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Abstract

In this paper, we give one parameter families of extrinsic differential geometries on spacelike curves in
Minkowski 4-space. We investigate the nonlinear properties of one parameter lightlike hypersurfaces. Mean-
while, the classification of singularities to one parameter lightlike hypersurfaces is considered by singularity
theory. c⃝2015 All rights reserved.
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1. Introduction

Minkowski space is a real vector space with a symmetric bilinear form. And Minkowski space form with
the positive curvature is called de Sitter space. We know that de Sitter 3-space is a vacuum solution of the
Einstein equation and an important cosmological model for physical universe [1, 4, 6, 10, 11]. Authors have
given the geometrical properties of spacelike or timelike curves in Minkowski space [6, 8, 12]; B. Mustafa
obtained the geometrical properties of involutes of spacelike curves in Minkowski 3-space [9]. However, most
of papers and books studying the geometrical properties of general surfaces generated by spacelike curves in
Minkowski 4-space nor their hypersurfaces. Authors had obtained the horizon of the black hole is a lightlike
hypersurface or a part [3, 7]. In this paper, we consider, however, the one parameter lightlike hypersurfaces,
which are generated by spacelike curves in de Sitter 3-space, as the most elementary case for the study of
the lowest codimensional submanifolds in non-flat Lorentzian space forms.
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On the other hand, singularity theory, which is a direct descendant of differential calculus, is certain
to have a great deal of interest to say about geometry, equation, physic, astronomy and other disciplines
[2, 4, 14]. In general, the current theory always does not allow for singularities, however, it is unavoidable
in some real life circumstances. Thus, we apparently need to understand the ontology of singularities if we
want to research the nature of space and time in the actual universe. By now, the studying of singularities
has been concentrated in general surfaces [2, 6, 12, 13].

Meanwhile, the one parameter lightlike hypersurfaces are a bundle along a spacelike curve whose fibres are
lightlike lines or spacelike curves. The most interesting case is the contact of spacelike curves and lightcone.
Moreover, from the point of view of physics, lightlike hypersurfaces are of importance because they are
models of different types of horizons studied in relativity theory [5, 7, 16, 17]. The authors considered a
classification of the singularities of lightlike surfaces with codimensional two for generic spacelike curves in
de Sitter 3-space and a geometric characterization of the singularities [6]. Except for the difference that we
consider the one parameter lightlike hypersurfaces of spacelike curves and the geometric characterizations
of their singularities.

The remainder of this paper is organized as follows: Section 2 reviews some basic notions about the
Minkowski space and gives the main result about the classifications of singularities (Theorem 2.2). Section
3 considers the one parameter spacelike height function on spacelike curves. Also, the versal property of one
parameter height function is used to prove Theorem 2.2 in Section 4. Section 5 gives the generic properties
of spacelike curves to introduce the stability of singularity. In the last section of this paper, we supply an
example to explain the singular locus of one parameter lightlike hypersurfaces.

We shall assume that all the maps and manifolds in this paper are C∞, unless the contrary is explicitly
stated.

2. Preliminaries and the main result

Let R4 = {(x1, x2, x3, x4)|xi ∈ R (i = 1, 2, 3, 4) } be a 4-dimensional vector space. For any vectors
x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) in R4, the symmetric bilinear form of x and y is defined by
⟨x,y⟩ = x1y1 + x2y2 + x3y3 − x4y4. (R4, ⟨, ⟩) is called four dimensional Minkowski space and written by R4

1.
A vector x in R4

1 \ {0} is called a spacelike vector , a lightlike vector or a timelike vector if ⟨x,x⟩ is
positive, zero or negative, respectively. The norm of x ∈ R4

1 is defined by ∥x∥ = (sign(x)⟨x,x⟩)1/2, where
sign(x) denotes the signature of x which is given by sign(x)=1, 0 or -1 when x is a spacelike, lightlike or
timelike vector [15]. For any two vectors x and y in R4

1, we say that x is pseudo-perpendicular to y if
⟨x,y⟩ = 0. For vectors x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) and z = (z1, z2, z3, z4) in R4

1, we define a
vector x ∧ y ∧ z by ∣∣∣∣∣∣∣∣

e1 e2 e3 −e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣ ,
where {e1, e2, e3, e4} is the canonical base of R4

1. One can easily show that

⟨a,x ∧ y ∧ z⟩ = det(a,x,y, z).

