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Abstract

Many authors have introduced and investigated certain extended fractional derivative operators. The main
object of this paper is to give an extension of the Riemann-Liouville fractional derivative operator with
the extended Beta function given by Srivastava et al. [22] and investigate its various (potentially) useful
and (presumably) new properties and formulas, for example, integral representations, Mellin transforms,
generating functions, and the extended fractional derivative formulas for some familiar functions. c⃝2015
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1. Introduction

The subject of fractional calculus (that is, calculus of integrals and derivatives of any arbitrary real or
complex order) has gained considerable popularity and importance during the past four decades or so, due
mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of science and
engineering (see, e.g., [1, 9, 11, 13, 14, 25]). The review-cum-survey paper [13] is gladly recommended for the
readers who would like to know some of the major documents and events in the area of fractional calculus
that took place since 1974 up to 2010. In recent years, due to the above-mentioned motivation, certain
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extended fractional derivative operators associated with special functions have been actively investigated.
Many authors have introduced certain extended fractional derivative operators (see, e.g., [12, 20]). Recently,
Srivastava et al. [22] introduced the following extended Beta function:

Definition 1.1. The extended beta function B(α,β;κ,µ)
p (x, y) with ℜ (p) > 0 is defined by

B(α,β;κ,µ)
p (x, y) =

∫ 1

0
tx−1 (1− t)y−1

1F1

(
α;β;− p

tκ (1− t)µ

)
dt, (1.1)

where
κ ≥ 0, µ ≥ 0, min {ℜ (α) ,ℜ (β)} > 0, ℜ (x) > −ℜ (κα) , ℜ (y) > −ℜ (µα) .

Remark 1.2. Various properties of the function (1.1) have been studied by Luo et al. [12]. The special case of
(1.1) when p = 0 is seen to immediately reduce to the familiar beta function B (x, y) (min{ℜ (x) ,ℜ (y)} > 0)
(see, e.g., [23, Section 1.1]). Other various special cases of (1.1) obtained by specializing the parameters
have been studied by many authors (see [5, 6, 7, 16, 21]).

Throughout this paper, let C, R+, Z−, and N be sets of complex numbers, positive real numbers, negative
integers, and positive integers, respectively, and N0 := N ∪ {0} and Z−

0 := Z− ∪ {0}. We also recall to use
the following definition [22].

Definition 1.3. The extended Gauss hypergeometric function is defined by

F (α,β;κ,µ)
p (a, b; c; z) :=

∞∑
n=0

(a)n
B

(α,β;κ,µ)
p (b+ n, c− b)

B (b, c− b)

zn

n!(
|z| < 1; min{ℜ(α),ℜ(β),ℜ(κ),ℜ(µ)} > 0; ℜ(c) > ℜ(b) > 0; ℜ(p) = 0

)
,

(1.2)

where B(u, v) is the familiar Beta function defined by (see, e.g., [23, p. 8])

B(u, v) =



∫ 1

0
tu−1(1− t)v−1 dt (ℜ(u) > 0; ℜ(v) > 0)

Γ(u) Γ(v)

Γ(u+ v)

(
u, v ∈ C \ Z−

0

)
.

(1.3)

Here Γ denotes the Euler’s Gamma function (see, e.g., [23, Section 1.1]).

The special case of (1.2) when p = 0 is noted to reduce to the ordinary Gauss hypergeometric function

2F1 (a, b; c; z) (see, e.g., [23, Section 1.5]).

Motivated by the various extensions of the fractional derivative operators which have recently been
considered by many authors, here, we aim to introduce an extended Riemann-Liouville fractional derivative

operator involving the generalized hypergeometric-type function F
(α,β;κ,µ)
p (a, b; c; z) (1.2) and investigate

some of its properties. Next, extensions of some extended hypergeometric functions and their integral
representations are presented by using the extended Riemann-Liouville fractional derivative operator. The
linear and bilinear generating relations for the extended hypergeometric functions, their representations in
terms of the FoxH-function and Mellin transforms of the extended fractional derivatives are also determined.
Finally, we define the extended fractional derivative operator in a different form with respect to an arbitrary,
regular and univalent function based on the Cauchy integral formula.
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2. Extended Hypergeometric Functions

In this section we define the extended Gauss hypergeometric function Fp;κ,µ, the Appell hypergeometric
functions F1,p;κ,µ, F2,p;κ,µ and the Lauricella hypergeometric function FD

3,p;κ,µ and then obtain their integral
representations involving the extended Gauss hypergeometric function (1.2). Throughout this section we
assume m ∈ N0.

Definition 2.1. A further extension of the extended Gauss hypergeometric function F
(α,β;κ,µ)
p is defined by

Fp;κ,µ(a, b; c; z;m) :=
∞∑
n=0

(a)n(b)n
(c)n

Bα,β;κ,µ
p (b+ n, c− b+m)

B(b+ n, c− b+m)

zn

n!(
p ≥ 0; ℜ(κ) > 0; ℜ(µ) > 0; m < ℜ(b) < ℜ(c); |z| < 1

)
.

(2.1)

Definition 2.2. A further extension of the extended Appell hypergeometric function F1 is defined by

F1,p;κ,µ(a, b, c; d;x, y;m)

:=
∞∑

n,k=0

(a)n+k(b)n(c)k
(d)n+k

Bα,β;κ,µ
p (a+ n+ k, d− a+m)

B(a+ n+ k, d− a+m)

xn

n!

yk

k!(
p ≥ 0; ℜ(κ) > 0; ℜ(µ) > 0; m < ℜ(a) < ℜ(d); |x| < 1; |y| < 1

)
.

