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Abstract

In this paper, we investigate nonlinear boundary problems for difference equations with causal operators.
Our boundary condition is given by a nonlinear function, and more general than ones given before. By
using the method of upper and lower solutions coupled with the monotone iterative technique, criteria on
the existence of extremal solutions are obtained, an example is also presented. c©2015 All rights reserved.
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1. Introduction

The qualitative properties of solutions for difference problems have attracted lots of researchers because
it arises frequently in many fields such as computing, electrical circuit analysis, numerous settings and forms,
biology, readers can refer [1, 7, 13, 14, 16, 17, 20] for details. As an important branch, boundary value prob-
lems (see [5, 11, 12, 19]), especially, difference equations with nonlinear boundary value problems have drawn
much attention. In 2008, Wang [15] investigated the first-order functional difference problems with nonlin-
ear boundary value conditions, obtained the existence of extremal solutions by using the monotone iterative
method. Immediately after it, he discussed in [18] the initial-value problems of nonlinear singular discrete
systems. However, difference equations with causal operators have not much studied and many aspects of
these equations are yet to be explored, see [8, 9]. A causal operator is a non-anticipative operator. Its theory
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has the powerful quality of unifying ordinary differential equations, integro differential equations, differential
equations with finite or infinite delay, Volterra integral equations and neutral functional equations. Readers
can refer to the monograph [10], papers [2, 3, 4, 6] for more details.

Motivated by the some recent work on difference equations involving causal operators and nonlinear
boundary value problems, this paper is devoted to investigate the following boundary value problems with
causal operators {

∆y(k − 1) = (Qy)(k), k ∈ Z[1, T ] = {1, 2, · · · , T},

B(y(0), y) = 0,
(1.1)

where ∆y(k−1) = y(k)−y(k−1), E1 = C(Z[1, T ],R), Q ∈ C(E1, E1) is a causal operator, B ∈ C(R×E1,R),
Q is bounded, and the next type of equations{

∆y(k) = (Qy)(k), k ∈ Z[0, T − 1] = {0, 1, · · · , T − 1},

B(y(0), y) = 0,
(1.2)

where ∆y(k) = y(k + 1)− y(k), E0 = C(Z[0, T − 1],R), Q ∈ C(E0, E0), B ∈ C(R× E0,R), Q is bounded.
The main interest of the paper lies in the fact that we consider nonlinear boundary conditions which,

of course, includes the usual linear boundary conditions (such as initial and periodic) and other general

conditions such as y(0) = max
j∈Z[0,T ]

y(j) and y(0) =
∑

j∈Z[0,T ]

y(j).

The paper is organized as follows. In Section 2, some comparison principles are established. In Sections
3, after introducing the definition of upper and lower solutions, we obtain existence of solutions for (1.1)
and (1.2) by Schauder fixed point. Moreover, the existence of extremal solutions for (1.1) and (1.2) are
established by utilizing the monotone iterative technique. At last, an example is given to illustrate the
results.

2. Comparison results

Definition 2.1. Suppose that Q ∈ C(E,E), then Q is said to be a causal map or a nonanticipative map if
u(s) = v(s), t0 ≤ s ≤ t ≤ T , where u, v ∈ E, then

(Qu)(s) = (Qv)(s), t0 ≤ s ≤ t.

Lemma 2.2 ([8]). Assume that L ∈ C(E1, E1) is a positive linear operator, M ∈ C(Z[1, T ],R+) with
R+ = [0,∞), y ∈ C(Z[0, T ],R) and{

∆y(k − 1) +M(k)y(k) + (Ly)(k) ≤ 0, k ∈ Z[1, T ]
y(0) ≤ 0,

and
T∑
i=1

(L1)(i)

i−1∏
j=1

(1 +M(j)) < 1, with 1(k) = 1, k ∈ Z[1, T ]. (2.1)

Then y(k) ≤ 0, k ∈ Z[0, T ].