In R4
1, we introduce some typical manifolds,

de Sitter space S31 = {x ∈ R4
1 | ⟨x,x⟩ = 1},

hyperbolic space H3 = {x ∈ R4
1 | ⟨x,x⟩ = −1},

lightcone LC∗ = {x ∈ R4
1 \ {0} | ⟨x,x⟩ = 0},

one paramater de Sitter space S31(sin2 φ) = {x ∈ R4
1 | ⟨x,x⟩ = sin2 φ}, φ ∈ [0, π/2].

For a vector v = (v1, v2, v3, v4) ∈ LC∗, if v4 = 1, vector v is denoted by ṽ.
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Let γ : I → R4
1 by γ(t) = (x1(t), x2(t), x3(t), x4(t)) be a regular curve in R4

1 (i.e., γ̇(t) ̸= 0 for any t ∈ I),
where I is an open interval. For any t ∈ I, the curve γ is called a spacelike curve, a lightlike curve or
a timelike curve if ⟨γ̇(t), γ̇(t)⟩ > 0, ⟨γ̇(t), γ̇(t)⟩ = 0 or ⟨γ̇(t), γ̇(t)⟩ < 0, respectively. The arc-length of a
nonlightlike curve γ(t) measured from γ(t0) (t0 ∈ I) is

s(t) =

∫ t

t0

∥γ̇(t)∥dt.

The parameter s is determined as ∥γ ′(s)∥ = 1 for a nonlightlike curve, where γ ′(s) = (dγ/ds)(s). For a
spacelike curve γ(s) in de Sitter 3-space, there are a spacelike tangent vector t(s) = γ ′(s) and a normal
vector n1(s). A new unit normal vector as following:

n2(s) = γ(s) ∧ t(s) ∧ n1(s)/∥γ(s) ∧ t(s) ∧ n1(s)∥,

where sign(n1(s))sign(n2(s)) = −1. In the following, we only consider normal vector n1(s) is spacelike and
normal vector n2(s) is timelike. The other case is the same. Then we have a pseudo-orthonormal frame
{γ(s), t(s), n1(s), n2(s)} satisfying

⟨γ(s),γ(s)⟩ = ⟨t(s), t(s)⟩ = ⟨n1(s),n1(s)⟩ = −⟨n2(s),n2(s)⟩ = 1,

⟨γ(s), t(s)⟩ = ⟨γ(s),n1(s)⟩ = ⟨γ(s),n2(s)⟩ = 0,

⟨t(s),n1(s)⟩ = ⟨t(s),n2(s)⟩ = ⟨n1(s),n2(s)⟩ = 0

and the Frenet type formulas as following:
γ ′(s) = t(s)
t′(s) = −γ(s)− κg(s)n1(s)
n′
1(s) = kg(s)t(s) + τg(s)n2(s)

n′
2(s) = −τg(s)n1(s)

. (2.1)

If kg(s) = 0, one can obtain t′(s) = −γ(s) and γ ′(s) = t(s), so γ(s) = cos s + sin s is a plane fixed curve.
Therefore, we only consider kg(s) does not equal to zero in the following sections. For ⟨t(s),γ(s)⟩ = 0, we
have ⟨t′(s) + γ(s), t(s)⟩ = 0, ⟨t′(s) + γ(s), t′(s) + γ(s)⟩ = ⟨t′(s), t′(s)⟩ − 1 ̸= 0 and ⟨t′(s) + γ(s),γ(s)⟩ = 0.
One denotes the unit normal vector as

n1(s) = (t′(s) + γ(s))/∥t′(s) + γ(s)∥

and
n2(s) = (γ(s) ∧ t(s) ∧ n1(s))/∥γ(s) ∧ t(s) ∧ n1(s)∥,

where kg(s) = ∥t′(s) + γ(s)∥ and τg(s) = (1/k2g(s))det(γ(s),γ
′(s),γ ′′(s),γ ′′′(s)).

Let γ : I → S31 be a unit speed spacelike curve, we define a map L±
φ : I × R× [0, π/2] → S31(sin2 φ) by

L±
φ (s, µ) = sinφγ(s) + µ cosφ( ˜n1(s)± n2(s)).

We call the image of L±
φ the one parameter lightlike hypersurfaces associated to the spacelike curve γ(s).

Remark 2.1. When φ = 0, the hypersurface L±
φ is a lightlike vector in lightcone. Hence, we only consider

φ ∈ (0, π/2] in the next section.

