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Abstract

In this paper, we generalize some classical results on the integrability of trigonometric series using the
notion of integrability in fuzzy L1-norm. Here, we introduce new classes of fuzzy coefficients and obtain
the necessary and sufficient conditions for L1-convergence of fuzzy trigonometric series. Also, an example
is given for the existence of new classes of fuzzy coefficients. c©2015 All rights reserved.
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1. Introduction

A powerful tool in harmonic analysis is the concept of Fourier analysis. It is extremely useful in ap-
proximation theory, partial differential equations, probability theory etc. The study of integrability and
L1-convergence of Fourier series is based on the existence of sine and cosines. In the literature, so far
available, various authors such as ([5], [6], [7], [15], [26], [27], [28]) have studied the L1-convergence of
trigonometric series under different classes of coefficient sequences.

Due to the rapid development of the fuzzy theory, the aim of this paper is to investigate new classes of
sequences formed by the fuzzy real coefficients, which generalizes the classical results on Fourier Analysis. To
accomplish this, we need to study the basic concepts of fuzzy theory given by various authors such as Zadeh
[29], Kaleva [13], Puri and Ralescu [17], Goetchel and Voxman [8], Stojaković ([19], [20], [21]), Zhang and
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Guo [30], Ban [1], Puri and Ralescu [18], Stojaković ([8], [21]), Kim and Ghil [14], Stojaković and Stojaković
([22], [23]), Talo and Başar [25], Kadak and Başar ([9]–[12]) and so on. One of them set mapping operations
to the case of interval valued fuzzy sets and then People move to the another direction to establish a new
way of generalizing the interval valued fuzzy sets in terms of its level sets. The effectiveness of level sets
come from not only their required memory capacity for fuzzy sets, but also their two valued nature. This
nature contributes to an effective derivation of the fuzzy inference algorithm based on the families of the
level sets. Beside this, the definition of fuzzy sets by level sets offers advantages over membership functions,
when the fuzzy sets are in universe of discourse with many elements.

In this paper, we present a fuzzy notion of integrability and Lebesgue convergence of fuzzy trigonometric
series. This paper is organized in six sections as follows: In section 2, we give some required definitions and
consequences related with the fuzzy numbers, sequences and series of fuzzy numbers. In section 3, we define
the integrals of fuzzy valued functions. In section 4, we introduce some new classes of sequences with special
fuzzy coefficients. The section 5 and 6 accomplish the lemma and main results which are the generalization
of some existing results.

2. Preliminaries, background and notation

In this section, we first recall some of the basic notions related to fuzzy numbers, sequence and series of
fuzzy numbers.

Definition 2.1. A fuzzy number is a fuzzy set on the real axis, i.e., a mapping u : R→ [0, 1] which satisfies
the following four conditions:
(i) u is normal, i.e., there exists an x0 ∈ R such that u(x0) = 1.
(ii) u is fuzzy convex, i.e., u[λx+ (1− λ)y] ≥ min{u(x), u(y)} for all x, y ∈ R and for all λ ∈ [0, 1].
(iii) u is upper semi-continuous.
(iv) The set [u]0 = {x ∈ R : u(x) > 0} is compact, where {x ∈ R : u(x) > 0 denotes the closure of the set
{x ∈ R : u(x) > 0} in the usual topology of R.

We denote the set of all fuzzy numbers on R by E1 and called it as the space of fuzzy numbers λ-level
set [u]λ of u ∈ E1 is defined by

[u]λ =

{
{t ∈ R : u(t) ≥ λ} , 0 < λ ≤ 1

{t ∈ R : u(t) > λ} , λ = 0.

The set [u]λ is closed, bounded and non-empty interval for each λ ∈ [0, 1] which is defined by [u]λ = [u−λ , u
+
λ ].

R can be embedded in E1, since each r ∈ R can be regarded as a fuzzy number r̄ defined by

r̄(x) =

{
1 , x = r ,

0 , x 6= r.

Theorem 2.2. [8] (Goetschel and voxman) For u ∈ E1, denote u−(λ) = u−λ and u+(λ) = u+
λ . Then

(i) u−(λ) is a bounded increasing function on [0, 1].
(ii) u+(λ) is a bounded decreasing function on [0, 1].
(iii) u−(1) ≤ u+(1).
(iv) u−(λ) and u+(λ) are left continuous on (0, 1] and right continuous at 0.
(v) If u−(λ) and u+(λ) satisfy above (i)− (iv), then there exist a unique v ∈ E1 such that v−λ = u−(λ) and
v+
λ = u+(λ).

The above theorem implies that we can identify a fuzzy number u with the parameterized representation
{(u−λ , u

+
λ ) | 0 ≤ λ ≤ 1}. Suppose that u, v ∈ E1 are fuzzy numbers represented by {(u−λ , u

+
λ ) | 0 ≤ λ ≤ 1}

and {(v−λ , v
+
λ ) | 0 ≤ λ ≤ 1}, respectively. If we define

(u⊕ v)(z) = sup
x+y=z

min(u(x), v(y)), (2.1)
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(αu)(z) =

{
u(z/α), α 6= 0,

0̃ α = 0, where 0̃ = χ{0},
(2.2)

then
u⊕ v = {(u−λ + v−λ , u

+
λ + v+

λ )|0 ≤ λ ≤ 1}

u	 v = {min(u−λ − v
−
λ , u

+
λ − v

+
λ ),max(u−λ − v

−
λ , u

+
λ − v

+
λ ) | 0 ≤ λ ≤ 1}

αu =

{
{(αu−λ , αu

+
λ ) | 0 ≤ λ ≤ 1}, α ≥ 0,

{(αu+
λ , αu

−
λ ) | 0 ≤ λ ≤ 1}, α < 0.

We define a metric d on E1 by
d(u, v) = sup

0≤λ≤1
dH([u]λ, [v]λ) (2.3)

where dH is the hausdorff metric defined as

dH([u]λ, [v]λ) = max(|u−λ − v
−
λ |, |u

+
λ − v

+
λ |). (2.4)

Also, d(u, 0̃) will be denoted by ||u||.

