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Abstract

Based on the nonlinearization technique, a binary Bargmann symmetry constraint associated with a new
discrete 3×3 matrix eigenvalue problem, which implies that there exist infinitely many common commuting
symmetries and infinitely many common commuting conserved functionals, is proposed. A new symplectic
map of the Bargmann type is obtained through binary nonlinearization of the discrete eigenvalue problem
and its adjoint one. The generating function of integrals of motion is obtained, by which the symplectic
map is further proved to be completely integrable in the Liouville sense. c⃝2015 All rights reserved.
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1. Introduction

Recently in the past decade, an unusual way of using the nonlinearization technique arose in the theory
of soliton equations. In general, one considers the complicated nonlinear problems to be solved in such
a way to break nonlinear problems into several linear or smaller ones and then to solve these resulting
problems. It is following this idea that one has introduced the method of Lax pair to study nonlinear
soliton equations. The Lax pairs are always linear with respect to their eigenfunctions. Nevertheless, the
nonlinearization technique puts this original object, the Lax pair, into a nonlinear and more complicated
object, the nonlinearized Lax system. The main reason why the nonlinearization technique takes effect is
that kind of specific symmetry constraints expressed through the variational derivative of the potential.
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The study of symmetry constraints itself is an important part of the kernel of the mathematical theory of
nonlinearization, which can manipulate both mono-nonlinearization [3] and binary nonlinearization [12, 25].

However, all examples of application of the nonlinearization technique, discussed so far, are related to
lower-order matrix spectral problems of soliton equations, most of which are only concerned with second-
order traceless matrix spectral problems. On the other hand, there appears much difficulty in handling the
Liouville integrability of the so-called constrained flows generated from spectral problems, in the case of the
third and fourth-order matrix spectral problems[5, 10, 15, 16, 29, 34]. It is a challenging task to extend the
theory of nonlinearization to the case of higher-order matrix spectral problems. In this article, we would like
to establish a concrete example to apply the nonlinearization technique to the case of higher-order matrix
spectral problems, by manipulating binary nonlinearization[1, 4, 7, 9, 11, 13, 14, 17, 18, 22, 23, 24, 30, 31, 32]
for arbitrary-order matrix spectral problems associated with 3× 3 discrete matrix eigenvalue problem. The
resulting theory will show a direct way for generating sufficiently many integrals of motion for the Liouville
integrability of the constrained flows resulting from higher-order matrix spectral problems.

This article is organized as follows. In Section 2, a discrete 3× 3 matrix spectral problem is introduced,
and a hierarchy of lattice soliton equations is derived by the method of discrete zero curvature representation.
A lattice system is proposed, it is a typical lattice system in resulting hierarchy. Infinitely many commuting
symmetries and infinitely many commuting conserved functionals for the obtained hierarchy are given. In
Section 3,we consider the Bargmann symmetry constraint for the proposed new Lax pairs and adjoint Lax
pairs of the discrete soliton hierarchy. Finally in Section 4, conclusions and remarks are given.

2. A family of lattice soliton equations and its Liouville integrability

Let we define the shift operator E, the inverse of E by

Efn = fn+1, E
−1fn = fn−1,∆ = E − E−1, n ∈ Z,

(1−E)−1 = −(1 + E−1)∆−1, (1− E−1)−1 = (1 + E)∆−1.

We introduce the new discrete 3× 3 matrix spectral problem

Eψn = Un(un, λ)ψn =

 pn 1 qn − λ
0 0 1
sn 0 0

 ψ1
n

ψ2
n

ψ3
n

 , (2.1)

where the potential vector Un = (pn, qn, sn)
T , λt = 0, and solve the stationary discrete zero curvature

equation

(EVn)Un − UnVn = 0, Vn = (V ij
n )3×3, (2.2)

where each entry (V ij
n )3×3 = V ij

n (An(λ), Bn(λ), Dn(λ)) of the 3× 3 matrix Vn is a Laurent expansion of λ.
When we choose V 12

n = An(λ), V
32
n = Bn(λ), V

22
n = Dn(λ), we have

V 11
n = E−1pnAn(λ)− λE−1Bn(λ) + E−1qnBn(λ) + E−1Dn(λ),
V 13
n = qnAn(λ)− λAn(λ) +

1
sn
EBn(λ),

V 21
n = E−1Bn(λ), V

23
n = E−1 1

sn
E−1snAn(λ)−E−1 pn

sn
Bn(λ),

V 31
n = E−1snAn(λ), V

33
n = −λBn(λ) + qnBn(λ) + EDn(λ).