Lemma 2.3 ([8]). Assume that L ∈ C(E0, E0) is a positive linear operator, M ∈ C(Z[0, T − 1],R+) with
R+ = [0,∞), y ∈ C(Z[0, T ],R) and{

∆y(k) +M(k)y(k) + (Ly)(k) ≤ 0, k ∈ Z[0, T − 1]
y(0) ≤ 0,
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and
T∑
i=1

(L1)(i)
i−1∏
j=1

(
1−M(j)

) < 1 with 1(k) = 1, k ∈ Z[0, T − 1]. (2.2)

Then y(k) ≤ 0, k ∈ Z[0, T ].

3. Existence results

Definition 3.1. Functions α, β ∈ E1 are said to be lower and upper solutions of problem (1.1), respectively,
if

∆α(k − 1) ≤ (Qα)(k), B(α(0), α) ≤ 0

and
∆β(k − 1) ≥ (Qβ)(k), B(β(0), β) ≥ 0.

Similarly, a function α ∈ E0 is said to be a lower solution of (1.2) if it satisfies{
∆α(k) ≤ (Qα)(k),
B(α(0), α) ≤ 0,

and an upper solution of (1.2) is defined analogously by reversing the inequalities of above.

For α, β, we write α ≤ β if α(k) ≤ β(k) for all k ∈ Z[1, T ]. Also, we denote [α, β] = {y, α(k) ≤ y(k) ≤
β(k)}.

Theorem 3.2 (Discrete Arzela-Ascoli Theorem [1]). Let A be a closed subset of C. If A is uniformly
boundary and the set {y(k) : y ∈ A} is relatively compact for each k ∈ Z[0, T ], then A is compact.

Theorem 3.3. Let (2.1) hold. Assume the following conditions hold,

(H0) the functions α, β are lower and upper solutions of (1.1), respectively, such that α ≤ β;

(H1) there exist the positive linear operator L ∈ C(E1, E1) and M ∈ C(Z[1, T ],R+) and

(Qu)(k)− (Qv)(k) ≥ −M(k)(u− v)− (L(u− v))(k), for α ≤ v ≤ u ≤ β;

(H2) B(u, ·) is a nonincreasing function for each u ∈ [α(0), β(0)].

Then (1.1) has at least one solution u ∈ [α, β].

Proof. Let P ∈ C(Z[1, T ],R) be defined by (Py)(k) = max[α(k),min[y(k), β(k)]]. Then (QPy)(k) defines a
continuous extension of Q on E1 which is also bounded since Q is assumed to be bounded.

We consider the following modified problem:{
∆y(k − 1) +M(k)y(k) + (Ly)(k) = σ(k),
y(0) = (P ȳ)(0),

(3.1)

where σ(k) = (QPy)(k) +M(k)(Py)(k) + (LPy)(k) and ȳ(0) = y(0)−B(y(0), y).
Let y be any solution of the problem (3.1). Note that problem (3.1) can be also written in the following

form

∆

[
y(k − 1)

k−1∏
i=1

(
1 +M(i)

)]
=
[
− (Ly)(k) + σ(k)

] k−1∏
i=1

(
1 +M(i)

)
for k ∈ Z[1, T ]. Summing it from 1 to k gives

y(k) =

[
y(0) +

k∑
i=1

(
− (Ly)(k) + σ(k)

) k−1∏
i=1

(
1 +M(i)

)]( k∏
j=1

(
1 +M(j)

))−1
≡ (φσy)(k)
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for k ∈ Z[0, T ]. Similarly, it is easy to see that if y is any solution of y = φσy, then y is a solution of problem
(3.1).

The continuity of M , L, σ imply that φ : E → E is continuous and bounded. This and Theorem 3.2
imply that φ is compact. Now, Schauder′s fixed point theorem implies that φ has a fixed point, and problem
(3.1) has a solution.

We can prove y ∈ [α, β]. Firstly, we prove α ≤ y, if p(k) = α(k)− y(k), k ∈ Z[0, T ], from the definition
of lower solution, we get

∆p(k − 1) = ∆α(k − 1)−∆y(k − 1) ≤ (Qα)(k)− [σ(k)−M(k)y(k)− (Ly)(k)]
≤ (Qα)(k)− (QPy)(k)−M(k)

(
(Py)(k)− y(k)

)
−
(
L(Py − y)

)
(k)

≤ −M(k)p(k)− (Lp)(k).