Let F : S31 −→ R be a submersion and f : I −→ S31 be a spacelike curve. We say that f and F−1(0)
have k-point contact at t = t0 if the function g(t) = F ◦ f(t) satisfies g(t0) = g′(t0) = · · · = g(k−1)(t0) = 0
and g(k)(t0) ̸= 0. We also say that f and F−1(0) have at least k-point contact at t = t0 if the function
g(t) = F ◦ f(t) satisfies g(t0) = g′(t0) = · · · = g(k−1)(t0) = 0. The main result in this paper as following:
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Theorem 2.2. Let γ(s) be a unit speed spacelike curve in de Sitter 3-space, v0 = L±
φ (s0, µ0) and LC(φ)(v0) =

{u ∈ S31 | ⟨u,v0⟩ = sinφ}, we have the following:

1. γ(s) and LC(φ)(v0) have at least 2-point contact for s0.

2. γ(s) and LC(φ)(v0) have at least 3-point contact for s0 if and only if

v0 = sinφγ(s0)− (tanφ/kg(s0)) cosφ( ˜n1(s0)± n2(s0))

and k′g(s) ± kg(s)τg(s) ̸= 0. Under this condition, the germ of image L±
φ at L±

φ (s0, λ0) is diffeomorphic to
the cuspidal edge C × R (Fig. 1).

3. γ(s) and LC(φ)(v0) have at least 4-point contact for s0 if and only if

v0 = sinφγ(s0)− (tanφ/kg(s0)) cosφ( ˜n1(s0)± n2(s0))

and k′g(s)±kg(s)τg(s) = 0, (k′g(s)±kg(s)τg(s))′ ̸= 0. Under this condition, the germ of image L±
φ at L±

φ (s0, λ0)
is diffeomorphic to the swallowtail SW (Fig. 2).

Here C×R = {(x1, x2, x3) | x1 = u, x2 = ±v1/2, x3 = v1/3} is the cuspidal edge and SW = {(x1, x2, x3) |
x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v} is the swallowtail.

cuspidaledge
Fig. 1 swallowtail

Fig. 2

3. One parameter spacelike height function

Let γ(s) be a unit speed spacelike curve in de Sitter 3-space, for any parameter φ ∈ (0, π/2], we define
a function H : I × S31(sin2 φ)× (0, π/2] → R by

H(s,v, φ) = ⟨γ(s),v⟩ − sinφ,

which is called one parameter spacelike height function of γ(s). Denoted hv,φ(s) = H(s,v, φ) for any fixed
vector (v, φ) ∈ S31(sin2 φ)× (0, π/2].

Proposition 3.1. Suppose γ(s) is a unit speed spacelike curve in de Sitter 3-space with kg(s) ̸= 0 and
(v, φ) ∈ S31(sin2 φ)× (0, π/2]. Then,

1. hv,φ(s) = h′v,φ(s) = 0 if and only if there exists a real number λ such that v = sinφγ(s)+λ( ˜n1(s)± n2(s)).
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2. hv,φ(s) = h′v,φ(s) = h′′v,φ(s) = 0 if and only if

v = sinφγ(s) + (tanφ/kg(s)) cosφ( ˜n1(s)± n2(s))

and µ = sinφ/kg(s).

3. hv,φ(s) = h′v,φ(s) = h′′v,φ(s) = h
(3)
v,φ(s) = 0 if and only if

v = sinφγ(s) + (tanφ/kg(s)) cosφ( ˜n1(s)± n2(s))

and k′g(s)± kg(s)τg(s) = 0, (k′g(s)± kg(s)τg(s))
′ ̸= 0.

4. hv,φ(s) = h′v,φ(s) = h′′v,φ(s) = h
(3)
v,φ(s) = h

(4)
v,φ(s) = 0 if and only if

v = sinφγ(s) + (tanφ/kg(s)) cosφ( ˜n1(s)± n2(s))

and k′g(s)± kg(s)τg(s) = 0, (k′g(s)± kg(s)τg(s))
′ = 0.

Proof.

1. Supposing there are three real numbers η, ω, λ satisfying v = ηγ(s)+ωt(s)+λ( ˜n1(s) + n2(s)) ∈ S31(sin2 φ),
we obtain ω = 0 and η = sinφ by hv,φ(s) = h′v,φ(s) = 0. Therefore, the assertion 1 follows.

