Asymptotic behavior of solutions of a rational system of difference equations

Miron B. Bekkera, Martin J. Bohner ${ }^{\text {b,*, }}$, Hristo D. Voulov ${ }^{\text {c }}$
${ }^{a}$ University of Pittsburgh at Johnstown, Department of Mathematics, Johnstown, PA, USA.
${ }^{b}$ Missouri S\&T, Department of Mathematics and Statistics, Rolla, MO, USA.
${ }^{c}$ University of Missouri-Kansas City, Department of Mathematics and Statistics, Kansas City, MO, USA.

Communicated by R. Saadati

Special Issue In Honor of Professor Ravi P. Agarwal

Abstract

We consider a two-dimensional autonomous system of rational difference equations with three positive parameters. It was conjectured by Ladas that every positive solution of this system converges to a finite limit. Here we confirm this conjecture. (c)2014 All rights reserved.

Keywords: Systems of rational difference equations, global attractors. 2010 MSC: 39A10, 39A20.

1. Introduction and Preliminaries

Rational systems of first order difference equations in the plane have been studied for a long time. Recently, in [3, 4, 5] (see the references therein), efforts have been made for a more systematic approach. In particular, the rational system

$$
\begin{equation*}
x_{n+1}=\frac{\alpha_{1}+y_{n}}{x_{n}}, \quad y_{n+1}=\frac{\alpha_{2}+\beta_{2} x_{n}+\gamma_{2} y_{n}}{A_{2}+B_{2} x_{n}+C_{2} y_{n}} \tag{1.1}
\end{equation*}
$$

with nonnegative coefficients and initial conditions was studied in [5]. Along with the results published in [5], there were also posed several conjectures about some nontrivial cases. Our goal here is to confirm one of them, namely for the case when $\alpha_{1}=\alpha_{2}=\beta_{2}=0$.

[^0]Conjecture 1.0. (see [5, Conjecture 2.4, page 1223]) Let $a, b, c>0$. Then every positive solution of the system

$$
\begin{equation*}
x_{n+1}=\frac{y_{n}}{x_{n}}, \quad y_{n+1}=\frac{c y_{n}}{a+2 b x_{n}+y_{n}}, \quad n \in \mathbb{N}_{0} \tag{1.2}
\end{equation*}
$$

converges to a finite limit.
By utilizing the relation

$$
\begin{equation*}
y_{n}=x_{n} x_{n+1}, \quad n \in \mathbb{N}_{0} \tag{1.3}
\end{equation*}
$$

it is easy to see that the x-component of any solution $\left\{\left(x_{n}, y_{n}\right)\right\}_{n \in \mathbb{N}_{0}}$ of 1.2 must satisfy the difference equation

$$
\begin{equation*}
x_{n+2}=\frac{c x_{n}}{a+2 b x_{n}+x_{n} x_{n+1}}=f\left(x_{n+1}, x_{n}\right), \quad n \in \mathbb{N}_{0} \tag{1.4}
\end{equation*}
$$

where the function f is decreasing in the first variable and increasing in the second variable. We will need the following theorem, proved in [1] (see also [2, page 11]).

Theorem 1.1. (see [1]) Let $I \subset \mathbb{R}$ and suppose $F: I \times I \rightarrow I$ is decreasing in the first variable and increasing in the second variable. Then, for every solution $\left\{x_{n}\right\}_{n \in \mathbb{N}_{0}}$ of the difference equation

$$
x_{n+2}=F\left(x_{n+1}, x_{n}\right), \quad n \in \mathbb{N}_{0}
$$

each of the subsequences $\left\{x_{2 n}\right\}_{n \in \mathbb{N}_{0}}$ and $\left\{x_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$ is eventually monotone.
In the next section, we will prove that every positive solution $\left\{x_{n}\right\}_{n \in \mathbb{N}_{0}}$ of 1.4 converges to a finite limit x^{*}. Then, every positive solution of 1.2 must converge to $\left(x^{*},\left(x^{*}\right)^{2}\right)$, since $\left\{x_{n}\right\}_{n \in \mathbb{N}_{0}}$ must satisfy (1.4) and (1.3).

2. Main Results

In light of Theorem 1.1, we start with the following auxiliary result about eventually monotone positive solutions of (1.4).