(2.3)

Substituting the following expressions

An(λ) =

∞∑
m=−1

A(m)
n λ−m, Bn(λ) =

∞∑
m=−1

B(m)
n λ−m, Dn(λ) =

∞∑
m=−1

D(m)
n λ−m. (2.4)

The stationary discrete zero-curvature equation (2.2) is equivalent to the recursion relation:
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(snE − E−1sn)A
(j)
n (λ) + pn(1− E−1)B

(j)
n (λ)

= (p2n − pnE
−1pn + snEqn − qnE

−1sn)A
(j−1)
n (λ)

+ (pnqn − pnE
−1qn + snE

1
sn
E −E−1)B

(j−1)
n (λ) + pn(1− E−1)D

(j−1)
n (λ),

(1− E)Dj
n(λ)

= (E − E−1 1
sn
E−1sn)A

(j−1)
n (λ) + (E−1 pn

sn
− pn

sn
E)B

(j−1)
n (λ) + qn(1−E)D

(j−1)
n (λ),

sn(E − E−1)B
(j)
n (λ)

= sn(1− E−1)pnA
(j−1)
n (λ) + sn(E − E−1)qnB

(j−1)
n (λ) + sn(E

2 − E−1)D
(j−1)
n (λ).

(2.5)

From the above recursion equations, we obtain the initial data

A(−1)
n = 0, B(−1)

n = 1, D(−1)
n = 0, A(0)

n =
1

sn
, B(0)

n = qn, D
(0)
n =

pn−1

sn−1
, · · ·

To obtain Lax integrable equations, we define F j
n by the following relation:

D
(j)
n (λ) = −pnA(j)

n (λ)− (1 + E−1)snF
(j)
n (λ). (2.6)

It is easy to see that

(snE − E−1sn)A
(j)
n (λ) + pn(1− E−1)B

(j)
n (λ)

= (snEqn − qnE
−1sn)A

(j−1)
n (λ) + (pnqn − pnE

−1qn + snE
1
sn
E − E−1)B

(j−1)
n (λ)

+ pn(E
−2 − 1)snF

(j−1)
n (λ),

(E − 1)pnA
(j)
n (λ) + ∆snF

j
n(λ)

= (E − E−1 1
sn
E−1sn + qnEpn − pnqn)A

(j−1)
n (λ) + (E−1 pn

sn
− pn

sn
E)B

(j−1)
n (λ)

+ qn∆snF
(j−1)
n (λ),

sn∆B
(j)
n (λ) = sn(1− E2)pnA

(j−1)
n (λ) + sn∆qnB

(j−1)
n (λ)

+ sn(E
−2 −E2 + E−1 − E)snF

(j−1)
n (λ).

(2.7)

Using the matrix notation, the above expressions (2.3) can be written as

KGj−1
n = JGj

n, G
j
n = (A(j)

n , B(j)
n , F (j)

n )T , j ≥ 0, (2.8)

where so-called Lenards operator pair J and K are two skew-symmetric operators

J =

 snE −E−1sn pn(1− E−1) 0
(E − 1)pn 0 ∆sn

0 sn∆ 0


and

K =

 snEqn − qnE
−1sn pnqn − pnE

−1qn + snE
1
sn
E − E−1 pn(E

−2 − 1)sn
E − E−1 1

sn
E−1sn + qnEpn − pnqn E−1 pn

sn − pn
snE qn∆sn

sn(1− E2)pn sn∆qn sn(E
−2 − E2 + E−1 − E)sn

 .