2. The easy computation that

h′′v,φ(s) = ⟨γ ′′(s),v⟩ = ⟨−γ(s) + kg(s)n1(s),v⟩ = 0. (3.1)

Substituting the condition v = sinφγ(s) + λ( ˜n1(s)± n2(s)) and using Equations (2.1), we obtain λ =
sinφ/kg(s) and µ = tanφ/kg(s). Hence, the assertion 2 holds.

3. Basing on the above assumption and using Equations (2.1), we have

h
(3)
v,φ(s) = ⟨−γ ′(s) + k′g(s)n1(s) + kg(s)n

′
1(s),v⟩

= ⟨−t(s) + k′g(s)n1(s) + kg(s)(kg(s)t(s) + τg(s)n2(s)),v⟩
= (sinφ/kg(s))(k

′
g(s)∓ kg(s)τg(s))

= 0.

(3.2)

As kg(s) ̸= 0 and sinφ does not always equate to zero for φ ∈ (0, π/2], therefore, k′g(s)∓ kg(s)τg(s) = 0 and
(k′g(s)∓ kg(s)τg(s))

′ ̸= 0.

4. By Equations (2.1) and (3.2), we have

h
(4)
v,φ(s) = ⟨((k2g(s)− 1)t(s) + k′g(s)n1(s) + kg(s)τg(s)n2(s))

′,v⟩
= (sinφ/kg(s))(k

′′
g (s) + kg(s)τ

2
g (s)∓ (k′g(s)τg(s) + (kg(s)τg(s))

′))

= (sinφ/kg(s))(k
′′
g (s)∓ (kg(s)τg(s))

′ + (kg(s)τg(s)∓ k′g(s))τg(s))

= 0.

(3.3)

By assertion 3, we know k′g(s)∓ kg(s)τg(s) = 0 and k′′g (s)∓ (kg(s)τg(s))
′ = (k′g(s)∓ kg(s)τg(s))

′ = 0.

4. Singularities of one parameter lightlike hypersurfaces

In this section, we study the geometric properties of one parameter lightlike hypersurfaces of spacelike
curves in de Sitter 3-space. Meanwhile, we use some general results on the singularity theory for families of
function germs [2]. These properties will be stated in the following.
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Proposition 4.1. Suppose γ(s) is a unit speed spacelike curve in de Sitter 3-space with kg(s) ̸= 0, the
following assertions are established:

1. The singularities of L±
φ (s, µ) are the set {(s, µ) | µ = − tanφ/kg(s), s ∈ I}.

2. If v0 = L±
φ (s,− tanφ/kg(s)) is a constant vector, then γ(s) ∈ LC(φ)(v0) and k

′
g(s)± kg(s)τg(s) = 0.

Proof.

1. Since L±
φ (s, µ) = sinφγ(s) + µ cosφ( ˜n1(s)± n2(s)), we have

∂L±
φ (s, µ)/∂s = sinφγ ′(s) + µ cosφ( ˜n′

1(s)± n′
2(s))

= (sinφ+ µ cosφkg(s))t(s) + τg(s)µ cosφ( ˜n1(s)± n2(s)),
(4.1)

∂L±
φ (s, µ)/∂µ = cosφ( ˜n1(s)± n2(s)),

∂L±
φ (s, µ)/∂φ = − cosφ,

the above three vectors are linearly dependent if and only if sinφ+λ cosφkg(s) = 0 and λ = − tanφ/kg(s).
Hence, the assertion (1) is complete.

2. For a smooth function ν : I → R, we define a mapping fν : I → R4
1 by

fν(s) = sinφγ(s) + ν(s)( ˜n1(s)± n2(s)).

Supposing v0 = L±
φ (s,− tanφ/kg(s)) is constant, we have

dfν(s)/ds = sinφγ ′(s) + ν(s)( ˜n′
1(s)± n′

2(s)) + ν ′(s)( ˜n1(s)± n2(s))
= (sinφ+ ν(s)kg(s))t+ (ν ′(s)± ν(s)τg(s))n1 + (ν(s)τg ± ν ′(s))n2

= 0.

(4.2)

One obtains sinφ+ ν(s)kg(s) = 0 and ν(s)τg(s)± ν ′(s) = 0. Moreover,

⟨γ(s),v0⟩ = ⟨γ(s), sinφγ(s)− (tanφ/kg(s)) cosφ( ˜n1(s)± n2(s))⟩
= sinφ.