(2.2)

Definition 2.3. A further extension of the Appell hypergeometric function F2 is defined by

F2,p;κ,µ(a, b, c; d, e;x, y;m) :=
∞∑

n,k=0

[
(a)n+k(b)n(c)k

(d)n(e)k

× Bα,β;κ,µ
p (b+ n, d− b+m)

B(b+ n, d− b+m)

Bα,β;κ,µ
p (c+ k, e− c+m)

B(c+ k, e− c+m)

xnzk

n!k!

]
(
p ≥ 0; ℜ(κ) > 0; ℜ(µ) > 0; m < ℜ(b) < ℜ(d); m < ℜ(c) < ℜ(e); |x|+ |y| < 1

)
.

(2.3)

Definition 2.4. A further extension of the Lauricella hypergeometric function F 3
D is defined by

F 3
D,p;κ,µ(a, b, c, d; e;x, y, z;m)

:=
∞∑

n,k,r=0

(a)n+k+r(b)n(c)k(d)r
(e)n+k+r

Bα,β;κ,µ
p (a+ n+ k + r, e− a+m)

B(a+ n+ k + r, e− a+m)

xn

n!

yk

k!

zr

r!(
p ≥ 0; ℜ(κ) > 0; ℜ(µ) > 0; m < ℜ(a) < ℜ(e); |x| < 1; |y| < 1; |z| < 1

)
.

(2.4)

It is noted that the special cases of (2.1), (2.2), (2.3), and (2.4) when p = 0 and m = 0 reduce to the
well-known Gauss hypergeometric function 2F1, the Appell functions F1, F2, and the Lauricella function
F 3
D, respectively (see, e.g., [24, p. 53 and p. 61]).

We present certain integral representations of the extended hypergeometric functions (2.1), (2.2), (2.3)
and (2.4) by the following theorem.

Theorem 2.5. The following integral representations for the extended hypergeometric functions Fp;κ,µ,
F1,p;κ,µ, F2,p;κ,µ and FD,p;κ,µ hold true:

Fp;κ,µ(a, b; c; z;m) =
1

B(b, c− b+m)

×
∫ 1

0

{
tb−1(1− t)c−b+m−1

1F1

(
α;β;− p

tκ (1− t)µ

)
2F1(a, c+ n; c; zt)

}
dt;

(2.5)
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F1,p;κ,µ(a, b, c; d;x, y;m) =
1

B(a, d− a+m)

∫ 1

0

{
ta−1(1− t)d−a+m−1

× 1F1

(
α;β;− p

tκ (1− t)µ

)
F1(d+m, b, c; d;xt, yt)

}
dt;

(2.6)

F2,p;κ,µ(a, b, c; d, e;x, y;m)

=
1

B(b, d− b+m)B(c, e− c+m)

∫ 1

0

∫ 1

0

{
tb−1(1− t)d−b+m−1

× uc−1(1− u)e−c+m−1
1F1

(
α;β;− p

tκ (1− t)µ

)
× 1F1

(
α;β;− p

uκ (1− u)µ

)
F2(a, d+m, e+m; d, e;xt, yu)

}
dtdu;

(2.7)

F 3
D,p;κ,µ(a, b, c, d; e;x, y, z;m)

=
1

B(a, e− a+m)

∫ 1

0

{
ta−1(1− t)e−a+m−1

× 1F1

(
α;β;− p

tκ (1− t)µ

)
F 3
D(e+m, b, c, d; e;xt, yt, zt)

}
dt.

(2.8)

Proof. The integral representations (2.5)–(2.8) can be obtained directly by replacing the function B
(α,β;κ,µ)
p

with its integral representation in (2.1)–(2.4), respectively.

3. Extended Riemann-Liouville Fractional Derivative Operator

In this section, we consider the extended Riemann-Liouville type fractional derivative operator and then
determine the extended fractional derivatives of some elementary functions. For this purpose, we begin by
recalling the classical Riemann-Liouville fractional derivative of f(z) of order ν defined by

Dν
zf(z) :=

1

Γ(−ν)

∫ z

0
(z − t)−ν−1f(t) dt (ℜ(ν) < 0),

where the integration path is a line from 0 to z in the complex t-plane. When ℜ(ν) ≥ 0, let m ∈ N be
the smallest integer greater than ℜ(ν) and so m − 1 ≤ ℜ(ν) < m. Then the Riemann-Liouville fractional
derivative of f(z) of order ν is defined by

Dν
zf(z) :=

dm

dzm
Dν−m

z f(z),

=
dm

dzm

{
1

Γ(m− ν)

∫ z

0
(z − t)m−ν−1f(t) dt

}
.

The fractional integral and derivative operators involving various special functions have found significant
importance and applications in various areas, for example, mathematical physics as well as mathematical
analysis. In recent years, many authors have developed various extended fractional derivative formulas of
Riemann-Liouville type. Here, we present some new extended Riemann-Liouville type fractional derivative
formulas.

Definition 3.1. The extended Riemann-Liouville fractional derivative of f(z) of order ν is defined by

Dν,p;κ,µ
z f(z) :=

1

Γ(−ν)

∫ z

0
(z − t)−ν−1f(t)1F1

(
α;β;− pzκ+µ

tκ (z − t)µ

)
dt(

ℜ(ν) < 0; ℜ(p) > 0; ℜ(κ) > 0; ℜ(µ) > 0
)
.

