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Abstract

In this paper, we studied a Halpern-type iteration algorithm involving pseudo-contractive mappings for
solving some variational inequality in a q-uniformly smooth Banach space. We show the studied algorithm
has strong convergence under some mild conditions. Our result extends and improves many results in the
literature. c⃝2015 All rights reserved.
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1. Introduction

Variational inequality problems were initially studied by Stampacchia [13] in 1964. Variational inequal-
ities have applications in diverse disciplines such as partial differential equations, physical, optimal control,
optimization, mathematical programming, mechanics and finance, see [6, 7, 8, 9, 10, 12, 13, 17] and the
references therein. Variational inequalities have been extended and generalized in several directions using
novel and innovative techniques. It is common practice to study these variational inequalities in the setting
of convexity. It has been observed that the optiminality conditions of the differentiable convex functions
can be characterized by the variational inequalities. In recent years, it has been shown that the minimum of
the differentiable nonconvex functions can also be characterized by the variational inequalities. Motivated
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and inspired by these developments, Noor [8] has introduced a new type of variational inequality involving
two nonlinear operators, which is called the general variational inequality. It is worth mentioning that this
general variational inequality is remarkable different from the so-called general variational inequality which
was introduced by Noor [6] in 1988. Noor [8] proved that the general variational inequalities are equivalent
to nonlinear projection equations and the Wiener-Hopf equations by using the projection technique. Using
this equivalent formulation, Noor [8] suggested and analyzed some iterative algorithms for solving the special
general variational inequalities and further proved these algorithms have strong convergence. Related to
the variational inequalities, we have the problem of finding the fixed points of the nonexpansive mappings,
which is the subject of current interest in functional analysis. It is our purpose in this paper, we studied
a Halpern-type iteration algorithm involving pseudo-contractive mappings for solving some variational in-
equality in a q-uniformly smooth Banach space. We show the studied algorithm has strong convergence
under some mild conditions. Our result extends and improves many results in the literature.

To be more precise, let C be a nonempty closed convex subset of a real Banach space E. Let A : C → E
be a nonlinear operator. The variational inequality problem is formulated as finding a point x∗ ∈ C such
that, for some j(x− x∗) ∈ J(x− y),

⟨Ax∗, j(x− x∗)⟩ ≥ 0,

for all x ∈ C.
Recall that a mapping T : C → C is said to be strictly pseudo-contractive (in the terminology of Browder-

Petryshyn) if there exists a constant λ > 0 such that, for all x, y ∈ C, there exists jq(x− y) ∈ Jq(x− y) such
that

⟨(I − T )x− (I − T )y, jq(x− y)⟩ ≥ λ∥(I − T )x− (I − T )y∥q, (1.1)

where I denotes the identity operator on C. We denote by F (T ) the set of fixed points of a mapping
T : C → C, that is F (T ) = {x ∈ C : Tx = x}. This class of mappings was introduced actually in a Hilbert
space by Browder and Petryshyn [1].

Recall also that a mapping f : C → C is said to be contractive if there exists a constant ρ ∈ (0, 1) such
that

∥f(x)− f(y)∥ ≤ ρ∥x− y∥,

for all x, y ∈ C.

Numerous papers have been written on the approximation of fixed points of strictly pseudo-contractive
mappings (see [3, 4, 5, 11, 18, 19, 20, 21, 22] and the references contained therein). In particular, recently,
Chidume and Souza [2] introduced a Halpern-type iterative algorithm for a strictly pseudo-contractive
mapping and proved the following strong convergence theorem:

Theorem 1.1. Let E be a real reflexive Banach space with uniformly Gâteaux differentiable norm. Let C
be a nonempty bounded closed and convex subset of E. Let T : C → C be a strictly pseudo-contractive
mapping. Assume F (T ) ̸= ∅ and let z ∈ F (T ). Fix δ ∈ (0, 1) and let δ∗ be such that δ∗ := δL ∈ (0, 1).
Define Snx := (1− δn)x+ δnTx for all x ∈ C, where δn ∈ (0, 1) and lim δn = 0. Let {αn} be a real sequence
in (0, 1) which satisfies the following conditions:

(C1) limαn = 0;
(C2)

∑∞
n=1 αn = ∞.

For arbitrary x0, u ∈ C, define a sequence {xn} in K by

xn+1 = αnu+ (1− αn)Snxn, ∀n ≥ 1.

