessary. We start with the singlevalued case.

Definition 3.3. Let (X, d,E) be an E-b-metric space and ϕ : E+ → E+ be an o-comparison operator. We
say that the operator f : X → X is a nonlinear ϕ-contraction, if and only if

d [f (x) , f (y)] ≤ ϕ [d (x, y)] , for all x, y ∈ X.

Definition 3.4. Let (X, d,E) be an E-b-metric space and let f : X → X be a vector Picard operator
(i.e. x∗ is a unique fixed point of f and for any x ∈ X, the sequence xn = fn(x) E-converges to x∗ as
n → ∞). Then, the operator f is called a vector ψ-Picard operator iff, ψ : E+ → E+ has the properties:
for any decreasing sequence (tn) ⊂ E+ with tn ↓ t, we have ψ (tn) ↓ ψ (t), for any t ∈ E+ with t > 0 and
d (x, x∗) ≤ ψ [d (x, f(x))], for any x ∈ X.

Theorem 3.5. Let (X, d,E) be a complete E-b-metric space with E order complete and s ≥ 1. We assume
that E++ is nonempty and let f : X → X be a nonlinear ϕ-contraction. If for any decreasing sequence
(tn) ⊂ E+ with tn ↓ t, we have ϕ (tn) ↓ ϕ (t), and the operator ψ : E+ → E+ defined by ψ (t) = 1

s t− ϕ (t) is
invertible, then f is a vector ψ−1-Picard operator.

Proof. Let x0 ∈ X. Inductively, we have

d (xn, xn+p) ≤ ϕn [d (x0, xp)] , for any n ∈ N and p ∈ N∗.

Let e ∈ E++. As E++ is a cone, so 1
2e ∈ E++. The operator ϕ is an o-comparison operator, so we have

ϕn (e)
o−→ 0 as n→∞. In view of Lemma 2.6, we have that there exists ` ∈ N such that

ϕn (e) ≤ ηn ≤
1

2
e, for any n ≥ `.
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Thus,

e− ϕ` (e) ≥ 1

2
e� 0.

Let e∗ := max {d (x1, x0) , d (x2, x0) , . . . , d (x`, x0)}. Since ϕn (e∗)
o−→ 0 as n → ∞, again by Lemma 2.6,

there exists k ∈ N such that
ϕn (e∗) ≤ e− ϕ` (e) , for any n ≥ k.

Using induction on j ∈ N, we prove that d (xm, xn) ≤ ẽ ∈ E++ for n ≥ k and n+ j` < m ≤ n+ (j +1)`. To
show this inequality for j = 0, let k ≤ n < m ≤ n+ `. Then 0 < m− n ≤ ` and consequently,

d (xm, xn) ≤ ϕn [d (xm−n, x0)] ≤ ϕn (e∗) ≤ e− ϕ` (e) ≤ e.

Assume now that the statements holds for j − 1 and let n+ j` < m ≤ n+ (j + 1)`. Then

d (xm, xn) ≤ s[d (xm, xn+`) + d (xn+`, xn)]

≤ sϕ` [d (xm−`, xn)] + ϕn [d (x`, x0)]

≤ s[ϕ` (e) + ϕn (e∗)]

≤ s[ϕ` (e) + e− ϕ` (e)]

= se := ẽ ∈ E++.

Thus, we obtain that the sequence (xn) is E-Cauchy in X. By E-completeness of X, it follows that there
exists x∗ ∈ X such that xn

d,E−→ x∗.
Let ε ∈ E++. Applying Lemma 2.6 to the sequence hn := d(x∗, xn), there exists k0 ∈ N such that

d (x∗, xn) ≤ ε, for any n ≥ k0.

We have

d [x∗, f (x∗)] ≤ s {d (x∗, xk0+1) + d [xk0+1, f (x
∗)]}

≤ s {ε+ ϕ [d (xk0 , x
∗)]}

≤ s [ε+ ϕ (ε)] .

Thus, x∗ is a fixed point of f in X.
For the uniqueness, we suppose that y∗ ∈ X is another fixed point of f with y∗ 6= x∗. Then

d (x∗, y∗) ≤ s [d (x∗, xn) + d (xn, y
∗)]

≤ s {d (x∗, xn) + d [fn (x0) , f
n (y∗)]}

≤ s {d (x∗, xn) + ϕn [d (x0, y
∗)]} .

Letting n→∞, we get that y∗ = x∗.
For any n ∈ N, we have the following error estimate for the fixed point x∗.

d (xn, x
∗) = d [fn (x0) , f

n (x∗)]

≤ ϕn [d (x0, x
∗)] .

We have

d (x0, x
∗) ≤ s [d (x0, x1) + d (x1, x

∗)]

≤ sd (x0, x1) + sϕ [d (x0, x
∗)]

and thus,
d (x0, x

∗) ≤ ψ−1 [d (x0, x1)] .

Hence, f is a vector ψ−1-Picard operator.
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We now discuss the multivalued case.

Definition 3.6. Let (X, d,E) be an E-b-metric space and let ϕ : E+ → E+ be an o-comparison operator.
We say that the operator F : X → Pcl (X) is a multivalued nonlinear ϕ-contraction if, for any x, y ∈ X and
any u ∈ F (x), there exists v ∈ F (y) such that

d (u, v) ≤ ϕ [d (x, y)] .