(3.1)
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When ℜ(ν) ≥ 0, let m ∈ N be the smallest integer greater than ℜ(ν) and so m− 1 ≤ ℜ(ν) < m. Then the
extended Riemann-Liouville fractional derivative of f(z) of order ν is defined by

Dν,p;κ,µ
z f(z) :=

dm

dzm
Dν−m,p;κ,µ

z f(z)

=
dm

dzm

{
1

Γ(m− ν)

∫ z

0
(z − t)m−ν−1f(t)1F1

(
α;β;− pzκ+µ

tκ (z − t)µ

)
dt

}
(
ℜ(p) > 0; ℜ(κ) > 0; ℜ(µ) > 0

)
.

(3.2)

Remark 3.2. The special case of (3.1) and (3.2) when p = 0 becomes the classical Riemann-Liouville
fractional derivative. The special case of (3.1) and (3.2) when α = β and κ = µ = 1 is seen to reduce to the
known one [20].

We consider the extended fractional derivative of the function zλ.

Theorem 3.3. Let m− 1 ≤ ℜ(ν) < m for some m ∈ N and ℜ(ν) < ℜ(λ). Then we have

Dν,p;κ,µ
z

{
zλ
}
=

Γ(λ+ 1)Bα,β;κ,µ
p (λ+ 1,m− ν)

Γ(λ− ν + 1)B(λ+ 1,m− ν)
zλ−ν . (3.3)

Proof. Applying (3.2) in Definition 3.1 to the function zλ, we have

Dν,p;κ,µ
z

{
zλ
}
=

dm

dzm

{
1

Γ(m− ν)

∫ z

0
(z − t)m−ν−1 tλ1F1

(
α;β;− pzκ+µ

tκ (z − t)µ

)
dt

}
.

Setting t = zu in this expression, we get

Dν,p;κ,µ
z

{
zλ
}
=

(
dm

dzm
zm+λ−ν

)
× 1

Γ(m− ν)

∫ 1

0
(1− u)m−ν−1 uλ+1−1

1F1

(
α;β;− p

uκ (1− u)µ

)
du.

Considering
dm

dzm
zm+λ−ν =

Γ(1 + λ− ν +m)

Γ(1 + λ− ν)
zλ−ν ,

in view of (1.1) and the second identity of (1.3), we are led to the desired result.

We apply the extended Riemann-Liouville fractional derivative to a function f(z) analytic at the origin.

Theorem 3.4. Let m − 1 ≤ ℜ(ν) < m for some m ∈ N. Suppose that a function f(z) is analytic at the

origin with its Maclaurin expansion given by f(z) =

∞∑
n=0

an z
n (|z| < ρ) for some ρ ∈ R+. Then we have

Dν,p;κ,µ
z {f(z)} =

∞∑
n=0

anD
ν,p;κ,µ
z {zn} .

Proof. Applying (3.2) in Definition 3.1 to the function f(z) with its series expansion, we have

Dν,p;κ,µ
z {f(z)}

=
dm

dzm

{
1

Γ(m− ν)

∫ z

0
(z − t)m−v−1

1F1

(
α;β;− pzκ+µ

tκ (z − t)µ

) ∞∑
n=0

an t
n dt

}
.
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Since the power series converges uniformly on any closed disk centered at the origin with its radius smaller
than ρ, so does the series on the line segment from 0 to a fixed z for |z| < ρ. This fact guarantees term-by-
term integration as follows:

Dν,p;κ,µ
z {f(z)} =

∞∑
n=0

an
dm

dzm

{
1

Γ(m− ν)

∫ z

0
(z − t)m−ν−1

1F1

(
α;β;− pzκ+µ

tκ (z − t)µ

)
tn dt

}

=

∞∑
n=0

anD
ν,p;κ,µ
z {zn} .

The following theorem is seen to immediately follow from Theorems 3.3 and 3.4.

Theorem 3.5. Let m− 1 ≤ ℜ(ν) < m < ℜ(λ) for some m ∈ N. Suppose that a function f(z) is analytic at

the origin with its Maclaurin expansion given by f(z) =

∞∑
n=0

an z
n (|z| < ρ) for some ρ ∈ R+. Then we have

Dν,p;κ,µ
z

{
zλ−1f(z)

}
=

∞∑
n=0

anD
ν,p;κ,µ
z

{
zλ+n−1

}
=

Γ(λ)zλ−ν−1

Γ(λ− ν)

∞∑
n=0

an
(λ)n

(λ− ν)n

Bα,β;κ,µ
p (λ+ n,m− ν)

B(λ+ n,m− ν)
zn.

We present two subsequent theorems which may be useful to find certain generating function relations.

Theorem 3.6. Let m− 1 ≤ ℜ(λ− ν) < m < ℜ(λ) for some m ∈ N. Then we have

Dλ−ν,p;κ,µ
z

{
zλ−1(1− z)−α

}
=

Γ(λ)zν−1

Γ(ν)

∞∑
n=0

(α)n(λ)n
(ν)n

Bα,β;κ,µ
p (λ+ n, ν − λ+m)

B(λ+ n, ν − λ+m)

zn

n!