Definition 2.3. [24] The following basic statements hold:
(i) A sequence {uk} of fuzzy numbers is a function u from the set N into the set E1. The fuzzy number uk
denotes the value of the function at k ∈ N and is called as the general term of the sequence. By w(F ), we
denote the set of all sequences of fuzzy numbers.
(ii) A sequence {un} ∈ w(F ) is called convergent with limit u ∈ E1, if and only if for every ε > 0 there
exists an n0 = n(ε) ∈ N such that D(un, u) < ε for all n ≥ n0.
(iii) A sequence {un} ∈ w(F ) is called bounded if and only if the set of fuzzy numbers consisting of the
terms of the sequence {un} is a bounded set. That is to say that a sequence {un} ∈ w(F ) is said to be
bounded if and only if there exist two fuzzy numbers m and M such that m � un �M for all n ∈ N. This
means that m−(λ) ≤ u−n (λ) ≤M−(λ) and m+(λ) ≤ u+

n (λ) ≤M+(λ) for all λ ∈ [0, 1].

Remark 2.4. [24] According to Definition 2.3 the following remarks can be given;
(a) Obviously the sequence {un} ∈ w(F ) converges to a fuzzy number u if and only if {u−n (λ)} and {u+

n (λ)}
converge uniformly to u−(λ) and u+(λ) on [0, 1] , respectively.
(b) The boundedness of the sequence {un} ∈ w(F ) is equivalent to the fact that

sup
n∈N

D(un, 0̄) = sup
n∈N

sup
λ∈[0,1]

max{|u−n (λ)|, |u+
n (λ)|} <∞.

If the sequence {uk} ∈ w(F ) is bounded then the sequences of functions {u−k (λ)} and {u+
k (λ)} uniformly

bounded in [0, 1].

Definition 2.5. [24] Let {uk} ∈ w(F ). Then the expression
∑
⊕ k

uk is called series of fuzzy numbers with

the level summation
∑
⊕

. Define a sequence {sn} via nth partial level sum of the series by

sn = u0 ⊕ u1 ⊕ u2 ⊕ · · · ⊕ un,

for all n ∈ N. If the sequence {sn} converges to a fuzzy number u then we say that the series
∑
⊕ k

uk of

fuzzy numbers converges to u and write
∑
⊕ k

uk = u which implies that

lim
n→∞

n∑
k=0

u−k (λ) = u−(λ) and lim
n→∞

n∑
k=0

u+
k (λ) = u+(λ),
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where the summation is in the sense of classical summation and converges uniformly in λ ∈ [0, 1]. Conversely
if ∑

k

u−k (λ) = u−(λ) and
∑
k

u+
k (λ) = u+(λ),

converges uniformly in λ, then u = {(u−(λ), u+(λ)) : λ ∈ [0, 1]} defines a fuzzy number such that u =
∑
⊕ k

uk.

Theorem 2.6. [2] The following statements for level addition ⊕ of fuzzy numbers and classical addition +
of real scalars are valid:
(i) 0 is neutral element with respect to ⊕ , i.e. u⊕ 0 = 0⊕ u = u for all u ∈ E1.
(ii) With respect to 0, none of u 6= r̄, r ∈ R has opposite in E1.
(iii) For any α, β ∈ R with α, β ≥ 0 or α, β ≤ 0 and any u ∈ E1, we have (α+ β)u = αu⊕ βu.
(iv) For any α ∈ R and any u, v ∈ E1, we have α(u⊕ v) = αu⊕ αv.
(v) For any α, β ∈ R and any u ∈ E1, we have α(βu) = (αβ)u.

3. Integrals of fuzzy number valued functions

Let (Ω,Σ, µ) denote a complete σ-finite measure space. If F : Ω→ E1 is a fuzzy-number-valued function
and B is a subset of R, then F−1(B) denotes the fuzzy subset of Ω defined by F−1(B)(ω) = supx∈B F (ω)(x)
for every ω ∈ Ω. The fuzzy-number-valued function F : Ω → E1 is called measurable if for every closed
subset B of R the fuzzy set F−1(B) is measurable when considered as a function from Ω to [0, 1]. This concept
of measurability for fuzzy-set-valued functions was introduced by Butnariu [3] as a natural generalization of
measurable multifunctions. Kaleva [13] defined F : Ω→ E1 to be strongly measurable if for each λ ∈ [0, 1]
the set-valued function Fλ : Ω → I(R) defined by Fλ(ω) = [F (ω)]λ is measurable, where I(R) is the set of
all closed bounded intervals on R endowed with the topology generated by the Hausdorff metric dH defined
as in (2.4).

Theorem 3.1. ([3], [4]) For F : Ω→ E1 , F (ω) = {(F−λ (ω), F+
λ (ω))

∣∣ 0 ≤ λ ≤ 1}, the following conditions
are equivalent.
(i) F is measurable.
(ii) F is strongly measurable.
(iii) For each λ ∈ [0, 1], F−λ and F+

λ are measurable.

Let F : Ω → E1, F (ω) = {(F−λ (ω), F+
λ (ω)) | 0 ≤ λ ≤ 1}, be measurable. If for each λ ∈ [0, 1], F−λ and

F+
λ are integrable, it follows from Theorem 2.2 and the Lebesgue-dominated convergence theorem that the

parameterized representation {
(∫
A F

−
λ dµ,

∫
A F

+
λ dµ

)
| 0 ≤ λ ≤ 1} is a fuzzy number for each A ∈ Σ. This

enables us to define the integral of F without using the integral of set-valued function.

Definition 3.2. [14] A measurable function F : Ω→ E1, F (ω) = {(F−λ (ω), F+
λ (ω)) | 0 ≤ λ ≤ 1} is called

integrable if for each λ ∈ [0, 1], F−λ and F+
λ are integrable, or equivalently, if F−0 and F+

0 are integrable. In
this case, the integral of F over A ∈ Σ is defined by∫

A
Fdµ =

{(∫
A
F−λ dµ,

∫
A
F+
λ dµ

) ∣∣∣ 0 ≤ λ ≤ 1

}
. (3.1)

Theorem 3.3. [13] Let F,G : Ω→ E1 be integrable. Then
(i) if a and b are real numbers, then aF ⊕ bG is integrable and for each A ∈ Σ ,

∫
A(aF ⊕ bG)dµ =

a
∫
A Fdµ⊕ b

∫
AGdµ.