Then {xn} converges strongly to a fixed point of T .

In the proof lines of Theorem 1.1, we point out some problems as follows:
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Remark 1.2. First, we note that there exists a big gap in the proof of Theorem 1.1. In Theorem 1.1, they
asserted that the sequence {ztn} generated by ztn = tnu + (1 − tn)Snztn converges to a fixed point of T .
Unfortunately, this conclusion is false. Indeed, noting that

ztn = tnu+ (1− tn)(1− δn)ztn + (1− tn)δnTztn ,

it follows that

ztn =
tn

δn + tn − tnδn
u+

(1− tn)δn
δn + tn − tnδn

Tztn

=
1

δn
tn

+ 1− δn
u+

(1− tn)δn
δn + tn − tnδn

Tztn .

Thus, from the conditions δn → 0 and δn = o(tn), we have 1
δn
tn

+1−δn
→ 1 and so the application of Lemma

MJ fails. This indicates that {ztn} does not converge to a fixed point of T . Therefore, Theorem 1.1 is
dubious.

In this paper, we studied a Halpern-type viscosity iteration algorithm involving pseudo-contractive map-
ping T in a q-uniformly smooth Banach space. for solving some variational inequality We show the studied
algorithm strongly converges to a fixed point of T which solves some variational inequality in Banach spaces
under some mild conditions. Our result modifies the main result in Chidume and Souza [2] and extends and
improves many other results in the literature.

2. Preliminaries

Let E be a real Banach space. The modulus of smoothness of E is defined as the function ρE : [0,∞) →
[0,∞):

ρE(τ) = sup{1
2
(∥x+ y∥+ ∥x− y∥)− 1 : ∥x∥ ≤ 1, ∥y∥ ≤ τ}.

E is said to be uniformly smooth if and only if limτ→0+(ρE(τ)/τ) = 0. Let q > 1. The space E is said to
be q-uniformly smooth (or to have a modulus of smoothness of power type q > 1), if there exists a constant
cq > 0 such that ρE(τ) ≤ cqτ

q. It is well known that Hilbert spaces, Lp and lp spaces, 1 < p < ∞, as well
as the Sobolev spaces, W p

m, 1 < p < ∞, are q-uniformly smooth.

Now, we give some lemmas which will be used in the proof of the main result in the next section.

Lemma 2.1. ([15]) Let q > 1 and E be a real smooth Banach space. Then the following are equivalent:
(1) E is q-uniformly smooth;
(2) There exists a constant cq > 0 such that, for all x, y ∈ E,

∥x+ y∥q ≤ ∥x∥q + q⟨y, jq(x)⟩+ cq∥y∥q.

Lemma 2.2. ([16]) Let C be a nonempty closed convex subset of a uniformly smooth Banach space E. Let
f : C → C be a ρ-contraction. Let T : C → C be a nonexpansive mapping such that F (T ) ̸= ∅. For
t ∈ (0, 1), defined a net {xt} in C by xt = tf(xt) + (1 − t)Txt. Then as t → 0, the net {xt} converges
strongly to p ∈ F ()T which solves the following variational inequality

⟨(I − f)p, j(x− p)⟩ ≥ 0, for all x ∈ F (T ).

Lemma 2.3. ([14]) Let {xn} and {yn} be bounded sequences in a Banach space E such that

xn+1 = σnxn + (1− σn)yn

where {σn} is a sequence in [0, 1] such that

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1.
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Assume
lim sup
n→∞

(∥yn+1 − yn∥ − ∥xn+1 − xn∥) ≤ 0.

Then limn→∞ ∥yn − xn∥ = 0.

Lemma 2.4. ([16]) Assume {an} is a sequence of nonnegative real numbers such that an+1 ≤ (1−γn)an+δn
where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=1 γn = ∞;
(2) lim supn→∞

δn
γn

≤ 0 or
∑∞

n=1 |δn| < ∞.
Then limn→∞ an = 0.

3. Main Results

Now, we give the main results in this paper.

Theorem 3.1. Let C be a nonempty closed convex subset of a q-uniformly smooth Banach space E. Let
f : C → C be a ρ-contraction. Let T : C → C be a strictly pseudo-contractive mapping such that F (T ) ̸= ∅.
For t ∈ (0, 1), defined a net {xt} by xt = tf(xt)+(1− t)Txt. Then, as t → 0, the net {xt} converges strongly
to p ∈ F (T ) which solves the following variational inequality

⟨(I − f)p, j(x− p)⟩ ≥ 0, for all x ∈ F (T ).