Lemma 2.1. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}_{0}}$ be an arbitrary positive solution of (1.4).
(i) If $\left\{x_{2 n}\right\}_{n \in \mathbb{N}_{0}}$ is eventually increasing, then eventually

$$
\begin{equation*}
a-c \leq a-c+2 b x_{2 n} \leq a-c+2 b x_{2 n}+x_{2 n} x_{2 n+1} \leq 0 \tag{2.1}
\end{equation*}
$$

(ii) If $\left\{x_{2 n}\right\}_{n \in \mathbb{N}_{0}}$ is eventually decreasing, then eventually

$$
\begin{equation*}
a-c+2 b x_{2 n}+x_{2 n} x_{2 n+1} \geq 0 \tag{2.2}
\end{equation*}
$$

(iii) If $\left\{x_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$ is eventually increasing, then eventually

$$
\begin{equation*}
a-c \leq a-c+2 b x_{2 n+1} \leq a-c+2 b x_{2 n+1}+x_{2 n+1} x_{2 n+2} \leq 0 . \tag{2.3}
\end{equation*}
$$

(iv) If $\left\{x_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$ is eventually decreasing, then eventually

$$
\begin{equation*}
a-c+2 b x_{2 n+1}+x_{2 n+1} x_{2 n+2} \geq 0 \tag{2.4}
\end{equation*}
$$

Proof. First suppose $\left\{x_{2 n}\right\}_{n \in \mathbb{N}_{0}}$ is eventually increasing. Hence, we have eventually

$$
x_{2 n} \leq x_{2 n+2}=\frac{c x_{2 n}}{a+2 b x_{2 n}+x_{2 n} x_{2 n+1}}
$$

and thus eventually

$$
\left(a-c+2 b x_{2 n}+x_{2 n} x_{2 n+1}\right) x_{2 n} \leq 0
$$

so that 2.1 follows. Next suppose $\left\{x_{2 n}\right\}_{n \in \mathbb{N}_{0}}$ is eventually decreasing. Hence, we have eventually

$$
\begin{aligned}
x_{2 n} & \geq x_{2 n+2} \\
& =\frac{c x_{2 n}}{a+2 b x_{2 n}+x_{2 n} x_{2 n+1}}
\end{aligned}
$$

and thus eventually

$$
\left(a-c+2 b x_{2 n}+x_{2 n} x_{2 n+1}\right) x_{2 n} \geq 0
$$

so that (2.2) follows. Now suppose $\left\{x_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$ is eventually increasing. Hence, we have eventually

$$
\begin{aligned}
x_{2 n+1} & \leq x_{2 n+3} \\
& =\frac{c x_{2 n+1}}{a+2 b x_{2 n+1}+x_{2 n+1} x_{2 n+2}}
\end{aligned}
$$

and thus eventually

$$
\left(a-c+2 b x_{2 n+1}+x_{2 n+1} x_{2 n+2}\right) x_{2 n+1} \leq 0
$$

so that 2.3 follows. Finally suppose $\left\{x_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$ is eventually decreasing. Hence, we have eventually

$$
\begin{aligned}
x_{2 n+1} & \geq x_{2 n+3} \\
& =\frac{c x_{2 n+1}}{a+2 b x_{2 n+1}+x_{2 n+1} x_{2 n+2}}
\end{aligned}
$$

and thus eventually

$$
\left(a-c+2 b x_{2 n+1}+x_{2 n+1} x_{2 n+2}\right) x_{2 n+1} \geq 0
$$

so that 2.4 follows.
Corollary 2.2. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}_{0}}$ be an arbitrary positive solution of 1.4 .
(i) If $\left\{x_{2 n}\right\}_{n \in \mathbb{N}_{0}}$ is eventually monotone, then it converges to a finite nonnegative limit.
(ii) If $\left\{x_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$ is eventually monotone, then it converges to a finite nonnegative limit.

Proof. First suppose $\left\{x_{2 n}\right\}_{n \in \mathbb{N}_{0}}$ is eventually increasing. By (2.1), we have eventually

$$
x_{2 n} \leq \frac{c-a}{2 b}
$$

so that $\left\{x_{2 n}\right\}_{n \in \mathbb{N}_{0}}$ is bounded above and hence converges to a finite (nonnegative) limit.
If $\left\{x_{2 n}\right\}_{n \in \mathbb{N}_{0}}$ is eventually decreasing, then, being bounded below by zero, it also converges to a nonnegative limit. Next suppose $\left\{x_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$ is eventually increasing. By (2.3), we have eventually

$$
x_{2 n+1} \leq \frac{c-a}{2 b}
$$

so that $\left\{x_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$ is bounded above and hence converges to a finite (nonnegative) limit. If $\left\{x_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$ is eventually decreasing, then, being bounded below by zero, it also converges to a nonnegative limit.

We now state and prove our main result, which confirms Conjecture 1.0 ,

Theorem 2.3. Let $a, b, c>0$. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}_{0}}$ be an arbitrary positive solution of (1.4). Then $\left\{x_{n}\right\}_{n \in \mathbb{N}_{0}}$ converges to a finite nonnegative limit; more precisely:

$$
\lim _{n \rightarrow \infty} x_{n}=x^{*}:= \begin{cases}0 & \text { if } c \leq a \\ \sqrt{b^{2}+c-a}-b>0 & \text { if } c>a\end{cases}
$$