=
Γ(λ)

Γ(ν)
zν−1Fp;κ,µ(α, λ; ν; z;m) (|z| < 1; α ∈ C). (3.4)

Proof. Using the generalized binomial theorem:

(1− z)−α =

∞∑
n=0

(α)n
n!

zn (|z| < 1; α ∈ C)

and applying Theorems 3.3 and 3.4, we obtain

Dλ−ν,p;κ,µ
z {zλ−1(1− z)−α} = Dλ−ν,p;κ,µ

z

{
zλ−1

∞∑
n=0

(α)n
zn

n!

}

=
∞∑
n=0

(α)n
n!

Dλ−ν,p;κ,µ
z

{
zλ+n−1

}
=

∞∑
n=0

(α)n
n!

Γ(λ+ n)

Γ(ν + n)

Bα,β;κ,µ
p (λ+ n,m− λ+ ν)

B(λ+ n,m− λ+ ν)
zν+n−1

=
Γ(λ)

Γ(ν)
zν−1

∞∑
n=0

(α)n(λ)n
(ν)n

Bα,β;κ,µ
p (λ+ n,m− λ+ ν)

B(λ+ n,m− λ+ ν)

zn

n!

=
Γ(λ)

Γ(ν)
zν−1Fp;κ,µ(α, λ; ν; z;m).
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Theorem 3.7. Let m− 1 ≤ ℜ(λ− ν) < m < ℜ(λ) for some m ∈ N. Then we have

Dλ−ν,p;κ,µ
z

{
zλ−1(1− az)−α(1− bz)−β

}
=

Γ(λ)

Γ(ν)
zν−1

∞∑
n,k=0

(λ)n+k(α)n(β)k
(ν)n+k

Bα,β;κ,µ
p (λ+ n+ k, ν − λ+m)

B(λ+ n+ k, ν − λ+m)

(az)n

n!

(bz)k

k!

=
Γ(λ)

Γ(ν)
zν−1F1,p;κ,µ(λ, α, β; ν; az; bz;m)

(|az| < 1; |bz| < 1; a, b, α, β ∈ C).

(3.5)

Proof. Using the binomial theorems for (1 − az)−α and (1 − bz)−β , as in the proof of (3.6), we can prove
(3.5). The details of its proof are omitted.

Similarly as in Theorems 3.6 and 3.7, we can obtain the following expression.

Theorem 3.8. Let m− 1 ≤ ℜ(λ− ν) < m < ℜ(λ) for some m ∈ N. Then we have

Dλ−ν,p;κ,µ
z

{
zλ−1(1− az)−α(1− bz)−β(1− cz)−γ

}
=

Γ(λ)

Γ(ν)
zν−1

∞∑
n,k,r=0

(λ)n+k+r(α)n(β)k(γ)r
(ν)n+k+r

× Bα,β;κ,µ
p (λ+ n+ k + r, ν − λ+m)

B(λ+ n+ k + r, ν − λ+m)

(az)n

n!

(bz)k

k!

(cz)r

r!

=
Γ(λ)

Γ(ν)
zν−1F 3

D,p;κ,µ(λ, α, β, γ; ν; az; bz; cz;m)

(|az| < 1; |bz| < 1; |cz| < 1; a, b, α, β, γ ∈ C).

(3.6)

Theorem 3.9. Let
m− 1 ≤ ℜ(λ− ν) < m < ℜ(λ)

and
m < ℜ(β) < ℜ(γ)

for some m ∈ N. Then we have

Dλ−ν,p;κ,µ
z

{
zλ−1(1− z)−αFp;κ,µ(α, β; γ;

x

1− z
;m)

}
=

Γ(λ)

Γ(µ)
zν−1

∞∑
n,k=0

{
(α)n+k(β)n(λ)k

(γ)n(ν)k

Bα,β;κ,µ
p (β + n, γ − β +m)

B(β + n, γ − β +m)

× Bp;κ,µ(λ+ k, ν − λ+m)

B(λ+ k, ν − λ+m)

xnzk

n!k!

}

=
Γ(λ)

Γ(µ)
zν−1F2,p;κ,µ(α, β, λ; γ, ν;x, z;m)

(|x|+ |z| < 1; α ∈ C).

(3.7)
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Proof. Using the binomial theorem for (1− z)−α and applying the Definition 2.1 for Fp;κ,µ, we get

Dλ−ν,p;κ,µ
z

{
zλ−1(1− z)−αFp;κ,µ(α, β; γ;

x

1− z
;m)

}
= Dλ−ν,p;κ,µ

z

{
zλ−1(1− z)−α

∞∑
n=0

(α)n(β)n
(γ)nn!

Bα,β;κ,µ
p (β + n, γ − β +m)

B(β + n, γ − β +m)

(
x

1− z

)n
}

= Dλ−ν,p;κ,µ
z

{
zλ−1(1− z)−α−n

∞∑
n=0

(α)n(β)n
(γ)n

Bα,β;κ,µ
p (β + n, γ − β +m)

B(β + n, γ − β +m)

xn

n!

}

=

∞∑
n=0

(α)n(β)n
(γ)n

Bα,β;κ,µ
p (β + n, γ − β +m)

B(β + n, γ − β +m)

xn

n!
Dλ−ν,p;κ,µ

z

{
zλ−1(1− z)−α−n

}
.

We therefore have

Dλ−ν,p;κ,µ
z

{
zλ−1(1− z)−αFp;κ,µ(α, β; γ;

x

1− z
;m)

}
=

Γ(λ)

Γ(ν)
zν−1

∞∑
n=0

∞∑
k=0

{
(α)n+k(β)n(λ)k

(γ)n(ν)k

× Bα,β;κ,µ
p (β + n, γ − β +m)

B(β + n, γ − β +m)

Bα,β;κ,ν
p (λ+ k, ν − λ+m)

B(λ+ k, ν − λ+m)

xnzk

n!k!