(ii) if d is the metric on E1 which defined as in (2.3), then d(F,G) is a real-valued integrable function and
for each A ∈ Σ,

d

(∫
A
Fdµ,

∫
A
Gdµ

)
≤
∫
A
d(F,G)dµ. (3.2)
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Let L(Ω,Σ, µ) = L denote the Banach space of (equivalence classes of) integrable function f : Ω → R
with the norm

||f || =
∫

Ω
|f(ω)|dµ =

{(∫
Ω
|f−λ |dµ, |f

+
λ |dµ

) ∣∣ 0 ≤ λ ≤ 1

}
.

Remark 3.4. (i) F is integrable if and only if the real-valued function ω 7−→ ||F (ω)|| is integrable.
(ii) ||

∫
A Fdµ|| ≤

∫
A ||F ||dµ.

For the case of fuzzy-number-valued functions, we denote L(E1) the space of all integrable functions
F : Ω→ E1, where two functions F,G ∈ L(E1) are considered to be identical if F (ω) = G(ω) a.e.
For F,G ∈ L(E1), we define

δ(F,G) =

∫
Ω
d(F,G)dµ. (3.3)

It is easy to show that δ is metric on L(E1).
L(E1) is complete with respect to the metric.

D(F,G) = sup
0≤λ≤1

∫
Ω

max(|F−λ −G
−
λ |, |F

+
λ −G

+
λ |)dµ. (3.4)

4. Fuzzy trigonometric cosine and sine series for fuzzy valued periodic functions

In this section, we present the notion of periodic fuzzy valued functions and their harmonics with respect
to the level sets.

Definition 4.1. [12] (Periodicity) A fuzzy-valued function f t is called periodic if there exists a constant
P > 0 for which f t(x + P ) = f t(x) for any x, t ∈ [a, b]. Thus it can easily seen that the conditions
f−λ (t + P ) = f−λ (t) and f+

λ (t + P ) = f+
λ (t) hold for all t ∈ [a, b] and λ ∈ [0, 1]. Such a constant P > 0 is

called a period of the function f t.

Let
1

2
a0 ⊕

∞∑
⊕ k=1

ak cos kx, (4.1)

and
∞∑
⊕ k=1

bk sin kx, (4.2)

be fuzzy trigonometric cosine series and sine series as defined in [12] and sn(x) and s̃tn(x) be the nth partial

level sum of the series (4.1) and (4.2) given by sn(x) = a0
2 ⊕

n∑
⊕ k=1

ak cos kx and s̃tn(x) =
n∑
⊕ k=1

bk sin kx ,

where {ak} =
{(

(ak)
−
λ , (ak)

+
λ

) ∣∣ 0 ≤ λ ≤ 1
}

and {bk} =
{(

(bk)
−
λ , (bk)

+
λ

) ∣∣ 0 ≤ λ ≤ 1
}

for k = 1, 2, ...n
are the fuzzy coefficients.

Let {ak} =
{(

(ak)
−
λ , (ak)

+
λ

) ∣∣ 0 ≤ λ ≤ 1
}

be a fuzzy sequence. Then we write

∆ak = ak 	 ak+1

=
(
min{(ak)−λ − (ak+1)−λ , (ak)

+
λ − (ak+1)+

λ },max{(ak)−λ − (ak+1)−λ , (ak)
+
λ − (ak+1)+

λ }
)

=
(
(∆ak)

−
λ , (∆ak)

+
λ

)
∆2ak = ∆(∆ak) =

(
∆(∆ak)

−
λ ,∆(∆ak)

+
λ

)
.

Definition 4.2. A sequence {ak} ∈ w(F ) is said to be decreasing sequence if ak+1 ≺ ak i.e. (ak)
−
λ < (ak+1)−λ

and (ak)
+
λ > (ak+1)+

λ .
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Remark 4.3. If {ak} is a decreasing fuzzy sequence, then it can be easily seen that (∆ak)
−
λ = (ak)

−
λ −

(ak+1)−λ = ∆(ak)
−
λ and (∆ak)

+
λ = (ak)

+
λ − (ak+1)+

λ = ∆(ak)
+
λ .

Now, we introduce some new classes of fuzzy coefficients as follows:

Definition 4.4. A sequence {ak} ∈ w(F ) is said to be fuzzy null sequence if lim
k→∞

ak = [0]λ with respect to

the level sets. i.e. {(
lim
k→∞

(ak)
−
λ = 0−λ , lim

k→∞
(ak)

+
λ = 0+

λ

) ∣∣∣ 0 ≤ λ ≤ 1

}
. (4.3)

Definition 4.5. A decreasing sequence {ak} ∈ w(F ) is said to belong to class BV(F) with respect to the

level set if (4.3) is satisfied and the series
∞∑
⊕ k=0

|∆ak| is convergent.

Definition 4.6. A decreasing sequence {ak} ∈ w(F ) is said to belong to class Kp(F) (for λ ∈ [0, 1]) if (4.3)
is satisfied and the series

∞∑
⊕ m=1

2m/q

 ∑
⊕ k∈Im

|∆ak|p
1/p

, for some p > 1 (4.4)

is convergent. (4.4) can be written as
 ∞∑
m=1

2m/q

∑
k∈Im

∣∣(∆ak)−λ ∣∣p
1/p

<∞,
∞∑
m=1

2m/q

∑
k∈Im

∣∣(∆ak)+
λ

∣∣p1/p

<∞

 ∣∣ 0 ≤ λ ≤ 1

 . (4.5)

Here p > 1 be any real number and q be the conjugate exponent to p i.e. 1
p + 1

q = 1 and Im be the dyadic

interval [2m−1, 2m) and m ≥ 1.
By Cauchy condensation test, it can be easily seen that (4.5) is equivalent to

 ∞∑
n=1

(
1

n

2n−1∑
k=n

∣∣(∆ak)−λ ∣∣p
)1/p

<∞,
∞∑
n=1

(
1

n

2n−1∑
k=n

∣∣(∆ak)+
λ

∣∣p)1/p

<∞

 ∣∣∣ 0 ≤ λ ≤ 1

 . (4.6)

Further, by applying Holder’s inequality to (4.6), we get

K1(F) =

{( ∞∑
k=1

∣∣(∆ak)−λ ∣∣ , ∞∑
k=1

∣∣(∆ak)+
λ

∣∣) ∣∣∣ 0 ≤ λ ≤ 1

}
� Kp(F)

=⇒
∞∑
⊕ k=1

|∆ak| = K1(F) � Kp(F), p > 1. (4.7)

Hence, the class Kp(F) contains the class of bounded variation.