From (2.8), we have

G−1
n = (A

(−1)
n , B

(−1)
n , F

(−1)
n )T = (0, 1, 0)T , G0

n = (A
(0)
n , B

(0)
n , F

(0)
n )T = ( 1sn , qn, 0)

T ,

G1
n = (A

(1)
n , B

(1)
n , F

(1)
n )T = (

qn + qn+1
sn , q2 +

pn
sn +

pn−1
sn−1

,
pn(qn + qn+1)− 1

sn ), · · ·

Let ψn(λ) satisfy (2.1) and its auxiliary problem
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∂ψn(λ)

∂tn
= V (m)

n ψn(λ), (2.9)

where
V (m)
n = (V (ijm)

n )3×3, V
(ijm)
n = V (ij)

n (A(m)
n (λ), B(m)

n (λ), D(m)
n (λ))

and

A(m)
n (λ) =

∞∑
i=−1

A(m)
n λm−i, B(m)

n (λ) =

∞∑
i=−1

B(m)
n λm−i, D(m)

n (λ) =

∞∑
i=−1

D(m)
n λm−i.

Then the compatibility conditions of (2.1) and (2.9) are

∂Un

∂tnm

= (EV (m)
n )Un − UnV

(m)
n , m ≥ −1, (2.10)

which implies the lattice solition equations

∂Un

∂tnm

= Xm+1
n , Un = (pn, qn, sn)

T , m ≥ −1,

and
Xj

n = JGj
n = KGj−1

n , j ≥ 0

which give rise to the following hierarchy of lattice soliton equations

∂pn
∂tnm

= (snE − E−1sn)A
(j)
n (λ) + pn(1− E−1)B(j)

n (λ),

∂qn
∂tnm

= (E − 1)pnA
(j)
n (λ) + ∆snF

j
n(λ),

∂sn
∂tnm

= sn∆B
(j)
n (λ).

j ≥ −1. (2.11)

So the (2.10) are discrete zero curvature representation of (2.11), the discrete spectral problem (2.3) and (2.9)
constitute the Lax pair of (2.11), and (2.11) is a hierarchy of Lax integrable nonlinear lattice equations. It
is easy to verify that the new first Liouville integrable differential-difference equation in (2.11), when m = 0,
is 

∂
∂tn

pn = pn(qn − qn−1) +
sn − sn+1
sn+1

,

∂
∂tn

qn =
pn+1
sn+1

− pn
sn ,

∂
∂tn

sn = sn(qn+1 − qn−1).

(2.12)

The variational derivative, the Gateaux derivative and the inner product are defined, respectively, by

δHn

δun
=
∑
m∈Z

E−m(
∂Hn

∂un+m
), J

′
(un)[vn] =

∂

∂ε
J(un + εvn)|ε=0, ⟨fn, gn⟩ =

∑
n∈Z

(fn, gn)R2 , (2.13)

where fn, gn are required to be rapidly vanished at the infinity, and (fn, gn)R2 denotes the standard inner
product of fn and gn in the Euclidean space R2. Operator J∗ is defined by ⟨f, J∗g⟩ = ⟨Jfn, gn⟩; it is called
adjoint operator of J with respect to (2.8). If an operator J has the property J∗ = −J , then J is called
to be a skew-symmetric. A linear operator J is called a Hamiltonian operator, if J is a skew-symmetric
operator and satisfies the Jacobi identity, i.e., it satisfies that

⟨f, Jg⟩ = −⟨Jf, g⟩, ⟨J ′
(un)[Jf ]g, h⟩+ Cycle(f, g, h) = 0 (2.14)

based on a given Hamiltonian operator J , we can define a corresponding Poisson bracket
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{f, g}J = ⟨ δf
δun

, J
δg

δun
⟩ =

∑
n∈Z

(
δf

δun
, J

δg

δun
). (2.15)

To establish the Hamiltonian structures for (2.11), we define

Rn = VnU
−1
n =


V 12
n (λ− qn)V

12
n + V 13

n
V 11
n − pnV

12
n

sn

V 22
n (λ− qn)V

22
n + V 23

n
V 21
n − pnV

22
n

sn

V 32
n (λ− qn)V

32
n + V 33

n
V 31
n − pnV

32
n

sn


and ⟨A,B⟩ = Tr(AB), where A and B are the some order square matrices. We have

∂Un

∂λ
=

 0 0 −1
0 0 0
0 0 0

 ,
∂Un

∂pn
=

 1 0 0
0 0 0
0 0 0

 ,
∂Un

∂qn
=

 0 0 1
0 0 0
0 0 0

 ,
∂Un

∂sn
=

 0 0 0
0 0 0
1 0 0

 .