}

=
Γ(λ)

Γ(ν)
zν−1F2,p;κ,µ(α, β, λ; γ, ν;x, z;m).

4. Generating Functions Involving the Extended Gauss Hypergeometric Function

In this section, we establish some linear and bilinear generating relations for the extended hypergeometric
function Fp;κ,µ by using Theorems 3.6, 3.7 and 3.9.

Theorem 4.1. Let m− 1 < ℜ(λ− ν) < m < ℜ(λ) for some m ∈ N. Then we have

∞∑
n=0

(α)n
n!

Fp;κ,µ(α+ n, λ; ν; z;m)tn = (1− t)−αFp;κ,µ

(
α, λ; ν;

z

1− t
;m

)
(|z| < min{1, |1− t|}; α ∈ C).

(4.1)

Proof. We start by recalling the elementary identity (see [24, p. 291] and [20, p. 1832]):

[(1− z)− t]−α = (1− t)−α

(
1− z

1− t

)−α

and expand its left-hand side to obtain

(1− z)−α
∞∑
n=0

(α)n
n!

(
t

1− z

)n

= (1− t)−α

(
1− z

1− t

)−α

(|t| < |1− z|).

Multiplying both sides of the above equality by zλ−1 and applying the extended Riemann-Liouville fractional
derivative operator Dλ−ν,p;κ,µ

z on both sides, we find

Dλ−ν,p;κ,µ
z

{ ∞∑
n=0

(α)nt
n

n!
zλ−1(1− z)−α−n

}
= Dλ−ν,p;κ,µ

z

{
(1− t)−αzλ−1

(
1− z

1− t

)−α
}
.
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Uniform convergence of the involved series makes it possible to exchange the summation and the fractional
operator to give

∞∑
n=0

(α)n
n!

Dλ−ν,p;κ,µ
z

{
zλ−1(1− z)−α−n

}
tn = (1− t)−αDλ−ν,p;κ,µ

z

{
zλ−1

(
1− z

1− t

)−α
}
.

The result then follows by applying Theorem 3.6 to both sides of the last identity.

Theorem 4.2. Let m− 1 < ℜ(λ− ν) < m < ℜ(λ) for some m ∈ N. Then we have

∞∑
n=0

(α)n
n!

Fp;κ,µ(β − n, λ; ν; z;m)tn = (1− t)−αF1,p;κ,µ

(
β, α, λ; ν; z;

−zt
1− t

;m

)
(α, β ∈ C; |z| < 1; |t| < |1− z|; |z||t| < |1− t|) .

Proof. Considering the following identity (see [24, p. 291] and [7, p. 595]):

[1− (1− z)t]−α = (1− t)−α

(
1 +

zt

1− t

)−α

and expanding its left-hand side as a power series, we get

∞∑
n=0

(α)n
n!

(1− z)ntn = (1− t)−α

(
1− −zt

1− t

)−α

(|t| < |1− z|).

Multiplying both sides by zλ−1(1 − z)−β and applying the definition of the extended Riemann-Liouville

fractional derivative operator Dλ−ν,p;κ,µ
z on both sides, we find

Dλ−ν,p;κ,µ
z

{ ∞∑
n=0

(α)n
n!

zλ−1(1− z)−β(1− z)ntn

}

= Dλ−ν,p;κ,µ
z

{
(1− t)−αzλ−1(1− z)−β

(
1− −zt

1− t

)−α
}
.

The given conditions are found to allow us to exchange the order of the summation and the fractional
derivative to yield

∞∑
n=0

(α)n
n!

Dλ−ν,p;κ,µ
z

{
zλ−1(1− z)−β+n

}
tn

= (1− t)−αDλ−ν,p;κ,µ
z

{
zλ−1(1− z)−β

(
1− −zt

1− t

)−α
}
.

Finally the result follows by using Theorems 3.6 and 3.7.

Theorem 4.3. Let
m− 1 < ℜ(β − γ) < m < ℜ(β)

and
m < ℜ(λ) < ℜ(ν)

for some m ∈ N. Then we have

∞∑
n=0

(α)n
n!

Fp;κ,µ(α+ n, λ; ν; z;m)Fp;κ,µ(−n, β; γ;u;m) = F2,p;κ,µ

(
α, λ, β; ν, γ; z,

−ut
1− t

;m

)
(
α ∈ C; |z| < 1;

∣∣∣∣1− u

1− z
t

∣∣∣∣ < 1;

∣∣∣∣ z

1− t

∣∣∣∣+ ∣∣∣∣ ut

1− t

∣∣∣∣ < 1

)
.
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Proof. Replacing t by (1− u)t in (4.1) and multiplying both sides of the resulting identity by uβ−1 gives

∞∑
n=0

(α)n
n!

Fp;κ,µ(α+ n, λ; ν; z;m)uβ−1(1− u)ntn

= uβ−1[1− (1− u)t]−αFp;κ,µ

(
α, λ; ν;

z

1− (1− u)t
;m

)
.

Applying the fractional derivative Dλ−ν,p;κ,µ
u to both sides of the resulting identity and changing the order

of the summation and the fractional derivative yields

∞∑
n=0

(α)n
n!