Now, we present an example for the existence of above classes as follows:

Example 4.7. Let {ak} = {(ak)−λ , (ak)
+
λ } =

{(
1

k+1 + λ
(

1
k −

1
k+1

)
, 1
k−1 − λ

(
1

k−1 −
1
k

)) ∣∣ 0 ≤ λ ≤ 1
}

,

be fuzzy sequence. Since (ak)
−
λ and (ak)

+
λ tends to zero as k →∞ therefore it is fuzzy null sequence.

As (4.5) is equivalent to (4.6), it is sufficient to show that the series
∞∑
⊕ n=1

(
1
n

2n−1∑
⊕ k=n

|∆ak|p
)1/p

is conver-

gent.

First, we check the behavior of the series
∞∑
n=1

(
1
n

2n−1∑
k=n

∣∣(∆ak)−λ ∣∣p)1/p

for 0 ≤ λ ≤ 1.
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we have

(∆ak)
−
λ = min{(ak)−λ − (ak+1)−λ , (ak)

+
λ − (ak+1)+

λ }

=
1

(k + 1)(k + 2)
+

2λ

k(k + 1)(k + 2)
, 0 ≤ λ ≤ 1.

Consider J1 =
∞∑
n=1

(
1
n

2n−1∑
k=n

∣∣(∆ak)−λ ∣∣p)1/p

.

By Minkowski Inequality,

J1 ≤
∞∑
n=1

1

n1/p

{2n−1∑
k=n

∣∣∣∣ 1

(k + 1)(k + 2)

∣∣∣∣p
}1/p

+

{
2n−1∑
k=n

∣∣∣∣ 2λ

(k − 1)k(k + 1)

∣∣∣∣p
}1/p



≤
∞∑
n=1

1

n1/p


{

1

(n+ 1)p(n+ 2)p
+

1

(n+ 2)p(n+ 3)p
+ ...

}1/p

+

2λ

{
1

(n− 1)pnp(n+ 1)p
+

1

np(n+ 1)p(n+ 2)p
+ ...

}1/p


≤

∞∑
n=1

1

n1/p

[{
n

(n+ 1)p(n+ 2)p

}1/p

+ 2λ

{
n

np(n+ 1)p(n+ 2)p

}1/p
]

≤
∞∑
n=1

[
1

(n+ 1)(n+ 2)
+

2λ

(n− 1)n(n+ 1)

]
=
∞∑
n=1

1

(n+ 1)(n+ 2)
+
∞∑
n=1

2λ

(n− 1)n(n+ 1)
<∞

similarly, J2 =
∞∑
n=1

(
1
n

2n−1∑
k=n

∣∣(∆ak)−λ ∣∣p)1/p

< ∞. Therefore, the series
∞∑

⊕ n=1

(
1
n

2n−1∑
⊕ k=n

|∆ak|p
)1/p

is con-

vergent.
Hence, the fuzzy sequence {ak} belongs to class Kp(F).

5. Lemma

Lemma 5.1. Let {ak} be a sequence of fuzzy numbers. Then for any 1 < p ≤ 2 and n ≥ 1,

1

n

π∫
0

∣∣∣∣∣
2n−1∑
⊕ k=n

akDk(x)

∣∣∣∣∣ dx �Mp

(
1

n

2n−1∑
⊕ k=n

|ak|p
) 1

p

(5.1)

where Mp is an absolute constant.

Proof. We write

1

n

π∫
0

∣∣∣∣∣
2n−1∑
⊕ k=n

akDk(x)

∣∣∣∣∣ dx =


 1

n

π∫
0

∣∣∣∣∣
2n−1∑
k=n

(ak)
−
λDk(x)

∣∣∣∣∣ dx, 1

n

π∫
0

∣∣∣∣∣
2n−1∑
k=n

(ak)
+
λDk(x)

∣∣∣∣∣ dx
 ∣∣∣ 0 ≤ λ ≤ 1


= (J1, J2) .

Consider

J1 =
1

n

π∫
0

∣∣∣∣∣
2n−1∑
k=n

(ak)
−
λDk(x)

∣∣∣∣∣ dx
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=
1

n

π/n∫
0

∣∣∣∣∣
2n−1∑
k=n

(ak)
−
λDk(x)

∣∣∣∣∣ dx+
1

n

π∫
π/n

∣∣∣∣∣
2n−1∑
k=n

(ak)
−
λDk(x)

∣∣∣∣∣ dx
= J11 + J12.

Now,

J11 =
1

n

π/n∫
0

∣∣∣∣∣
2n−1∑
k=n

(ak)
−
λDk(x)

∣∣∣∣∣ dx ≤ 1

n

π/n∫
0

2n−1∑
k=n

|(ak)−λ ||Dk(x)|dx.

Here, Dk(x) is the Dirichlet kernel and Dk(x) ≤ k + 1 for all x ∈ (0, π). Thus, we get

J11 ≤ 1

n

π/n∫
0

2n−1∑
k=n

|(ak)−λ |(k + 1)dx ≤ 1

n

2n−1∑
k=n

|(ak)−λ |(k + 1)

π/n∫
0

dx

≤ π

n2
(2n− 1 + 1)

2n−1∑
k=n

|(ak)−λ | =
2π

n

∑
k=n

2n− 1|(ak)−λ |.

By using Holder’s inequality, we have

J11 ≤ 2π

(
1

n

2n−1∑
k=n

|(ak)−λ |
p

)1/p

. (5.2)

Next, we consider

J12 =
1

n

π∫
π/n

∣∣∣∣∣
2n−1∑
k=n

(ak)
−
λDk(x)

∣∣∣∣∣ dx =
1

n

π∫
π/n

1

2 sin(x2 )

∣∣∣∣∣
2n−1∑
k=n

(ak)
−
λ sin

(
k +

1

2

)
x

∣∣∣∣∣ dx.
Again by applying Holder’s inequality for 1

p + 1
q = 1 , p > 1, we get

J12 ≤
1

2n

 π∫
π/n

dx(
sin
(
x
2

))p


1/p π∫
π/n

∣∣∣∣∣
2n−1∑
k=n

(ak)
−
λ sin

(
k +

1

2

)
x

∣∣∣∣∣
q

dx


1/q

.