By Lemma 2.2, we have α ≤ y. Similarly, we conclude that y ∈ [α, β].
Next, we shall prove that α(0) ≤ y(0)−B(y(0), y) ≤ β(0).
If y(0)−B(y(0), y) < α(0), we obtain that y(0) = α(0), In consequence α(0) > α(0)−B(y(0), y). Since

B(α(0), ·) is nonincreasing in [α, β], and we know that y ∈ [α, β], we obtain that B(α(0), α) > 0, which
contradicts with the definition of the lower solution. Analogously, we can prove that y(0)−B(y(0), y) ≤ β(0).

Thus every solution u of (3.1)is a solution of (1.1), and it belongs to [α, β], and the proof is complete.

4. Main results

Theorem 4.1. Assume that the hypotheses of Theorem 3.3 are satisfied.
Then there exist monotone sequences {αn}, {βn} with α0 = α, β0 = β, such that lim

n→∞
αn(k) = ρ(k),

lim
n→∞

βn(k) = γ(k) uniformly on J , and ρ, γ are the minimal and maximal solutions of (1.1), respectively.

Proof. Let η ∈ [α, β], we consider the following problem:

(Pη)

{
∆y(k − 1) +M(k)y(k) + (Ly)(k) = (Qη)(k) +M(k)η(k) + (Lη)(k),
B(y(0), y) = 0,

since α ≤ η ≤ β, we have using (H1) and the defining of lower and upper solutions, that

∆α(k − 1) +M(k)α(k) + (Lα)(k)≤ (Qα)(k) +M(k)α(k) + (Lα)(k)
≤ (Qη)(k) +M(k)η(k) + (Lη)(k)

and
∆β(k − 1) +M(k)β(k) + (Lβ)(k)≥ (Qβ)(k) +M(k)β(k) + (Lβ)(k)

≥ (Qη)(k) +M(k)η(k) + (Lη)(k).

Thus α is a lower solution for (Pη). Analogously, β is an upper solution for (Pη).
Let ξ be a solution of problem (1.1) in [α, β]. Such a solution exists by Theorem 3.3. Clearly, ξ is a

solution of (Pξ). Furthermore, if η ≤ ξ, then

∆ξ(k − 1) +M(k)ξ(k) + (Lξ)(k) = (Qξ)(k) +M(k)ξ(k) + (Lξ)(k)
≥ (Qη)(k) +M(k)η(k) + (Lη)(k).

Thus, Theorem 3.3 assures that there exists at least one solution of the problem (Pη) on [α, ξ].
Analogously, we can show that if η ≥ ξ, and ξ is a solution of (Pξ), then (Pη) admits one solution on

[ξ, β].
Observe that for every solution τ of (1.1), τ is a solution of (Pτ ) and then if we take η ≤ τ (respectively,

η ≥ τ), the problem (Pη) admits one solution y ≤ τ (Resp. y ≥ τ)
Let α0 = α. The previous arguments prove that the problem (Pα) has at least one solution on [α, β].

Moreover, we choose
α1 = min{ξ ∈ [α, β] : ξ is a solution of(Pα)},
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we have that α ≤ α1 ≤ y for each solution y of (1.1).
Inductively, we define for each n ∈ N

αn+1 = min{ξ ∈ [αn, β] : ξ is a solution of(Pαn)}

Thus we obtain a nondecreasing sequence αn, with

α = α0 ≤ · · · ≤ αn ≤ β, ∀n ∈ N.

Since αn is increasing and bounded, we have {αn} converging to ρ uniformly. The continuity of B implies
that ρ is a solution of (1.1).

Reasoning analogously, we take β0 = β and define

βn+1 = max{ω ∈ [α, βn] : ω is a solution of(Pβn)}.