Hence

⟨Rn,
∂Un
∂λ

⟩ = −V 32
n = −Bn(λ), ⟨Rn,

∂Un
∂pn

⟩ = V 12
n = An(λ), ⟨Rn,

∂Un
∂qn

⟩ = V 32
n = Bn(λ),

⟨Rn,
∂Un
∂sn

⟩ = V 11
n − pnV

12
n

sn = 1
sn
[(E−1 − 1)pnAn(λ)− E−1(λ− qn)Bn(λ) + E−1Dn(λ)].

(2.16)

By virtue of the discrete trace identity

δ

δu

∑
n∈Z

⟨Rn,
∂Un

∂λ
⟩ =

(
λ−ε

(
∂

∂λ

)
λε
)
⟨Rn,

∂Un

∂uin
⟩, i = 1, 2, 3. (2.17)

The substitution of (2.4) into (2.17), and comparing the coefficients of λ−m−1 in (2.17), we get

(
δ

δpn
,
δ

δqn
,
δ

δsn
)
(
B(m+1)

n

)
= (ε−m)


A(m)

n

B(m)
n

1

sn
(E−1 − 1)A(m)

n − E−1B(m+1)
n + E−1(qnB

(m)
n +D(m)

n )

 . (2.18)

When m = 0 in the (2.18), through a direct calculation, we find that ε = 0. So we have

(
δ

δsn
,
δ

δwn
,
δ

δpn
)

(
−B

(m+1)
n

m+ 1

)
=

 A(m)
n

B(m)
n

1

sn
(E−1 − 1)A(m)

n − E−1B(m+1)
n + E−1(qnB

(m)
n +D(m)

n )

 ,m ≥ −1.

Now we can rewrite the (2.11) in the following Hamiltonian forms

∂Un

∂tnm

= Xm+1
n = J(

δ

δpn
,
δ

δqn
,
δ

δsn
)Hm+1

n = JL(
δ

δpn
,
δ

δqn
,
δ

δsn
)Hm

n , m ≥ −1. (2.19)

Let

L =

 L11
1
sn∆

−1 L13

∆−1 1
sn 0 0

L31 0 (Esn − snE
−1)−1

 , (2.20)
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where
L11 = − 1

sn∆
−1pn(Esn − snE

−1)−1pn(E − 1)∆−1 1
sn ,

L13 = − 1
sn∆

−1(1− E−1)pn(Esn − snE
−1)−1,

L31 = −(Esn − snE
−1)−1pn(E − 1)∆−1 1

sn .

It is easy to verify that K is a skew-symmetric operator in this way and the positive hierarchy (2.10)
is derived. It is easy to verify that the positive hierarchy has the discrete zero-curvature representation
(2.9). And, every soliton equation in (2.11) or the discrete Hamiltonian system (2.19) is a discrete Liouville
integrable system.

3. A binary Symmetry constraint by binary nonlinearization

In order to impose the Bargmann symmetry constraint by binary nonlinearization, we consider the
adjoint spectral problem of spectral problem (2.1)

E−1ψn = (E−1Ũn
T
(un, λ)ψn), ψn = (ψ1j

n , ψ
2j
n , ψ

3j
n )T (3.1)

and temporal spectral problem

ψntm = −(Ṽ m
n (un, λ))

Tψn. (3.2)

From the compatibility condition(E−1ψn)tm = E−1ψntm , we know that

E−1Ũn
T
tm = (E−1Ũn

T
)(Ṽ m

n )T − (E−1(Ṽ m
n )T )(E−1Ũn

T
) (3.3)