Proof. By Theorem 1.1, both $\left\{x_{2 n}\right\}_{n \in \mathbb{N}_{0}}$ and $\left\{x_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$ are eventually monotone. By Corollary 2.2, $\left\{x_{2 n}\right\}_{n \in \mathbb{N}_{0}}$ and $\left\{x_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$ both converge to finite nonnegative limits. Put

$$
x_{\mathrm{e}}:=\lim _{n \rightarrow \infty} x_{2 n} \quad \text { and } \quad x_{\mathrm{o}}:=\lim _{n \rightarrow \infty} x_{2 n+1} \quad \text { so that } \quad x_{\mathrm{e}}, x_{\mathrm{o}} \in[0, \infty)
$$

By (1.4), we have

$$
\begin{equation*}
\left(a+2 b x_{2 n}+x_{2 n} x_{2 n+1}\right) x_{2 n+2}=c x_{2 n} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(a+2 b x_{2 n+1}+x_{2 n+1} x_{2 n+2}\right) x_{2 n+3}=c x_{2 n+1} \tag{2.6}
\end{equation*}
$$

for all $n \in \mathbb{N}_{0}$. By letting $n \rightarrow \infty$ in (2.5) and 2.6, we obtain

$$
\begin{equation*}
\left(a-c+2 b x_{\mathrm{e}}+x_{\mathrm{e}} x_{\mathrm{o}}\right) x_{\mathrm{e}}=0 \quad \text { and } \quad\left(a-c+2 b x_{\mathrm{o}}+x_{\mathrm{o}} x_{\mathrm{e}}\right) x_{\mathrm{o}}=0 \tag{2.7}
\end{equation*}
$$

From the first equation in (2.7), we must have $x_{\mathrm{e}}=0$ or

$$
\begin{equation*}
a-c+2 b x_{\mathrm{e}}+x_{\mathrm{e}} x_{\mathrm{o}}=0 \tag{2.8}
\end{equation*}
$$

First, if $x_{\mathrm{e}}=0$, then, since in this case $\left\{x_{2 n}\right\}_{n \in \mathbb{N}_{0}}$ is eventually decreasing, $a-c \geq 0$ by taking limits in 2.2 . But then, by the second equation in 2.7), $\left(a-c+2 b x_{0}\right) x_{\mathrm{o}}=0$ implies $x_{\mathrm{o}}=0$ since $a \geq c$. In summary, if $x_{\mathrm{e}}=0$, then $x_{\mathrm{o}}=0$, and then $a \geq c$ and $x^{*}=0$. Second, we assume $x_{\mathrm{e}}>0$ so that 2.8 holds. From the second equation in 2.7), we must have $x_{\mathrm{o}}=0$ or

$$
\begin{equation*}
a-c+2 b x_{\mathrm{o}}+x_{\mathrm{o}} x_{\mathrm{e}}=0 \tag{2.9}
\end{equation*}
$$

If $x_{\mathrm{o}}=0$, then, since in this case $\left\{x_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$ is eventually decreasing, $a-c \geq 0$ by taking limits in 2.4. But then, by 2.8, $a-c+2 b x_{\mathrm{e}}=0$ implies $x_{\mathrm{e}}=0$ since $a \geq c$, a contradiction. Hence, $x_{\mathrm{o}}>0$ and thus (2.9) holds. Now subtracting (2.9) from (2.8) yields $2 b\left(x_{\mathrm{e}}-x_{\mathrm{o}}\right)=0$, i.e., $x^{*}:=x_{\mathrm{e}}=x_{\mathrm{o}}>0$. By (2.9),

$$
\left(x^{*}\right)^{2}+2 b x^{*}+a-c=0
$$

and therefore $x^{*}=\sqrt{b^{2}+c-a}-b$. The proof is complete.

References

[1] E. Camouzis, G. Ladas, When does local asymptotic stability imply global attractivity in rational equations?, J. Difference Equ. Appl., 12 (2006), no. 8, 863-885. 11.1
[2] E. Camouzis, G. Ladas, Dynamics of third-order rational difference equations with open problems and conjectures, Advances in Discrete Mathematics and Applications, 5. Chapman \& Hall CRC, Boca Raton, FL, (2008). 1
[3] E. Camouzis, M. R. S. Kulenović, G. Ladas, O. Merino, Rational systems in the plane, J. Difference Equ. Appl., 15 (2009), no. 3, 303-323. 1
[4] E. Camouzis, G. Ladas, Global results on rational systems in the plane, part 1, J. Difference Equ. Appl., 16 (2010), no. 8, 975-1013. 1
[5] E. Camouzis, C. M. Kent, G. Ladas, C. D. Lynd, On the global character of solutions of the system: $x_{n+1}=\frac{\alpha_{1}+y_{n}}{x_{n}}$ and $y_{n+1}=\frac{\alpha_{2}+\beta_{2} x_{n}+\gamma_{2} y_{n}}{A_{2}+B_{2} x_{n}+C_{2} y_{n}}$, J. Difference Equ. Appl., 18 (2012), no. 7, 1205-1252. 1. 1.1 .0

[^0]: *Corresponding author
 Email addresses: bekkerm@umr.edu (Miron B. Bekker), bohner@mst.edu (Martin J. Bohner), voulovh@umkc.edu (Hristo D. Voulov)