So we construct a nonincreasing sequence {βn} which converges to γ uniformly.
Finally, as αn ≤ y ≤ βn for each solution of (1.1), it clear that ρ and γ are the minimal and the maximal

solutions of (1.1) on [α, β], respectively. The proof is then finished.

We note that the difficulty in the construction of the monotone sequences is solving the nonlinear
equation B(y(0), y) = 0. In the following, we present a second way to construct the sequences, this method
is theoretically worse than first one, but in practical situations (B(u, v) = u−g(v)) would be more convenient.

Proof. Let η ∈ [α, β], we consider the following problem:

(Qη)

{
∆y(k − 1) +M(k)y(k) + (Ly)(k) = (Qη)(k) +M(k)η(k) + (Lη)(k),
y(0) = ςη,

where ςη is the minimal solution in [α0, β0] of the equations B(ςη, η) = 0. Since B is continuous and
B(α0, η) ≤ B(α0, α) ≤ 0 and 0 ≤ B(β0, β) ≤ B(β0, η), ςη is well defined.

Noticing that the hypotheses of Theorem 3.3 hold, problem (Qη) has at least one solutions (defining
B(u, v) = u− ςη). Next we prove the uniqueness of solution to this problem. If y1, y2 are solutions of (Qη),
set v1 = y1 − y2, and v2 = y2 − y1, then

v1(0) = 0, ∆v1(k − 1) +M(k)v1(k) + (Lv1)(k) = 0,

and
v2(0) = 0, ∆v2(k − 1) +M(k)v2(k) + (Lv2)(k) = 0,

from Lemma 2.2, we have that v1 = y1 − y2 ≤ 0, v2 = y2 − y1 ≤ 0, and so y1 = y2. Then problem (Qη) has
exactly on solution.

Define a mapping A by Aη = y, then the operator A has the following properties:

(a) α ≤ Aα, β ≥ Aβ;

(b) A is monotonically nondecreasing in [α, β], i.e., for any η1, η2 ∈ [α, β], η1 ≤ η2 implies Aη1 ≤ Aη2 .

To prove (a), set m = α− α1, where α1 = Aα. Employing (H0), we have

∆m(k − 1) +M(k)m(k) + (Lm)(k) ≤ 0,

note that m(0) ≤ 0, then based on Lemma 2.2, we get α ≤ α1.
Analogously, we have β ≥ Aβ.
To prove (b), let η1, η2 ∈ [α, β] such that η1 ≤ η2. Suppose that v1 = Aη1, v2 = Aη2 and m = v1 − v2,

we acquire
∆m(k − 1) +M(k)m(k) + (Lm)(k) = (Qη1)(k) +M(k)η1(k) + (Lη1)(k)

−(Qη2)(k)−M(k)η2(k)− (Lη2)(k)
≤ 0,
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and
B(x, η1) ≥ B(x, η2), for all x ∈ [α0, β0],

then Aη1(0) = ςη1 ≤ ςη2 = Aη2(0), thus m(0) ≤ 0. Based on Lemma 2.2 we have m(k) ≤ 0 on Z[1, T ], which
implies Aη1 ≤ Aη2.

Now define the sequences {αn}, {βn} by αn = Aαn−1, βn = βn−1 with α0 = α, β0 = β. Owing to (a)
and (b), one attains

α0 ≤ α1 ≤ α2 ≤ . . . ≤ αn ≤ . . . ≤ βn ≤ . . . ≤ β2 ≤ β1 ≤ β0.

Consequently, there exist ρ and r such that lim
n→∞

αn(k) = ρ(k) and lim
j→∞

βn(k) = r(k) uniformly and

monotonically on Z[1, T ].
Using the definition of (Qη) and taking the limit as n→∞, we arrive that ρ and r are the solutions of

problem (1.1).
To prove that ρ, r are extremal solutions of problem (1.1), let y be any solution of (1.1) such that

α ≤ y ≤ β. Based on the monotonically nondecreasing property of A, we can easily see that αn+1 ≤ y by
αn+1 = Aαn ≤ Ay = y. Similarly, we can get y ≤ βn of Z[1, T ]. Since α0 ≤ y ≤ β0, by induction we derives
αn ≤ y ≤ βn for every n. Taking the limit as n→∞, we conclude ρ(k) ≤ y(k) ≤ r(k), and the proof is then
finished.