(4.3)

Hence, γ(s) is belonged to LC(φ)(v0) and k
′
g(s)± kg(s)τg(s) = 0.

Let F : (R×Rr, (s0,x0)) → R be a function germ. We call F an r-parameter unfolding of f , where f(s) =
Fx0(s,x0). We call f(s) has Ak-singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k and f (k+1)(s0) ̸= 0. We say
that f(s) has A≥k-singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k. Let F be an unfolding of f and f(s)
has Ak-singularity (k ≥ 1) at s0. Denote the (k− 1)-jet of the ∂F/∂xi at s0 by j(k−1)(∂F/∂xi)(s,x0)(s0) =
Σk−1
j=1αji(s − s0)

j for i = 1, 2, . . . , r. Then F is called a (p) versal unfolding if the (k − 1) × r matrix of
coefficients αji has rank (k − 1)(k − 1 ≤ r). Under the same as the above, F is called a versal unfolding if
the k × r matrix of coefficients (α0i, αji) has rank k(k ≤ r), where α0i = (∂F/∂xi)(s0, x0). Let a function
germ F : (R× Rr, (s0, x0)) → R be an unfolding of f . Then the discriminant set of F is given by

DF = {x ∈ Rr | F (s, x) = (∂F/∂s)(s, x) = 0}.

And the main theorem is the following [2].

Theorem 4.2. Let F : (R×Rr, (s0, x0)) → R be an r-parameter unfolding of f(s) which has Ak-singularity
at s0. Suppose that F is a versal unfolding of f .

1. If k = 1 then DF is locally diffeomorphic to {0} × Rr−1.

2. If k = 2 then DF is locally diffeomorphic to C × Rr−2.



J. G. Sun, D. H. Pei, J. Nonlinear Sci. Appl. 8 (2015), 467–477 473

3. If k = 3 then DF is locally diffeomorphic to SW × Rr−3, a point x0 ∈ Rr is called a fold point of
a map germ f : (Rr,x0) → (Rr, f(x0)) if there exist diffeomorphism germs ϕ : (Rr,x0) → (Rr, 0) and
ψ : (Rr, f(x0)) → (Rr, 0) such that ψ ◦ ϕ(x1, . . . , xr) = (x1, . . . , xr−1, x

2).

By Proposition 3.1, the discriminant set of the height function H(s,v, φ) is given by

DH = {v = sinφγ(s) + µ cosφ( ˜n1(s)± n2(s)) | s, µ ∈ R, φ ∈ (0, π/2]}

Theorem 4.3. Let H(s,v, φ) be a spacelike height function of spacelike curve γ(s) and v ∈ DH . If hv has
Ak-singularity at s (k = 1, 2, 3), then H is a versal unfolding of hv.

Proof. We denote

γ(s) = (x1(s), x2(s), x3(s), x4(s)) and v = (v1, v2, v3, v4) ∈ S31(sin2 φ),

for any parameter φ ∈ (0, π/2], then

H(s,v, φ) = ⟨γ(s),v⟩ − sinφ = (x1v1 + x2v2 + x3v3 ∓ x4v4)− sinφ. (4.4)

Thus,
(∂H/∂vi)(s, v) = xi ∓ (vi/v4)x4,

(∂H/∂φ)(s, v) = − cosφ,

∂(∂H/∂vi)/∂s(s, v) = x′i ∓ (vi/v4)x
′
4,

∂(∂H/∂φ)/∂s(s, v) = ∂2(∂H/∂φ)/∂s2(s, v) = 0,

∂2(∂H/∂vi)/∂
2s(s, v) = x′′i ∓ (vi/v4)x

′′
4,

where v4 = ±
√
v21 + v22 + v23 − sin2 φ (i = 1, 2, 3), so the 2-jet of ∂H/∂vi at s0 is

(x′is+ (1/2)x′′i s
2)∓ (vi/v4)(x

′′
4s+ (1/2)x′′4s

2).

The condition for (p) versal can be checked as following:

(1): By Proposition 3.1, h has A1-singularity at s if and only if v = sinφγ(s) + λ( ˜n1(s)± n2(s)) and
kg(s) ̸= 0, when h has A1-singularity at s, we require the 1× 4 matrix (x1 ∓ (v1/v4)x4, x2 ∓ (v2/v4)x4, x3 ∓
(v3/v4)x4,− cosφ) to have rank 1, which it always does since γ(s) is regular.