Let λ1, λ2, ..., λN be N distinct eigenvalues of spectral problem (1) and λj ̸= 0, j = 1, 2, ..., N , we have{
(Eφ1j

n , Eφ
2j
n , Eφ

3j
n ) = (φ1j

n , φ
2j
n , φ

3j
n )UT

n (un, λ),

(φ1j
n , φ

2j
n , φ

3j
n )tm = (φ1j

n , φ
2j
n , φ

3j
n )V T

n (un, λ),{
(Eψ1j

n , Eψ
2j
n , Eψ

3j
n ) = (ψ1j

n , ψ
2j
n , ψ

3j
n )(Un(un, λ))

−1,

(ψ1j
n , ψ

2j
n , ψ

3j
n )tm = (ψ1j

n , ψ
2j
n , ψ

3j
n )(−Vn(un, λ)).

(3.4)

We can compute the variational derivative of the spectral parameter λ with respect to the potential u

δλj
δun

= αj(Eψ
1j
n , Eψ

2j
n , Eψ

3j
n )

∂Un(un, λj)

∂un
(φ1j

n , φ
2j
n , φ

3j
n )T . (3.5)

Namely

∇λj =


δλj
δpn
δλj
δqn
δλj
δsn

 = αj

 φ2j
n ψ

3j
n

φ2j
n ψ

1j
n

s−1
n φ4j

n ψ
4j
n

 , (3.6)

where
δλj
δun

is a variational derivative for eigenvalue λj , αj is a constant and φi
n, ψ

i
n, i = 1, 2, 3, 4 are

required to be rapidly vanishing at the infinity, and we denote the inner product in RN by < ., . > and use
the following notations

Φi
n = (φi1

n , φ
i2
n , ..., φ

iN
n ), Ψi

n = (ψi1
n , ψ

i2
n , ..., ψ

iN
n ), i = 1, 2, 3, ∧ = diag(λ1, λ2, ..., λN ).

Such a gradient satisfies the following equation

K∇λj = λjJ∇λj . (3.7)
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Consider the discrete symmetry constraint

G−1 =

N∑
j=1

∇λj . (3.8)

That is

δH(0)
n

δun
=

 1
sn
qn
0

 =

 φ1j
n ψ

2j
n

φ3j
n ψ

2j
n

s−1
n (φ1j

n ψ
1j
n − pnφ

1j
n ψ

2j
n )

 . (3.9)

Note that the explicit constraints of potential functions and eigenvalue functions can not be obtained with
the express above. Under the constraint (3.8), we obtain a discrete binary constrained flows

Eφ1j
n = pnφ

1j
n + φ2j

n + (qn − λ)φ3j
n , 1 ≤ j ≤ N,

Eφ2j
n = φ3j

n , 1 ≤ j ≤ N,

Eφ3j
n = snφ

1j
n , 1 ≤ j ≤ N,

Eψ1j
n = ψ2j

n , 1 ≤ j ≤ N,

Eψ2j
n = (λ− qn)ψ

2j
n + ψ3j

n , 1 ≤ j ≤ N,

Eψ3j
n = s−1

n (ψ1j
n − pnψ

2j
n ), 1 ≤ j ≤ N,

(3.10)

Here, < ., . > is the standard inner product of RN . The symmetry constraint (3.8) yields explicit expressions
from (3.9): 

pn =< Φ1
n,Ψ

1
n >< Φ1

n,Ψ
2
n >

−1,
qn =< Φ3

n,Ψ
2
n >,

sn =< Φ1
n,Ψ

2
n >

−1 .