Proof. First, we note that (1 − δ)I + δT is nonexpansive mapping for all δ ∈ (0,min{1, ( qλcq )
1

q−1 }). Indeed,

from (1.1) and Lemma 2.1, we have

∥(1− δ)(x− y) + δ(Tx− Ty)∥q

= ∥(x− y)− δ[x− Tx− (y − Ty)]∥q

≤ ∥x− y∥q − qδ⟨x− Tx− (y − Ty), jq(x− y)⟩
+ cqδ

q∥x− Tx− (y − Ty)∥q

≤ ∥x− y∥q − qδλ∥x− Tx− (y − Ty)∥q

+ cqη
q∥x− Tx− (y − Ty)∥q

= ∥x− y∥q + (cqδ
q − qδλ)∥x− Tx− (y − Ty)∥q

≤ ∥x− y∥q

and so
∥(1− δ)(x− y) + δ(Tx− Ty)∥ ≤ ∥x− y∥.

Hence (1− δ)I + δT is nonexpansive.
For s ∈ (0, 1), we consider the mapping S : C → C defined by

Sx = sf(x) + (1− s)[(1− δ)x+ δTx], ∀x ∈ C.

It is clear that S is a contraction on C. Therefore, there exists a unique fixed point xs of S in C. That is,
xs solves the equation

xs = sf(xs) + (1− s)[(1− δ)xs + δTxs], x ∈ C.

It follows that

xs =
sf(xs)

δ + (1− δ)s
+

δ(1− s)

δ + (1− δ)s
Txs. (3.1)

Taking s = δt
1−(1−δ)t in (3.1), we have

xt = tf(xt) + (1− t)Txt.
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Therefore, from Lemma 2.2, we know that, as s → 0, {xs} converges strongly to p ∈ F ()T which solves the
variational inequality

⟨(I − f)p, j(x− p)⟩ ≥ 0, for all x ∈ F (T ).

This completes the proof.

Theorem 3.2. Let C be a nonempty closed convex subset of a q-uniformly smooth Banach space E. Let
f : C → C be a ρ-contraction. Let T : C → C be a strictly pseudo-contractive mapping such that F (T ) ̸= ∅.
Define a mapping S : C → C by Sx = (1− δ)x+ δTx for all x ∈ C, where δ = (1− σ)η for any σ ∈ (0, 1)

and η ∈ (0,min{1, ( qλcq )
1

q−1 }). Let {αn} be a real sequence in (0, 1) which satisfies the following conditions:

(C1) limn→∞ αn = 0;
(C2)

∑
αn = ∞.

For arbitrary x0 ∈ C, define a sequence {xn} in C by

xn+1 = αnf(xn) + (1− αn)Sxn, ∀n ≥ 0. (3.2)

Then {xn} converges strongly to p ∈ F (T ) which solves the variational inequality

⟨(I − f)p, j(x− p)⟩ ≥ 0, for all x ∈ F (T ).

Proof. We first show that the sequence {xn} is bounded.

We note that δ < η ∈ (0,min{1, ( qλcq )
1

q−1 }). Hence, S is a nonexpansive mapping. At the same time, it

is clear that F (T ) = F (S).
Take x∗ ∈ F (T ). From (3.2), we have

∥xn+1 − x∗∥ = ∥αn(f(xn)− x∗) + (1− αn)(Sxn − x∗)∥
≤ αn∥f(xn)− f(x∗)∥+ αn∥f(x∗)− x∗∥+ (1− αn)∥Sxn − x∗∥
≤ [1− (1− ρ)αn]∥xn − x∗∥+ αn∥f(x∗)− x∗∥

≤ max{∥f(x
∗)− x∗∥
1− ρ

, ∥xn − x∗∥}.

By induction, we obtain, for all n ≥ 0,

∥xn − x∗∥ ≤ max{∥f(x
∗)− x∗∥
1− ρ

, ∥x0 − x∗∥}.

Hence {xn} is bounded and so is {Sxn}. From (3.2), we observe that

Sxn − σxn = [(1− η + ση)xn + (η − ση)Txn]− σxn

= (1− σ)[(1− η)xn + ηTxn].