(2): It also follows from Proposition 3.1 that h has A≥2-singularity at s if and only if v = sinφγ(s) +

(tanφ/kg(s)) cosφ( ˜n1(s)± n2(s)) and k
′
g(s)± kg(s)τg(s) ̸= 0, when h has A≥2-singularity at s, we require

the 2× 4 matrix 
x1 ∓ (v1/v4)x4 x′1 ∓ (v1/v4)x

′
4

x2 ∓ (v2/v4)x4 x′2 ∓ (v2/v4)x
′
4

x3 ∓ (v3/v4)x4 x′3 ∓ (v3/v4)x
′
4

− cosφ 0


to have rank 2, which follows from the proof of the case (3).

(3): By Proposition 3.1, h has the A3-singularity at s if and only if

v = sinφγ(s) + (tanφ/kg(s)) cosφ( ˜n1(s)± n2(s))

and k′g(s) ± kg(s)τg(s) = 0, (k′g(s) ± kg(s)τg(s))
′ ̸= 0, when h has A3-singularity at s, we require the 3 × 4

matrix

A =


α0,1 α0,2 α0,3

α1,1 α1,2 α1,3

α2,1 α2,2 α2,3

− cosφ 0 0


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to be nonsingular, where

j2(∂H/∂vi)(s, v0)(s0)

= ∂H
∂vi

(s0, v0) +
∂
∂s(

∂H
∂vi

)(s0, v0)(s− s0) + (1/2) ∂2

∂2s
(∂H∂vi )(s0, v0)(s− s0)

2

= α0,i + α1,i(s− s0) + (1/2)α2,i(s− s0)
2.

(4.5)

One denotes that

A(i, j, k) = det

 xi(s) xj(s) xk(s)
x′i(s) x′j(s) x′k(s)

x′′i (s) x′′j (s) x′′k(s)

 .

We have
detA = −(A(1, 2, 3)∓ (v1/v4)A(4, 2, 3)∓ (v2/v4)A(1, 4, 3)∓ (v3/v4)A(1, 2, 4))

= ±(1/v4)⟨v,γ(s) ∧ γ ′(s) ∧ γ ′′(s)⟩. (4.6)

Since v ∈ DH is a singular point, v = sinφγ(s)− (tanφ/kg(s)) cosφ( ˜n1(s)± n2(s)) and

γ(s) ∧ γ ′(s) ∧ γ ′′(s) = γ(s) ∧ γ ′(s) ∧ (−γ(s) + kg(s)n1(s)) = kg(s)n2(s). (4.7)

Therefore,

detA = ±(1/v4)⟨sinφγ(s)− (tanφ/kg(s)) cosφ( ˜n1(s)± n2(s)), kg(s)n2(s)⟩
= ±(sinφ/v4) ̸= 0.

(4.8)

This completes the proof.

Proof of Theorem 2.2. Let γ(s) be a spacelike curve in de Sitter 3-space. We define a function
G : S31 → R by G(u) = ⟨u,v⟩ − sinφ. Then we have gv0,φ0(s) = H(γ(s),v0, φ0), since LC(φ)(v0) = G−1(0)
and 0 is a regular value of G. gv0,φ0 has the Ak-singularity at s0 if and only if γ(s) and LC(φ)(v0) have
(k + 1)-point contact at s0. By Proposition 3.1 and Theorems 4.2, 4.3, we get the results of Theorem 2.2.

5. Generic properties

In this section, we consider generic properties of spacelike curves in S31. The main tool is the transversality
theorem. Let Embs(I,S31) be a space of spacelike embeddings γ : I → S31 with kg(s) ̸= 0 equipped with
Whitney C∞-topology. The function H : S31×S31(sin2 φ)×(0, π/2] → R defined by H(u,v, φ) = ⟨u,v⟩−sinφ,
we claim that Hv,φ is a submersion for any fixed (v, φ) ∈ S31(sin2 φ)× (0, π/2]. For any γ(s) ∈ Embs(I,S31),
we have H = H◦(γ(s)×idS31(sin2 φ)×(0, π/2]) and the l-jet extension jl1H : I×S31(sin2 φ)×(0, π/2] → J l(I,R)
defined by

jl1H(s,v, φ) = jlhv,φ(s,v, φ)

and the trivialization
J l(I,R) = U × R× J l(1, 1).

For any submanifold O ⊂ J l(1, 1), we denote that Õ = I ×{0}×O. Then we have the following proposition
as a corollary of Lemma 6 in [2].