Definition 3.7. Let (X, d,E) be an E-b-metric space and let F : X → P (X) be a multivalued vector weak
Picard operator (i.e. the fixed point set of F is nonempty and for any (x, y) ∈ Graph(F ), the successive
approximation sequence (xn)n∈N∗ ⊂ X E-converges to a fixed point of F ). Then, the operator F is called a
vector ψ-weak Picard operator iff, ψ : E+ → E+ has the properties: for any decreasing sequence (tn) ⊂ E+

with tn ↓ t, we have ψ (tn) ↓ ψ (t), for any t ∈ E+ with t > 0 and there exists a selection f∞ for F∞ (where
F∞ : Graph(F ) → P (Fix(F )) is given by the formula F∞(x, y) = z ∈ Fix(F ): there exists a sequence
of successive approximations of F starting from (x, y) which E-converges to z) such that d [x, f∞ (x, y)] ≤
ψ [d (x, y)], for any (x, y) ∈ Graph (F ).

Theorem 3.8. Let (X, d,E) be a complete E-b-metric space with E order complete and s ≥ 1. We assume
that E++ is nonempty and let F : X → Pcl(X) be a multivalued nonlinear ϕ-contraction. If for any decreasing
sequence (tn) ⊂ E+ with tn ↓ t, we have ϕ (tn) ↓ ϕ (t) and ϕ (st) ≤ sϕ (t), for any t ∈ E+ with t > 0, and
the operator ψ : E+ → E+ defined by ψ (t) = 1

s t − s
2ϕ (t) is invertible, then F is a vector ψ−1-weak Picard

operator.

Proof. Let x0 ∈ X and x1 ∈ F (x0). Then, by the ϕ-contraction hypothesis, there exists x2 ∈ F (x1) such
that

d (x1, x2) ≤ ϕ [d (x0, x1)] .

Inductively, we can define the sequence (xn) ∈ X such that xn+1 ∈ F (xn) and

d (xn, xn+1) ≤ ϕ [d (xn−1, xn)] , for any n ∈ N∗.

Iterating this inequality, we obtain that

d (xn, xn+p) ≤ ϕn [d (x0, xp)] , for any n ∈ N and p ∈ N∗.

To show that (xn) is an E-Cauchy sequence in X, it is suffices by Lemma 3.1, to prove that, for any
e ∈ E++, there exists k ∈ N such that d (xm, xn) ≤ e for all m > n ≥ k.

Let e ∈ E++. As E++ is a cone, so 1
2e ∈ E++. The operator ϕ is an o-comparison operator, so we have

ϕn (e)
o−→ 0 as n→∞. In view of Lemma 2.6, there exists ` ∈ N such that

ϕn (e) ≤ 1

2
e, for any n ≥ `.

Thus,

e− ϕ` (e) ≥ 1

2
e� 0.

Let e∗ := max {d (x1, x0) , d (x2, x0) , . . . , d (x`, x0)}. Since ϕn (e∗)
o−→ 0 as n → ∞, again by Lemma 2.6,

there exists k ∈ N such that
ϕn (e∗) ≤ e− ϕ` (e) , for any n ≥ k.

Using induction on j ∈ N, we prove that d (xm, xn) ≤ e for n ≥ k and n + j` < m ≤ n + (j + 1)`. To
show this inequality for j = 0, let k ≤ n < m ≤ n+ `. Then 0 < m− n ≤ ` and consequently,

d (xm, xn) ≤ ϕn [d (xm−n, x0)] ≤ ϕn (e∗) ≤ e− ϕ` (e) ≤ e.
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Assume now that the statements hold for j − 1 and let n+ j` < m ≤ n+ (j + 1)`. Then

d (xm, xn) ≤ s[d (xm, xn+`) + d (xn+`, xn)]

≤ sϕ` [d (xm−`, xn)] + ϕn [d (x`, x0)]

≤ s[ϕ` (e) + ϕn (e∗)]

≤ s[ϕ` (e) + e− ϕ` (e)]

= se := ẽ ∈ E++.

Thus, we obtain that the sequence (xn) is E-Cauchy in X. By E-completeness of X, it follows that there
exists x∗ ∈ X such that xn

d,E−→ x∗.
By the ϕ-contraction hypothesis of F and the construction of sequence (xn) for any n ∈ N, there exists

un ∈ F (x∗) such that
d (xn+1, un) ≤ ϕ [d (xn, x

∗)] .

Therefore,

d(x∗, un) ≤ s [d(x∗, xn+1) + d(xn+1, un)]

≤ s {d(x∗, xn+1) + ϕ [d(xn, x
∗)]} := an.

Since xn
d,E−→ x∗ and using the theorem assumptions, it follows that the sequence (an) o-converges to zero,

which implies that un
d,E−→ x∗. By the closedness of F (x∗), we have that x∗ ∈ F (x∗), i.e. x∗ is a fixed point

of F .
For any n,m ∈ N, we have the following error estimate for a fixed point x∗.

d(x∗, xn) ≤ s [d(x∗, xm) + d(xm, xn)]

≤ s {d(x∗, xm) + ϕ [d(xm−1, xn−1)]}
≤ s {d(x∗, xm) + sϕ [d(xm−1, x

∗) + d(x∗, xn−1)]} .

Letting m→∞ and using again assumptions on the o-comparison operator ϕ, inductively, we get

d(x∗, xn) ≤ s2nϕn [d(x∗, x0)] , for any n ∈ N.

So, we have

d (x0, x
∗) ≤ s [d (x0, x1) + d (x1, x

∗)]

≤ s
{
d (x0, x1) + s2ϕ [d (x0, x

∗)]
}

and thus,
d (x0, x

∗) ≤ ψ−1 [d (x0, x1)] .

Hence, F is a vector ψ−1-weak Picard operator.
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