Define a sequence {xn} in C by xn+1 = σxn + (1− σ)yn for all n ≥ 0. Then we obtain

yn =
αnf(xn) + (1− αn)Sxn − σxn

1− σ

=
αn(f(xn)− Sxn)

1− σ
+

Sxn − σxn
1− σ

=
αn(f(xn)− Sxn)

1− σ
+ (1− η)xn + ηTxn

and so
∥yn+1 − yn∥

≤ αn+1(∥f(xn)∥+ ∥Sxn+1∥) + αn(∥f(xn)∥+ ∥Sxn∥)
1− σ

+ ∥(1− η)(xn+1 − xn) + η(Txn+1 − Txn)∥

≤ αn+1(∥f(xn)∥+ ∥Sxn+1∥) + αn(∥f(xn)∥+ ∥Sxn∥)
1− σ

+ ∥xn+1 − xn∥,
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which implies that
lim sup
n→∞

(∥yn+1 − yn∥ − ∥xn+1 − xn∥) ≤ 0.

Hence, by Lemma 2.3, ∥yn − xn∥ → 0 and so limn→∞ ∥xn+1 − xn∥ = 0, which implies that limn→∞ ∥xn −
Sxn∥ = limn→∞ ∥xn − Txn∥ = 0.

Next, we show that
lim sup
n→∞

⟨f(p)− p, j(xn − p)⟩ ≤ 0,

where p = limt→0 xt and xt = tf(xt) + (1− t)Txt.
We note that xt − xn = t(f(xt)− xn) + (1− t)(Txt − xn). It follows that

∥xt − xn∥2 = t⟨f(xt)− xn, j(xt − xn)⟩+ (1− t)⟨Txt − xn, j(xt − xn)⟩
= t⟨f(xt)− xt, j(xt − xn)⟩+ t⟨xt − xn, j(xt − xn)⟩
+ (1− t)⟨Txt − Txn, j(xt − xn)⟩+ (1− t)⟨Txn − xn, j(xt − xn)⟩
≤ ∥xt − xn∥2 + ∥Txn − xn∥∥xt − xn∥+ t⟨f(xt)− xt, j(xt − xn)⟩.

It follows that

⟨f(xt)− xt, j(xn − xt)⟩ ≤
∥Txn − xn∥∥xt − xn∥

t
,

which implies that
lim sup
n→∞

⟨f(xt)− xt, j(xn − xt)⟩ ≤ 0.

It follows that

lim sup
n→∞

⟨f(p)− p, j(xn − p)⟩ ≤ 0. (3.3)

Finally, we prove that xn → p. From (3.2), we have

∥xn+1 − p∥2 = ∥αn(f(xn)− p) + (1− αn)(Sxn − p)∥2

≤ (1− αn)
2∥Sxn − p∥2 + 2αn⟨f(xn)− f(p), j(xn+1 − p)⟩

+ 2αn⟨f(p)− p, j(xn+1 − p)⟩
≤ (1− αn)

2∥xn − p∥2 + 2αnρ∥xn − p∥∥xn+1 − p∥
+ 2αn⟨f(p)− p, j(xn+1 − p)⟩

≤ (1− αn)
2∥xn − p∥2 + αnρ(∥xn − p∥2 + ∥xn+1 − p∥2)

+ 2αn⟨f(p)− p, j(xn+1 − p)⟩,

that is,

∥xn+1 − p∥2 ≤ 1− (2− ρ)αn + α2
n

1− ραn
∥xn − p∥2

+
2− αn

1− ραn
⟨f(p)− p, j(xn+1 − p)⟩

= [1− 2(1− ρ)αn

1− ραn
]∥xn − p∥2 + α2

n

1− ραn
∥xn − p∥2

+
2αn

1− ραn
⟨f(p)− p, j(xn+1 − p)⟩.

(3.4)

From (3.3), (3.4) and Lemma 2.4, we deduce immediately the desired result. This completes the proof.

Remark 3.3. We correct the gap in the proof of Theorem 1.1 and, at the same time, we drop the boundedness
assumption on C.
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Remark 3.4. It is worth of mentioning that our proof is very simpler than that of Theorem 1.1.

Remark 3.5. We would like to point out that we prove a strong convergence result on pseudocontractive
mappings which solves some variational inequality under conditions (C1) and (C2) on algorithm parameters
{αn}.
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