Next, we compare the two different ways to approximate the extremal solutions.
Suppose that lower solutions αn and ᾱn are obtained by the two different methods, respectively. First

we show that α1 ≥ ᾱ1, set v = ᾱ1 − α1, we have

∆v(k − 1) +M(k)v(k) + (Lv)(k) = 0,

since ᾱ1(0) is the minimal solution of B(·, α) in [α0, β0] and

B(x, α) ≥ B(x, α1), for all x ∈ [α0, β0],

then ᾱ1(0) ≤ α1(0), thus v(0) ≤ 0. Based on Lemma 2.2 we have v(k) ≤ 0 on Z[1, T ], which implies ᾱ1 ≤ α1.
Now, assume for n ≥ 2, the following inequalities hold: ᾱn−1 ≤ αn−1, taking v = ᾱn − αn, we may get

B(x, ᾱn−1) ≥ B(x, αn−1), for all x ∈ [α0, β0],

and owe to the fact B(αn−1(0), αn−1) = 0, we derive

ᾱn(0) ≤ αn−1(0) ≤ αn(0),

then v(0) ≤ 0, and using the definition of ᾱn and αn, we attain

∆v(k − 1) +M(k)v(k) + (Lv)(k) ≤ 0.

By employing Lemma 2.2 we have v(k) ≤ 0 on Z[1, T ], which implies ᾱn ≤ αn. Using the mathematical
induction we get ᾱn ≤ αn, for all n ∈ N.

The same arguments prove that βn ≤ β̄n, for all n ∈ N.
So we can see, the second method is theoretically worse than first one, but in practical case of B(u, v) =

u− g(v), monotone sequences are obtained more explicitly.
The following two theorems we formulate without any proof since they are similar to Theorem 3.3 and

Theorem 4.1.

Theorem 4.2. Suppose that assumption (2.2) and (H2) of Theorem 3.3 hold. Let α, β be lower and upper
solutions of (1.2), respectively, with α ≤ β, and assume that
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(H3) there exist the positive linear operator L ∈ C(E0, E0) and M ∈ C(Z[0, T − 1],R+) and

(Qu)(k)− (Qv)(k) ≥ −M(k)(u− v)− (L(u− v))(k), for α ≤ u ≤ v ≤ β.

Then (1.2) has at least one solution u ∈ [α, β].

Theorem 4.3. Assume that the hypotheses of Theorem 4.2 are satisfied.
Then there exist two monotone sequences {αn}, {βn} such that α = α0 ≤ · · · ≤ αn ≤ · · · ≤ βn ≤ · · · ≤ β0 = β
which converge uniformly to the minimal and maximal solutions of (1.2), respectively.

5. Example

Consider the following problem:{
∆y(k − 1) = − 3k

100
y(k) +

3k

100
y2(k)− k

100
y(k − 1), k ∈ Z[1, T ],

B(y(0), y) = 2y(0)− y(k) = 0.
(5.1)

Now, define M(k) =
3k

100
, (Ly)(k) =

k

100
y(k − 1), it is easy to verify that the conditions (H1) and (H2) of

Theorem 3.3 are satisfied, then we assume that

u =

T∑
i=1

(L1)(i)

i−1∏
j=1

(
1 +M(j)

)
=

1

100

T∑
i=1

i

i−1∏
j=1

(
1 +

3j

100

)
≤ T

100

T∑
i=1

(
1 +

3T

100

)i−1
=

1

3

[
(1 +

3T

100
)T − 1

]
< 1,

this provided that T ≤ 7. Now we put α0 = −1

2
, β0 =

1

2
, it is easy to show that α0, β0 are lower and upper

solutions of (5.1), respectively, then problem has extremal solutions by Theorem 4.1.
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