Further, It can be easily noted that for x ∈
(π
n
, π
)

,

π∫
π/n

dx

(sin(x/2))p
≤ πp

π∫
π/n

dx

xp
≤ π

p− 1
np−1.

Therefore,

J12 ≤
1

2n

(
π

p− 1

)1/p

(np−1)1/p

 π∫
0

∣∣∣∣∣
2n−1∑
k=n

(ak)
−
λ sin

(
k +

1

2

)
x

∣∣∣∣∣
q

dx

1/q

.

Now, by the use of Hausdorff Young’s inequality (for 1 < p ≤ 2), we get 1

π

π∫
0

∣∣∣∣∣
2n−1∑
k=n

(ak)
−
λ sin

(
k +

1

2

)
x

∣∣∣∣∣
q

dx

1/q

≤

 1

2π

π∫
−π

∣∣∣∣∣
2n−1∑
k=n

(ak)
−
λ e

i(k+ 1
2

)x

∣∣∣∣∣
q

dx

1/q
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≤

(
2n−1∑
k=n

|(ak)−λ |
p

)1/p

.

Thus, we get

J12 ≤
π

2
(p− 1)−1/pn−1/p

(
2n−1∑
k=n

|(ak)−λ |
p

)1/p

. (5.3)

Combining (5.2) and (5.3), we have

J1 ≤ π
(

2 +
1

2
(p− 1)−1/p

)(
1

n

2n−1∑
k=n

|(ak)−λ |
p

)1/p

.

Similarly, J2 ≤ π
(
2 + 1

2(p− 1)−1/p
)(

1
n

2n−1∑
k=n

|(ak)+
λ |
p

)1/p

Hence,

(J1, J2) �




π

(
2 +

1

2
(p− 1)−1/p

)(
1

n

2n−1∑
k=n

|(ak)−λ |
p

)1/p

,

π

(
2 +

1

2
(p− 1)−1/p

)(
1

n

2n−1∑
k=n

|(ak)+
λ |
p

)1/p


∣∣∣ 0 ≤ λ ≤ 1


= π

(
2 +

1

2
(p− 1)−1/p

)(
1

n

2n−1∑
⊕ k=n

|ak|p
)1/p

.

Thus the conclusion of lemma holds.

6. Main Results

In this section, we show that more general results hold in fuzzy Fourier analysis.
The first main result of this section read as follows:

Theorem 6.1. If {ak} is a sequence of fuzzy coefficients belonging to class Kp(F), then
(i) f t ∈ L1(0, π).
(ii) series (4.1) is the Fourier series of f t.
(iii) the series (4.1) converges to fuzzy valued function f t in L1(0, π)-norm if and only if{

lim
n→∞

an lnn = [0]λ
∣∣ 0 ≤ λ ≤ 1

}
.

Proof. (i) Let

stn(x) =
1

2
a0 ⊕

n∑
⊕ k=1

ak cos kx

=

{(
1

2
(a0)−λ +

n∑
k=1

(ak)
−
λ cos kx,

1

2
(a0)+

λ +
n∑
k=1

(ak)
+
λ cos kx

) ∣∣∣ 0 ≤ λ ≤ 1

}
.

Using summation by parts, we get

stn(x)

=

{(
n−1∑
k=0

Dk(x)∆(ak)
−
λ + (an)−λDn(x),

n−1∑
k=0

Dk(x)∆(ak)
+
λ + (an)+

λDn(x)

) ∣∣∣ 0 ≤ λ ≤ 1

}
.
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As {ak} belongs to class Kp(F) so {ak} is a decreasing sequence, then we have

stn(x) =

{(
n−1∑
k=0

Dk(x)(∆ak)
−
λ + (an)−λDn(x),

n−1∑
k=0

Dk(x)(∆ak)
+
λ + (an)+

λDn(x)

) ∣∣∣ 0 ≤ λ ≤ 1

}
. (6.1)

By (4.3) and (4.7), the series

{( ∞∑
k=0

Dk(x)(∆ak)
−
λ ,
∞∑
k=0

Dk(x)(∆ak)
+
λ

) ∣∣∣ 0 ≤ λ ≤ 1

}
converges abso-

lutely and {(
lim
n→∞

(an)−λDn(x), lim
n→∞

(an)+
λDn(x)

) ∣∣ 0 ≤ λ ≤ 1
}

=
{(

0−λ , 0
+
λ

) ∣∣ 0 ≤ λ ≤ 1
}

at every point x 6= 0 (mod2π). Thus the series (4.1) converges except possibly at x = 0 (mod2π), and{(
1

2
(a0)−λ +

∞∑
k=1

(ak)
−
λ cos kx,

1

2
(a0)+

λ +
∞∑
k=1

(ak)
+
λ cos kx

) ∣∣∣ 0 ≤ λ ≤ 1

}

=




∞∑
k=0

Dk(x)(∆ak)
−
λ ,

∞∑
k=0

Dk(x)(∆ak)
+
λ


∣∣∣ 0 ≤ λ ≤ 1

 (6.2)

=
{(
f−λ (x), f+

λ (x)
) ∣∣ 0 ≤ λ ≤ 1

}
= f t. (6.3)

Therefore f t exists in (0, π). We group the terms in (6.2) as follows{(
f−λ (x), f+

λ (x)
) ∣∣ 0 ≤ λ ≤ 1

}

=




D0(x)(∆a0)−λ +

∞∑
m=1

∑
k∈Im

Dk(x)(∆ak)
−
λ ,

D0(x)(∆a0)+
λ +

∞∑
m=1

∑
k∈Im

Dk(x)(∆ak)
+
λ


∣∣∣ 0 ≤ λ ≤ 1


f t(x) = D0(x)∆a0 ⊕

∞∑
⊕ m=1

∑
⊕ k∈Im

Dk(x)∆ak.