Fp;κ,µ(α+ n, λ; ν; z;m)Dβ−γ,p;κ,µ
u

{
uβ−1(1− u)n

}
tn

= Dβ−γ,p;κ,µ
u

{
uβ−1[1− (1− u)t]−αFp;κ,µ

(
α, λ; ν;

z

1− (1− u)t
;m

)}
(|(1− u)t| < 1; |ut| < |1− t|) .

The last identity can be written as follows:

∞∑
n=0

(α)n
n!

Fp;κ,µ(α+ n, λ; ν; z;m)Dβ−γ,p;κ,µ
u

{
uβ−1(1− u)n

}
tn

= Dβ−γ,p;κ,µ
u

{
uβ−1

[
1− −ut

1− t

]−α

Fp;κ,µ

(
α, λ; ν;

z

1− −ut
1−t

;m

)}
.

Finally the use of Theorems 3.6 and 3.9 in the resulting identity is seen to give the desired result.

5. Mellin Transforms and Further Results

In this section, we first obtain the Mellin transform of the extended Beta function given by (1.1) and
use this transform to find the Mellin transform of the extended Riemann-Liouville fractional derivative
operator. We then apply the extended fractional derivative operator (6.2) to the familiar functions ez, 2F1

and represent zλ in terms of the Fox H-function.
The following three theorems pertain to the Mellin transforms of the extended Beta function and

Riemann-Liouville fractional derivatives of two functions.

Theorem 5.1. Let ℜ(s) > 0, ℜ(x+κ s) > 0, ℜ(y+µ s) > 0 and p > 0. Then the following Mellin transform
holds true:

M
[
Bα,β;κ,µ

p (x, y) : s
]
= B(x+ κs, y + µs) Γ(α,β)(s),

where (see [20])

Γ(α,β)(s) :=

∫ ∞

0
bs−1

1F1 (α;β;−b) db

(ℜ(s) > 0, ℜ(α+ s) > 0, ℜ(β + s) > 0).

(5.1)

Proof. Taking the Mellin transform of Bα,β;κ,µ
p (x, y), we find

M
[
Bα,β;κ,µ

p (x, y) : s
]

=

∫ ∞

0
ps−1

∫ 1

0
tx−1 (1− t)y−1

1F1

(
α;β;− p

tκ (1− t)µ

)
dt dp.

(5.2)
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Since, under the given conditions,

F (t) :=

∫ ∞

0
ps−1 tx−1 (1− t)y−1

1F1

(
α;β;− p

tκ (1− t)µ

)
dp

converges for each point t ∈ (0, 1) converges uniformly on (0, 1), the order of integrations in (5.2) can be
interchanged. We therefore have

M
[
Bα,β;κ,µ

p (x, y) : s
]

=

∫ 1

0
tx−1 (1− t)y−1

{∫ ∞

0
ps−1

1F1

(
α;β;− p

tκ (1− t)µ

)
dp

}
dt.

(5.3)

Setting ω = p
tκ(1−t)µ

, we have

M
[
Bα,β;κ,µ

p (x, y) : s
]

=

∫ 1

0
tx+κs−1 (1− t)y+µs−1

{∫ ∞

0
ωs−1

1F1 (α;β;−ω) dω
}
dt.

(5.4)

Hence it is easy to see the desired result.

Theorem 5.2. Let ℜ(s) > 0, ℜ(x + κ s) > 0, ℜ(y + µ s) > 0, p > 0, and ℜ(λ) > m − 1 for some m ∈ N.
Then we have

M
[
Dν,p;κ,µ

z

{
zλ
}
: s
]
=

Γ(λ+ 1)Γ(α,β)(s)B(m− ν + s, λ−m+ s+ 1)

Γ(λ− ν + 1)B(m− ν, λ+ 1)
zλ−ν .

Proof. Taking the Mellin transform and using Theorem 3.3, we have

M

[
Dν,p;κ,µ

z

{
zλ
}
: s

]
=

∫ ∞

0
ps−1Dν,p;κ,µ

z

{
zλ
}
dp

=

∫ ∞

0
ps−1Γ(λ+ 1)Bα,β;κ,µ

p (m− ν, λ+ 1)

Γ(λ− ν + 1)B(m− ν, λ+ 1)
zλ−νdp

=
Γ(λ+ 1)zλ−ν

Γ(λ− ν + 1)B(m− ν, λ+ 1)

∫ ∞

0
ps−1Bα,β;κ,µ

p (m− ν, λ+ 1)dp.

Applying Theorem 5.1 to the last integral yields the desired result.

Theorem 5.3. Let m− 1 ≤ ℜ(ν) < m for some m ∈ N, ℜ(s) > 0 and |z| < 1. Then we have

M
[
Dν,p;κ,µ

z

{
(1− z)−α

}
: s
]
=

Γ(α,β)(s) z−ν

Γ(1− ν)

∞∑
n=0

(α)n
(1− ν)n

B(m− ν + s, n+ s+ 1)

B(m− ν, n+ 1)
zn.

Proof. Using the binomial series for (1− z)−α and Theorem 5.4 with λ = n yields

M

[
Dν,p;κ,µ

z

{
(1− z)−α

}
: s

]
= M

[
Dν,p;κ,µ

z

{ ∞∑
n=0

(α)n
n!

zn

}
: s

]

=

∞∑
n=0

(α)n
n!

M [Dν,p;κ,µ
z {zn} : s]

=

∞∑
n=0

(α)n
n!