(3.11)

So the discrete symmetry constraint (3.8) is a Bargmann constraint. Setting

Pn = (φ11
n , φ

12
n , · · · , φ1N

n , · · · , φ31
n , φ

32
n , · · · , φ3N

n )T , Qn = (ψ11
n , ψ

12
n , · · · , ψ1N

n , · · · , ψ31
n , ψ

32
n , · · · , ψ3N

n )T

and
∂
∂Pn

= ( ∂
∂φ11

n

, ∂
∂φ12

n

, · · · , ∂
∂φ1N

n

, · · · , ∂
∂φ31

n

, ∂
∂φ32

n

, · · · ∂
∂φ3N

n

, )T ,

∂
∂Qn

= ( ∂
∂ψ11

n

, ∂
∂ψ12

n

, · · · , ∂
∂ψ1N

n

, · · · , ∂
∂ψ31

n

, ∂
∂φ32

n

, · · · , ∂
∂ψ3N

n

, )T ,

the Poisson bracket of between two arbitrary function of α, β in symplectic apace R6N is defined by

{α, β} = ⟨ ∂α
∂P

,
∂β

∂Q
⟩ − ⟨ ∂β

∂P
,
∂α

∂Q
⟩ = (

∂α

∂P
)T (

∂β

∂Q
)− (

∂β

∂P
)T (

∂α

∂Q
).

This is skew-symmetric, bilinear, and satisfies the Jacobi identity. In particular, any two of α, β is called
involutive if {α, β} = 0.

The map H defined as

H(φ1
n, φ

2
n, φ

3
n, ψ

1
n, ψ

2
n, ψ

3
n) = (Eφ1

n, Eφ
2
n, Eφ

3
n, Eψ

1
n, Eψ

2
n, Eψ

3
n) (3.12)

is a symplectic map. Through laborious but direct computation, we get

{αi, αj} = {βi, βj} = 0, {αi, βj} = δij , 1 ≤ i, j ≤ N

and the γi, δj are of the same forms. Furthmore, we can deduce

d(EPn) ∧ d(EQn) = dPn ∧ dQn.
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Therefore, (3.12) determine a symplectic map.
Now, we will solve recursion equations (2.7). When m > 1, we have

Untm
=

 pn
qn
sn


tm

=

 (snE − E−1sn)A
(j)
n (λ) + pn(1− E−1)B

(j)
n (λ)

(E − 1)pnA
(j)
n (λ) + ∆snF

j
n(λ)

sn∆B
(j)
n (λ)


= J

δHm
n

δun
= JΦm−1

n

δH1
n

δun
= J

N∑
j=1

λm−1
j

δλj
δun

.

(3.13)

Using (3.8) and (3.10) and the constraint (3.11), we take the following restriction:

Gj−1 =
N∑
k=1

λjk∇λk. (3.14)

That is to say,

 (snE − E−1sn)A
(j)
n (λ) + pn(1−E−1)B

(j)
n (λ)

(E − 1)pnA
(j)
n (λ) + ∆snF

j
n(λ)

sn∆B
(j)
n (λ)

 = J
N∑
j=1

λmj

 φ1j
n ψ

2j
n

φ3j
n ψ

2j
n

1
sn
(φ1j

n ψ
1j
n − pnφ

1j
n ψ

2j
n )

 . (3.15)

From (3.15), we can conclude

Aj
n =< ∧jΦ1

n,Ψ
2
n >, B

j
n =< ∧jΦ3

n,Ψ
2
n >,

F j
n = s−1

n (< ∧jΦ1
n,Ψ

1
n > −pn < ∧jΦ1

n,Ψ
2
n >).

(3.16)

Substituting (3.16) into the relation (2.6), we obtain a solution of Dj
n, that is

Dj
n =< ∧jΦ2

n,Ψ
2
n > . (3.17)

By using (3.16), (3.17) and (2.7), we have

E−1snAn(λ) =< ∧jΦ3
n,Ψ

1
n >, E

−1Bn(λ) =< ∧jΦ2
n,Ψ

1
n >,

E−1 1
sn
E−1snAn(λ)− E−1 pn

sn
Bn(λ) =< ∧jΦ2

n,Ψ
3
n >,

E−1pnAn(λ)− λE−1Bn(λ) + E−1qnBn(λ) + E−1Dn(λ) =< ∧jΦ1
n,Ψ

1
n >,

qnAn(λ)− λAn(λ) +
1
sn
EBn(λ) =< ∧jΦ1

n,Ψ
3
n >,

−λBn(λ) + qnBn(λ) + EDn(λ) =< ∧jΦ3
n,Ψ

3
n > .