By using Lemma 5.1, we get for 1 ≤ p ≤ 2

π∫
0

|f t(x)|dx � π

2
|∆a0| ⊕Mp

∞∑
⊕ m=1

2m/q

 ∑
⊕ k∈Im

|∆ak|p
1/p

. (6.4)

The conclusion of (i) holds, by using given hypothesis.
(ii) Now, for proving this part, we consider f t(x) = lim

n→∞
stn(x). [by (i) as f t ∈ L1(0, π)]

Let l ≥ 0 be fixed integer, therefore

2

π

π∫
0

f t(x) cos lxdx

= lim
n→∞

2

π

π∫
0

stn(x) cos lxdx
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= lim
n→∞

 2

π

π∫
0

{
a0

2
⊕

n∑
⊕ k=1

ak cos kx

}
cos lxdx



=




lim
n→∞

 2

π

π∫
0

{
(a0)−λ

2
+

n∑
k=1

(ak)
−
λ cos kx

}
cos lxdx

 ,
lim
n→∞

 2

π

π∫
0

{
(a0)+

λ

2
+

n∑
k=1

(ak)
+
λ cos kx

}
cos lxdx




∣∣∣ 0 ≤ λ ≤ 1


=

{(
lim
n→∞

[
2

π
× π

2
(al)

−
λ

]
, lim
n→∞

[
2

π
× π

2
(al)

+
λ

]) ∣∣∣ 0 ≤ λ ≤ 1

}
= al.

This proves that (4.1) is the Fourier series of f t.

(iii) Next, we prove that lim
n→∞

π∫
0

|stn(x)	 f t(x)| = 0 if and only if
{

lim
n→∞

an lnn = [0]λ
∣∣ 0 ≤ λ ≤ 1

}
.

Consider,

lim
n→∞

π∫
0

∣∣stn(x)	 f t(x)
∣∣ dx

= lim
n→∞

sup
λ∈[0,1]

 π∫
0

∣∣(sn)−λ (x)− f−λ
∣∣ dx, π∫

0

∣∣(sn)+
λ (x)− f+

λ (x)
∣∣ dx



= lim
n→∞

sup
λ∈[0,1]

 π∫
0

∣∣∣∣∣
∞∑

k=n+1

(ak)
−
λ cos kx

∣∣∣∣∣ dx,
π∫

0

∣∣∣∣∣
∞∑

k=n+1

(ak)
+
λ cos kx

∣∣∣∣∣ dx


= (J1, J2) ,

where

J1

= lim
n→∞

sup
λ∈[0,1]

π∫
0

∣∣∣∣∣
∞∑

k=n+1

(ak)
−
λ cos kx

∣∣∣∣∣ dx = lim
n→∞

sup
λ∈[0,1]

π∫
0

∣∣∣∣∣
∞∑

k=n+1

∆(ak)
−
λDk(x)− (an+1)−λDn(x)

∣∣∣∣∣ dx

= lim
n→∞

sup
λ∈[0,1]

π∫
0

∣∣∣∣∣
∞∑

k=n+1

(∆ak)
−
λDk(x)− (an+1)−λDn(x)

∣∣∣∣∣ dx

≤ lim
n→∞

sup
λ∈[0,1]

π∫
0

[ ∞∑
k=n+1

∣∣(∆ak)−λDk(x)
∣∣+
∣∣(an+1)−λDn(x)

∣∣] dx.
Similarly,

J2 ≤ lim
n→∞

sup
λ∈[0,1]

π∫
0

[ ∞∑
k=n+1

∣∣(∆ak)+
λDk(x)

∣∣+
∣∣(an+1)+

λDn(x)
∣∣] dx
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lim
n→∞

π∫
0

∣∣stn(x)	 f t(x)
∣∣ dx � lim

n→∞
sup
λ∈[0,1]



π∫
0

∞∑
k=n+1

∣∣(∆ak)−λDk(x)
∣∣+

π∫
0

∣∣(an+1)−λDn(x)
∣∣ dx,

π∫
0

∞∑
k=n+1

∣∣(∆ak)+
λDk(x)

∣∣+

π∫
0

∣∣(an+1)+
λDn(x)

∣∣ dx

 .

Since (see e.g. [31], Vol I, p. 67)

π∫
0

|Dn(x)|dx � lnn (iii) follows. Here the symbol an � bn means that

there are positive constants K1 and K2 such that K1 ≤ an/bn ≤ K2 for all n large enough.

Remark 6.2. If (ak)
−
λ = (ak)

+
λ in above theorem then the sequence {ak} of fuzzy numbers becomes the

sequence of real numbers, then the following corollary is an application of Theorem 6.1.

Corollary 6.3. [16] If {ak} is a null sequence and the series
∞∑
m=1

2m/q

( ∑
k∈Im

|∆ak|p
)1/p

is convergent for

some p > 1, then (i) f ∈ L1(0, π). (ii) 1
2a0 +

∞∑
k=1

ak cos kx is the Fourier series of f . (iii) lim
n→∞

π∫
0

|sn(x) −

f(x)|dx = 0 if and only if lim
n→∞

an lnn = 0.

Here, sn(x) = a0
2 +

n∑
k=1

ak cos kx and lim
n→∞

sn(x) = f(x).

The second main result of this section is as follows:

Theorem 6.4. Let {bk} be a sequence of fuzzy coefficients belonging to class Kp(F), then

(i) gt ∈ L1(0, π) if and only if
∞∑
⊕ k=1

|bk|
k <∞.

(ii) if gt ∈ L1(0, π), then (4.2) is the Fourier series of gt.
(iii) the series (4.2) converges to the fuzzy valued function gt in L1(0, π)-norm if and only if{

lim
n→∞

bn lnn = [0]λ |0 ≤ λ ≤ 1
}

.

Proof. (i) First we show that the limit function gt exists in (0, π). For this we consider

s̃tn(x) =
n∑
⊕ k=1

bk sin kx =

{(
n∑
k=1

(bk)
−
λ sin kx,

n∑
k=1

(bk)
+
λ sin kx

) ∣∣∣ 0 ≤ λ ≤ 1

}
.

Performing summation by parts, we get

s̃tn(x) =

{(
n∑
k=1

∆(bk)
−
λ D̃k(x) + (bn)−λ D̃n(x),

n∑
k=1

∆(bk)
+
λ D̃k(x) + (bn)+

λ D̃n(x)

) ∣∣∣ 0 ≤ λ ≤ 1

}
.

As {bk} belongs to class Kp(F), then

s̃tn(x) =

{(
n∑
k=1

(∆bk)
−
λ D̃k(x) + (bn)−λ D̃n(x),

n∑
k=1

(∆bk)
+
λ D̃k(x) + (bn)+

λ D̃n(x)

) ∣∣∣ 0 ≤ λ ≤ 1

}

where D̃k(x) is the conjugate Dirichlet Kernel.
As D̃k(x) is bounded in (0, π) therefore, by given hypothesis gt(x) = lim

n→∞
s̃tn(x) exists in (0, π).