Γ(α,β)(s)
Γ(n+ 1)

Γ(n− ν + 1)

B(m− ν + s, n+ s+ 1)

B(m− ν, n+ 1)
zn−ν .

Then the last expression is easily seen to be equal to the desired one.
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Now we present the extended Riemann-Liouville fractional derivative of zλ in terms of the Fox H-
function. Let m, n, p, q be integers such that 0 ≤ m ≤ q, 0 ≤ n ≤ p, and for parameters ai, bi ∈ C and for
parameters αi, βj ∈ R+ (i = 1, . . . , p; j = 1, . . . , q), the H-function is defined in terms of a Mellin-Barnes
integral in the following manner ([8, pp. 1–2]; see also [10, p. 343, Definition E.1.] and [15, p. 2, Definition
1.1.]):

Hm,n
p,q

[
z

∣∣∣∣(ai, αi)1,p
(bj , βj)1,q

]
= Hm,n

p,q

[
z

∣∣∣∣(a1, α1) , · · · , (ap, αp)
(b1, β1) , · · · , (bq, βq)

]
=

1

2πi

∫
L
Θ(s) z−sds, (5.5)

where

Θ (s) =

∏m
j=1 Γ (bj + βjs)

∏n
i=1 Γ (1− ai − αis)∏p

i=n+1 Γ (ai + αis)
∏q

j=m+1 Γ (1− bj − βjs)
, (5.6)

with the contour L suitably chosen, and an empty product, if it occurs, is taken to be unity.

Theorem 5.4. Let m− 1 ≤ ℜ(ν) < m for some m ∈ N, ℜ(ν) < ℜ(λ) and ℜ(z) > 0. Then we have

Dν,p;κ,µ
z

{
zλ
}
=

Γ(λ+ 1)Γ(β)

Γ(λ− ν + 1)B(m− ν, 1 + λ)Γ(α)

×H2,4
3,1

[
p

∣∣∣∣ (1− α, 1) , (λ+m− ν + 1, κ+ µ)
(0, 1) , (m− ν, µ) , (λ+ 1, κ) , (1− β, 1)

]
zλ−ν .

Proof. The result can be obtained by taking the inverse Mellin transform of the result in Theorem 3.3 with
the aid of (5.5) and (5.6).

Applying the result in Theorem 3.3 to the Maclaurin series of ez and the series expressions of the
Gauss hypergeometric function 2F1 and the Fox-Wright function pΨq gives the extended Riemann-Liouville
fractional derivatives of ez, 2F1 and pΨq (z) asserted by the following theorems.

Theorem 5.5. Let m− 1 ≤ ℜ(ν) < m for some m ∈ N. Then we have

Dν,p;κ,µ
z {ez} =

z−ν

Γ(1− ν)

∞∑
n=0

1

(1− ν)n

Bα,β;κ,µ
p (m− ν, n+ 1)

B(m− ν, n+ 1)
zn (z ∈ C).

Theorem 5.6. Let m− 1 ≤ ℜ(ν) < m for some m ∈ N. Then we have

Dν,p;κ,µ
z {2F1(a, b; c; z)} =

z−ν

Γ(1− ν)

×
∞∑
n=0

(a)n(b)n
(c)n(1− ν)n

Bα,β;κ,µ
p (m− ν, n+ 1) zn

B(m− ν, n+ 1)
(|z| < 1).

Theorem 5.7. Let m− 1 ≤ ℜ(ν) < m for some m ∈ N. Then we have

Dν,p;κ,µ
z

{
pΨq

[
(aj , γj)1,p
(bj , δj)1,q

; z

]}
=

z−ν

Γ(1− ν)

∞∑
k=0

∏p
j=1 Γ(aj + γjk)∏q
j=1 Γ(bj + δjk)

× Bα,β;κ,µ
p (k + 1,m− ν)

B(k + 1,m− ν)
zk (|z| < 1),

(5.7)

where pΨq (z) is the Fox-Wright function defined by (see [9, pp. 56–58])

pΨq (z) = pΨq

[
z

∣∣∣∣(ai, αi)1,p
(bj , βj)1,q

]
:=

∞∑
k=0

∏p
i=1 Γ (ai + αik)∏q
j=1 Γ (bj + βjk)

zk

k!
. (5.8)
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6. ANOTHER APPROACH

In this section we briefly consider another variant of the derivation of the results obtained in the preced-
ing sections. This approach is based on the Cauchy integral formula for the extended fractional derivative
operator. We define the extended fractional derivative with respect to an arbitrary, regular and univa-
lent function and calculate the extended fractional derivative of the function log z. Then we determine a
representation of the extended fractional derivative operator in terms of the classical fractional derivative
operator.

Definition 6.1. Osler [18] was the first to define the derivative of arbitrary order ν by means of the Cauchy
integral formula in the form:

Dν
z z

λf(z) =
Γ(ν + 1)

2πi

∫ (z+)

0
(t− z)−ν−1tλf(t) dt, (6.1)

where the contour shown in Figure 1 consists of a single loop that begins at t = 0, encloses the point t = z
once in the positive direction and returns to t = 0 without traversing the branch line (the dotted line) for
(t− z)−ν−1tλ. This representation is valid for ν ∈ C \ Z− and ℜ(λ) > −1.

Figure 1: Branch line for tλ(t− z)−ν−1

The above representation of the fractional derivative has been very important in the study of fractional
calculus and has led to some very interesting new results. Several authors have recently used this approach
in their studies (see [2, 3, 4, 17, 19]).