Proposition 5.1. Let O be a submanifold of J l(1, 1). Then the set TO = {γ ∈ Embs(I,S31) | jl1(H) is
transversal to O} is a residual subset of Embs(I,S31). If O is a closed subset, then TO is open.

Let f : (R, 0) → (R, 0) be a function germ which has Ak-singularity at 0. It is well known that there
exists a diffeomorphism germ ϕ : (R, 0) → (R, 0) such that f ◦ ϕ(s) = ±sk+1. This is the classification of
Ak-singularity. For any z = jlf(0) in J l(1, 1), we have the orbit Ll(z) given by the action of the Lie group
of l-jet diffeomorphism germ. If f has an Ak-singularity, then the codimension of the orbit is k. There is
another characterization of versal unfolds.
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Proposition 5.2. [3] Let F : (R× Rr,0) → (R, 0) be an r-parameter unfolding of f : (R, 0) → (R, 0) which
has Ak-singularity at 0. Then F is a versal unfolding if and only if jl1F is transversal to the orbit Ll(jlf(0))
for l ≥ k + 1, where jl1F : (R× Rr,0) → J l(R,R) is the l-jet extension of F given by jl1F (s, x) = jlFx(s).

The generic classification theorem is given as following:

Proposition 5.3. There exists an open and dense subset TLl
k
⊂ Embs(I,S31) such that for any γ(s) ∈

TLl
k
. The one parameter lightlike hypersurfaces of γ(s) is locally diffeomorphic to the cuspidal edge or the

swallowtail at a singular point.

Proof. For l ≥ 4, we consider the decomposition of the jet space J l(1, 1) into Ll
1 orbits. We now define a

semi-algebraic set by

Σl = {z = jlf(0) ∈ J l(1, 1) | f has an A≥4-singularity},

the codimension of Σl is 4. Therefore, the codimension of Σ̃l
0 = I×{0}×Σl is 5 and the orbit decomposition

of jl(1, 1)− Σl is
jl(1, 1)− Σl = Ll

0 ∪ Ll
1 ∪ Ll

2 ∪ Ll
3,

where Ll
k is the orbit through an Ak-singularity. Thus the codimension of Ll

k is (k + 1). We consider the
l-jet extension jl1(H) of the spacelike height function H. By Proposition 5.1, there exists an open and dense
subset TLl

k
⊂ Embs(I,S31) such that jl1(H) is transversal to Ll

k (k = 0, 1, 2, 3) and the orbit decomposition of

Σl. This means that jl1(H)(I×S31×(0, π/2])∩Σl = ∅ and H is a versal unfolding of h at any point (s0,v0, φ0).
The discriminant set of H is locally diffeomorphic to cuspidal edge or the swallowtail at a singular point as
in [[6], Theorem 4.1].

6. Example

In this section, an example is given in order to verify the idea of Theorem 2.2.

Example 6.1. Let γ(s) be a spacelike curve in S31 defined by

γ(s) = {
√
3

3
s,

1

18
s2 − 1, 2,

1

18
s2 + 2}

with respect to a distinguished parameter s (Fig. 3), the Frenet frames as following

t(s) = γ ′(s) =
√
3{

√
3

3
,
1

9
s, 0,

1

9
s},

n1(s) =
√
3{

√
3

3
s,

1

18
s2 − 1 +

√
3

9
, 2,

1

18
s2 + 2 +

√
3

9
},

we can obtain

n2(s) = ℘{−
√
3

54 s
3 − 2

9s
2 + 7

√
3

9 s, − 1
324s

4 +
√
3

81 s
3 + 14

81s
2 − 55

9 ,−
1
9s

2 −
√
3

27 s−
16
9 ,

1
324s

4 −
√
3

81 s
3 − 1

162s
2 − 2

√
3

9 s+ 8
9},

where ℘ = 162
2
√
3s7−48s6+84

√
3s5+8163s4−7128s3−756s2+6712

√
3s+521154

.