Now, consider

π∫
0

|gt(x)|dx =


 π∫

0

|g−λ (x)|dx,
π∫

0

|g+
λ (x)|dx

 ∣∣∣ 0 ≤ λ ≤ 1


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=


 π∫

0

|
∞∑
k=1

(bk)
−
λ sin kx|dx,

π∫
0

|
∞∑
k=1

(bk)
+
λ sin kx|dx

 ∣∣∣ 0 ≤ λ ≤ 1


�


 π∫

0

∞∑
k=1

|(bk)−λ || sin kx|dx,
π∫

0

∞∑
k=1

|(bk)+
λ || sin kx|dx

 ∣∣∣ 0 ≤ λ ≤ 1


�

{( ∞∑
k=1

|(bk)−λ |
[
−cos kx

k

]π
0

,
∞∑
k=1

|(bk)+
λ |
[
−cos kx

k

]π
0

) ∣∣∣ 0 ≤ λ ≤ 1

}

=

{( ∞∑
k=1

|(bk)−λ |
[
− cos kπ + 1

k

]
,

∞∑
k=1

|(bk)+
λ |
[
− cos kπ + 1

k

]) ∣∣∣ 0 ≤ λ ≤ 1

}

=

{( ∞∑
k=1

|(bk)−λ |
[
−(−1)k + 1

k

]
,
∞∑
k=1

|(bk)−λ |
[
−(−1)k + 1

k

]) ∣∣∣ 0 ≤ λ ≤ 1

}

=

{(
2
∞∑
k=1

|(bk)−λ |
k

, 2
∞∑
k=1

|(bk)+
λ |

k

) ∣∣∣ 0 ≤ λ ≤ 1

}

= 2

∞∑
⊕ k=1

|bk|
k
.

Thus, gt(x) ∈ L1(0, π) if and only if
∞∑

⊕ k=1

|bk|
k is convergent.

(ii) Let l ≥ 0 be fixed integer. Consider,

2

π

π∫
0

gt(x) sin lxdx

= lim
n→∞

 2

π

π∫
0

s̃tn(x) sin lxdx



= lim
n→∞

 2

π

π∫
0

{
n∑
⊕ k=1

bk sin kx

}
sin lxdx



=




lim
n→∞

 2

π

π∫
0

{
n∑
k=1

(bk)
−
λ sin kx

}
sin lxdx

 ,
lim
n→∞

 2

π

π∫
0

{
n∑
k=1

(bk)
−
λ sin kx

}
sin lxdx




∣∣∣ 0 ≤ λ ≤ 1


=

{(
lim
n→∞

2

π
× π

2
(bl)
−
λ , lim

n→∞

2

π
× π

2
(bl)

+
λ

) ∣∣∣ 0 ≤ λ ≤ 1

}
= bl.
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(iii) Let σtn(x) denote the first arithmetic mean of series (4.2)

σtn(x)

=

n∑
⊕ k=1

(
1− k

n+ 1

)
bk sin kx

=
(
σ−λ (x), σ+

λ (x)
)

=

{(
n∑

k=n

(
1− k

n+ 1

)
(bk)

−
λ sin kx,

n∑
k=n

(
1− k

n+ 1

)
(bk)

+
λ sin kx

) ∣∣∣ 0 ≤ λ ≤ 1

}
.

Since gt ∈ L1(0, π) by (i), we get

lim
n→∞

π∫
0

|σtn(x)	 gt(x)|dx = [0]λ for λ ∈ [0, 1]

i.e sup
λ∈[0,1]

 lim
n→∞

π∫
0

|(σn)−λ (x)− g−λ (x)|dx, lim
n→∞

π∫
0

|(σn)+
λ (x)− g+

λ (x)|dx

 = 0

since ∣∣∣∣∣∣
π∫

0

|s̃tn(x)	 f t(x)|dx	
π∫

0

|s̃tn(x)	 σtn(x)|dx

∣∣∣∣∣∣ ≤
π∫

0

|σtn(x)	 f t(x)|dx.

It is enough to prove that

lim
n→∞

π∫
0

∣∣s̃tn(x)	 σtn(x)
∣∣ = [0]λ if and only if lim

n→∞
bn lnn = [0]λ. Consider,

lim
n→∞

π∫
0

∣∣s̃tn(x)	 σtn(x)
∣∣ dx

= lim
n→∞

sup
λ∈[0,1]

 π∫
0

∣∣(s̃n)−λ (x)− (σn)−λ (x)
∣∣ dx, π∫

0

∣∣(s̃n)+
λ (x)− (σn)+

λ (x)
∣∣ dx



= lim
n→∞

sup
λ∈[0,1]

 π∫
0

∣∣∣∣∣ 1

n+ 1

n∑
k=1

(bk)
−
λ k sin kx

∣∣∣∣∣ dx,
π∫

0

∣∣∣∣∣ 1

n+ 1

n∑
k=1

(bk)
+
λ k sin kx

∣∣∣∣∣ dx


= (J1, J2) .

First, we take

J1

= lim
n→∞

sup
λ∈[0,1]

π∫
0

∣∣∣∣∣ 1

n+ 1

n∑
k=1

k(bk)
−
λ sin kx

∣∣∣∣∣ dx
= lim

n→∞
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sup
λ∈[0,1]

 π∫
0

∣∣∣∣∣∣ 1

n+ 1

k0−1∑
k=1

[(bk)
−
λ − (bk0)−λ ]k sin kx− 1

n+ 1


n−1∑
k=k0

D′k(x)∆(bk)
−
λ + (bn)−λD

′
n(x)


∣∣∣∣∣∣ dx


= lim

n→∞

sup
λ∈[0,1]

 π∫
0

∣∣∣∣∣∣ 1

n+ 1

k0−1∑
k=1

[(bk)
−
λ − (bk0)−λ ]k sin kx− 1

n+ 1


n−1∑
k=k0

D′k(x)(∆bk)
−
λ + (bn)−λD

′
n(x)


∣∣∣∣∣∣ dx

 .
Similarly,

J2 = lim
n→∞

sup
λ∈[0,1]