In the sequel, we employ this definition to find the following (presumably) new definition for the extended
fractional derivative operator:

Definition 6.2. The extended Riemann-Liouville fractional derivative is defined as

Dν,p;κ,µ
z zλ f(z) :=

Γ(ν + 1)

2πi

∫ (z+)

0
(z − t)−ν−1 tλ f(t)1F1

(
α;β;− pzκ+µ

tκ (z − t)µ

)
dt, (6.2)

where ℜ(λ) > −1, ℜ(p) > 0, ℜ(κ) > 0 and ℜ(µ) > 0.

The special case of (6.2) when p = 0 reduces to the fractional derivative operator (6.1). We present an
interesting formula for the extended fractional derivative of the function log z asserted by Theorem 19. For
this purpose, we begin by recalling following theorem given by Luo et al. [12, Theorem 2.13].
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Theorem 6.3. The extended beta function defined by (1.1) possesses the following series expression

B(α,β;κ,µ)
p (x, y) =

∞∑
n=0

Sn(1) 2F2

[
n+ 1, α
1, β

;−p
]
, (6.3)

where Sn(1) is a polynomial defined by

Sn(x, y; z) :=

n∑
j=0

(−n)j
j!

Γ(x+ (j + 1)κ) Γ(y + (j + 1)µ)

Γ(x+ y + (j + 1)(κ+ µ))
zj . (6.4)

Theorem 6.4. Let m− 1 ≤ ℜ(ν) < m for some m ∈ N and ℜ(ν) < ℜ(λ). Then we have

Dν,p;κ,µ
z

{
zλ log z

}
=

(λ− ν + 1)m
Γ(m− ν)

zλ−ν

×

[
Bα,β;κ,µ

p (λ+ 1,m− ν)

(
m∑
k=1

1

λ− ν + k
+ log z

)

+
∞∑
n=0

Tn(λ+ 1,m− ν; 1) 2F2

[
n+ 1, α
1, β

; −p
] ]
,

(6.5)

where log z is taken it principal branch and Tn(λ+ 1,m− ν; 1) is given by

Tn(λ+ 1,m− ν; 1) =
n∑

j=0

(−n)j
j!

B (λ+ 1 + (j + 1)κ, m− ν + (j + 1)µ)

×
{
ψ (λ+ 1 + (j + 1)κ)− ψ (λ+m− ν + 1 + (j + 1)(κ+ µ))

}
and ψ(z) := Γ′(z)/Γ(z) is the psi (or digamma) function (see, e.g., [23, Section 1.3]).

Proof. Taking the partial derivative of both sides of (3.3) with respect to λ gives

∂

∂λ

[
Dν,p;κ,µ

z

{
zλ
}]

=
∂f(λ)

∂λ
, (6.6)

where

f(λ) :=
Γ(λ+ 1)Bα,β;κ,µ

p (λ+ 1,m− ν)

Γ(λ− ν + 1)B(λ+ 1,m− ν)
zλ−ν .

Exchanging the order of the derivative fractional operator and the partial derivative with respect to λ is
easily seen to yield

∂

∂λ

[
Dν,p;κ,µ

z

{
zλ
}]

= Dν,p;κ,µ
z

{
zλ log z

}
. (6.7)

On the other hand, use (1.3) to express f(λ) as follows:

f(λ) =
Γ(λ+m− ν + 1)Bα,β;κ,µ

p (λ+ 1,m− ν)

Γ(λ− ν + 1)Γ(m− ν)
zλ−ν .

Then we differentiate f(λ) with respect to λ as follows:

Γ(m− ν)
∂f(λ)

∂λ
=

{
∂

∂λ

Γ(λ+m− ν + 1)

Γ(λ− ν + 1)

}
Bα,β;κ,µ

p (λ+ 1,m− ν) zλ−ν (6.8)

+
Γ(λ+m− ν + 1)

Γ(λ− ν + 1)

{
∂

∂λ
Bα,β;κ,µ

p (λ+ 1,m− ν)

}
zλ−ν

+
Γ(λ+m− ν + 1)

Γ(λ− ν + 1)
Bα,β;κ,µ

p (λ+ 1,m− ν)

{
∂

∂λ
zλ−ν

}
.
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Taking the logarithmic derivative and using a useful identity for the psi function (see, e.g., [23, p. 25,
Eq.(7)]) gives

∂

∂λ

Γ(λ+m− ν + 1)

Γ(λ− ν + 1)
= (λ− ν + 1)m {ψ(λ+m− ν + 1)− ψ(λ− ν + 1)}

= (λ− ν + 1)m

m∑
k=1

1

λ− ν + k
.

(6.9)

Use of the expression (6.3) is seen to yield

∂

∂λ
Bα,β;κ,µ

p (λ+ 1,m− ν)

=

∞∑
n=0

Tn(λ+ 1,m− ν; 1) 2F2

[
n+ 1, α
1, β

; −p
]
.

(6.10)

It is easy to see
∂

∂λ
zλ−ν = zλ−ν log z. (6.11)

Finally, incorporating the formulas (6.9), (6.10), and (6.11) into (6.8) and considering (6.7) and (6.6)
proves the desired identity.
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[20] M. A. Özarslan, E. Özergin, Some generating relations for extended hypergeometric functions via generalized

fractional derivative operator, Math. Comput. Model., 52 (2010), 1825–1833. 1, 3.2, 4, 5.1
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