At the moment, the curvatures kg =
√
3 and τg = − s

6 + 7
√
3

3s+1 − 7
√
3. Thus, the one parameter lightlike

hypersurfaces when φ = 0, π4 ,
π
2 are following,

L+
0 (s, µ) = {

√
3
3 s+ ℘(−

√
3

54 s
3 − 2

9s
2 + 7

√
3

9 s),
1
18s

2 − 1 +
√
3
9 ℘(−

1
324s

4 +
√
3

81 s
3 + 14

81s
2 − 55

9 ),

2 + ℘(−1
9s

2 −
√
3

27 s−
16
9 ),

1
18s

2 + 2 +
√
3
9 + ℘( 1

324s
4 −

√
3

81 s
3 − 1

162s
2 − 2

√
3

9 s+ 8
9)}, (Fig.4)
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spacelike curve γ(s)
Fig. 3
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Fig. 4

-28
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12

1

22
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-28

one parameter lightlike hypersurface with
φ = π

4 and its singularities
Fig. 5
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hypersurface with φ = π

4
Fig. 6



J. G. Sun, D. H. Pei, J. Nonlinear Sci. Appl. 8 (2015), 467–477 477

L+
π
4
(s, µ) =

√
2
2 {

√
3
3 s+ µ(

√
3
3 s+ ℘(−

√
3

54 s
3 − 2

9s
2 + 7

√
3

9 s)),

1
18s

2 − 1 + µ( 1
18s

2 − 1 +
√
3
9 ℘(−

1
324s

4 +
√
3

81 s
3 + 14

81s
2 − 55

9 )),

2 + µ(2 + ℘(−1
9s

2 −
√
3

27 s−
16
9 )),

1
18s

2 + 2 + µ( 1
18s

2 + 2 +
√
3
9 + ℘( 1

324s
4 −

√
3

81 s
3 − 1

162s
2 − 2

√
3

9 s+ 8
9))}, (Fig.5)

L+
π
2
(s, µ) = {

√
3

3
s,

1

18
s2 − 1, 2,

1

18
s2 + 2}.

On the other hand, we get the singularities of π
4 -lightlike hypersurface and the singularities satisfying µ = 1√

3

(Fig. 6). We can calculate the geometric invariant

σ(s) = k′g(s)∓ kg(s)τg(s)

and
σ′(s) = k′′g (s)∓ k′g(s)τg(s)∓ kg(s)τ

′
g(s).

We see σ(s) = 0 gives two real roots s = 0,−(126
√
3 + 1)/3 and σ′(s) = 0 gives two complex roots

s = −1/3 ± (252
√
3)

1
2 i. Hence, we have L±

φ (s, µ) is locally diffeomorphic to the cuspidal edge at s =

0,−(126
√
3 + 1)/3 and µ = tanφ/

√
3. Moreover, L±

φ (s, µ) is locally diffeomorphic to the swallowtail at

s = −1/3± (252
√
3)

1
2 i and µ = tanφ/

√
3.
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[8] K. Ilarslan, Ö. Boyacıoğlu, Position vectors of a timelike and a null helix in Minkowski 3-space, Chaos Solitons

Fractals, 38 (2008), 1383–1389. 1
[9] B. Mustafa, On the involutes of the spacelike curve with a timelike binormal in Minkowski 3-space, Internat.

Math. Forum., 31 (2009), 1497–1509. 1
[10] B. O’Neill, Semi-Riemannian geomerty with applications to relativity, Academic Press, London, (1983). 1
[11] A. Neraessian, E. Ramos, Massive spinning particles and the geometry of null curves, Phys. Lett. B, 445 (1998),

123–128. 1
[12] D. H. Pei, T. Sano, The focal developable and the binormal indicatrix of a nonlightlike curve in Minkowski

3-space, Tokyo J. Math., 23 (2000), 211–225. 1
[13] J. G. Sun, D. H. Pei, Families of Gauss indicatrices on Lorentzian hypersurfaces in pseudo-spheres in semi-

Euclidean 4 space, J. Math. Anal. Appl., 400 (2013), 133–142. 1
[14] J. G. Sun, D. H. Pei, Null surfaces of null curves on 3-null cone, Phys. Lett. A, 378 (2014), 1010–1016. 1
[15] J. G. Sun, D. H. Pei, Some new properties of null curves on 3-null cone and unit semi-Euclidean 3-spheres, J.

Nonlinear Sci. Appl., 8 (2015), 275–284. 2
[16] G. H. Tian, Z. Zhao, C. B. Liang, Proper acceleration’ of a null geodesic in curved spacetime, Classical Quantum

Gravity, 20 (2003), 4329. 1
[17] H. Urbantke, Local differential geometry of null curves in conformally flat space-time, J. Math. Phys., 30 (1989),

2238–2245. 1