 π∫
0

∣∣∣∣∣∣ 1

n+ 1

k0−1∑
k=1

[(bk)
+
λ − (bk0)+

λ ]k sin kx− 1

n+ 1


n−1∑
k=k0

D′k(x)(∆bk)
+
λ + (bn)+

λD
′
n(x)


∣∣∣∣∣∣ dx


where k0 = 2m0−1 is a fixed integer and ”prime” means differentiation with respect to x. Let

∑
=

∣∣∣∣∣∣
π∫

0

|s̃tn(x)	 σtn(x)|dx	 bn
n+ 1

π∫
0

|D′n(x)|dx

∣∣∣∣∣∣

= sup
λ∈[0,1]



∣∣∣∣∣∣
π∫

0

|(s̃n)−λ (x)− (σ)−λ (x)|dx−
(bn)−λ
n+ 1

π∫
0

|D′n(x)|dx

∣∣∣∣∣∣ ,∣∣∣∣∣∣
π∫

0

|(s̃n)+
λ (x)− (σ)+

λ (x)|dx−
(bn)+

λ

n+ 1

π∫
0

|D′n(x)|dx

∣∣∣∣∣∣



=

(∑
1

,
∑

2

)
.

Consider,

∑
1

= sup
λ∈[0,1]

∣∣∣∣∣∣
π∫

0

|(s̃n)−λ (x)− (σ)−λ (x)|dx−
(bn)−λ
n+ 1

π∫
0

|D′n(x)|dx

∣∣∣∣∣∣

≤ sup
λ∈[0,1]

∣∣∣∣∣∣∣∣∣∣∣∣

1

n+ 1

π∫
0

k0−1∑
k=1

∣∣[(bk)−λ − (bk0)−λ
]
k sin kx

∣∣ dx+
1

n+ 1

π∫
0

n−1∑
k=k0

∣∣∆(bk)
−
λD
′
k(x)

∣∣ dx+

(bn)−λ
n+ 1

π∫
0

|D′n(x)|dx−
(bn)−λ
n+ 1

π∫
0

|D′n(x)|dx

∣∣∣∣∣∣∣∣∣∣∣∣

≤ sup
λ∈[0,1]

∣∣∣∣∣∣∣∣∣∣∣∣

1

n+ 1

π∫
0

k0−1∑
k=1

∣∣[(bk)−λ − (bk0)−λ
]
k sin kx

∣∣ dx+
1

n+ 1

π∫
0

n−1∑
k=k0

∣∣(∆bk)−λD′k(x)
∣∣ dx+

(bn)−λ
n+ 1

π∫
0

|D′n(x)|dx−
(bn)−λ
n+ 1

π∫
0

|D′n(x)|dx

∣∣∣∣∣∣∣∣∣∣∣∣
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≤ sup
λ∈[0,1]

 π

n+ 1

k0−1∑
k=1

k|(bk)−λ − (bk0)−λ |+
1

n+ 1

π∫
0

∣∣∣∣∣∣
n−1∑
k=k0

D′k(x)(∆bk)
−
λ

∣∣∣∣∣∣ dx
 .

Applying Bernstein’s inequality ([31], Vol.2, p.11) and using Lemma 5.1, we get∑
1

≤

sup
λ∈[0,1]

 π

n+ 1

k0−1∑
k=1

k|(bk)− − (bk0)−|+ 2

π∫
0

∣∣∣∣∣∣
n−1∑
k=k0

Dk(x)(∆bk)
−
λ

∣∣∣∣∣∣ dx


≤ sup
λ∈[0,1]

 π

n+ 1

k0−1∑
k=1

k|(bk)−λ − (bk0)−λ |+ 2Mp

∞∑
m=m0

2m/q

∑
k∈Im

|(∆bk)−λ |
p

1/p
 .

Similarly,

∑
2

≤ sup
λ∈[0,1]

 π

n+ 1

k0−1∑
k=1

k|(bk)+
λ − (bk0)+

λ |+ 2Mp

∞∑
m=m0

2m/q

∑
k∈Im

|(∆bk)+
λ |
p

1/p
 .

Therefore,

∑
� π

n+ 1

k0−1∑
⊕ k=1

k|bk 	 bk0 | ⊕ 2Mp

∞∑
⊕ m=m0

2m/q

 ∑
⊕ k∈Im

|∆bk|p
1/p

=
′∑

+
′′∑
.

Given any ε > 0 by class Kp(F) we choose m0 so large that
∑′′ ≺ ε. Then setting k0 = 2m0−1, we take n

so large that
∑′ ≺ ε. To sum up we have

∑
≺ 2ε, if n is sufficiently large. This means that

lim
n→∞

 π∫
0

|stn(x)	 σtn(x)|dx	 bn
n+ 1

π∫
0

|D′n(x)|dx

 = [0]λ,

if and only if lim
n→∞

bn lnn = [0]λ ∵ 1
n

π∫
0

|D′n(x)|dx ≈ lnn

This proves the main result.

Remark 6.5. If (bk)
−
λ = (bk)

+
λ in above theorem then the following corollary is an application of above

theorem.

Corollary 6.6. [16] If {bk} is a null sequence and the series
∞∑
m=1

2m/q

( ∑
k∈Im

|∆bk|p
)1/p

is convergent for

some p > 1, then (i) g ∈ L1(0, π) if and only if
∞∑
k=1

|bk|
k < ∞. (ii) If g ∈ L1(0, π) then

∞∑
k=1

bk sin kx is the

Fourier series of g. (iii) lim
n→∞

π∫
0

|s̃n(x)− g(x)|dx = 0 if and only if lim
n→∞

bn lnn = 0.

Here s̃n(x) =
n∑
k=1

bk sin kx and lim
n→∞

s̃n(x) = g(x).
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7. Conclusion

Some useful results have been obtained by using level sets for defining series of fuzzy valued functions
like Fourier series. The applications of the obtained results include the generalization of integrability and
L1-convergence of fuzzy trigonometric series of fuzzy valued functions. One of the purpose of this work is to
extend the classical Fourier analysis to the fuzzy Fourier analysis. Futurework will be dedicated to obtain
necessary and sufficient conditions for fuzzy integrability and L1-convergence of fuzzy trigonometric series
under more generalized conditions on fuzzy coefficients.
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[5] J. W. Garrett, C. V. Stanojević, Necessary and sufficient conditions for L1-convergence of trigonometric series, Proc.

Amer. Math. Soc., 60 (1976), 68–71. 1
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