(3.18)

In the following, we would like to discuss the Louville integrability on the nonlinearized temporal parts
of the Lax pairs and adjoint Lax pairs.

Under the control of (3.11), the temporal parts of the Lax pairs and the adjoint Lax pairs by substituting
(3.18) into (3.4) become

∂
∂t(φ

1j
n , φ

2j
n , φ

3j
n )T = V |B(φ1j

n , φ
2j
n , φ

3j
n )T , j = 1, 2, · · · , N,

∂
∂t(ψ

1j
n , ψ

2j
n , ψ

3j
n )T = −V T |B(ψ1j

n , ψ
2j
n , ψ3j)

T , j = 1, 2, · · · , N.
(3.19)

We arrive at the finite-dimensional Hamiltonian systems. Here, the subscript B means substitution of (3.18)
into the expression.

The temporal parts of the nonlinearized Lax pairs and the adjoint Lax pairs (3.19) may be rewritten as

∂
∂t

Φi
n =

∂Fm
n

∂Ψi
n

, ∂
∂t

Ψi
n = −∂F

m
n

∂Φi
n

, (3.20)
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which is the finite-dimensional Hamiltonian systems:

(
∂F−1

n

∂Ψ1
n

,
∂F−1

n

∂Ψ2
n

,
∂F−1

n

∂Ψ3
n

) = (Φ1
n,Φ

2
n,Φ

3
n)V

T
−1,

(
∂F−1

n

∂Φ1
n

,
∂F−1

n

∂Φ2
n

,
∂F−1

n

∂Φ3
n

) = −(Ψ1
n,Ψ

2
n,Ψ

3
n)V−1,

(3.21)

where

V−1 =

 < Φ2
n,Ψ

1
n > −Λ 0 < Φ1

n,Ψ
2
n >

1 0 0
0 1 < Φ3

n,Ψ
2
n > −Λ

 . (3.22)

The associated Hamiltonian functions are given as follows

F−1
n =< Φ1

n,Ψ
2
n > + < Φ2

n,Ψ
3
n > − < ΛΦ1

n,Ψ
1
n > − < ΛΦ3

n,Ψ
3
n >

+ < Φ1
n,Ψ

1
n >< Φ2

n,Ψ
1
n > + < Φ1

n,Ψ
2
n >< Φ3

n,Ψ
1
n > + < Φ3

n,Ψ
2
n >< Φ3

n,Ψ
3
n >,

(3.23)

and

(
∂Fm

n

∂Ψ1
n

,
∂Fm

n

∂Ψ2
n

,
∂Fm

n

∂Ψ3
n

) = (Φ1
n,Φ

2
n,Φ

3
n)V

(m)
n (u,Λ)T , m ≥ 0,

(
∂Fm

n

∂Φ1
n

,
∂Fm

n

∂Φ2
n

,
∂Fm

n

∂Φ3
n

) = −(Ψ1
n,Ψ

2
n,Ψ

3
n)V

(m)
n (u,Λ)−1, m ≥ 0.

(3.24)

Let Φi(n, tm),Ψi(n, tm), i = 1, 2, 3 be a solution of the finite-dimensional completely integrable systems
(3.24). Then, the solution of the discrete nonlinear equation (2.12)

p(n, t0) =< Φ1(n, t0),Ψ1(n, t0) >< Φ1(n, t0),Ψ2(n, t0) >
−1,

q(n, t0) =< Φ3(n, t0),Ψ2(n, t0) >,
s(n, t0) =< Φ1(n, t0),Ψ2(n, t0) >

−1
(3.25)

is a Bäcklund transformation between the integrable symplectic map (3.12) and the finite-dimensional
completely integrable systems (3.24).

4. Conclusions and Remarks

In this paper, we have proposed a interesting and meaningful hierarchy of differential-difference equa-
tions associated with a new s-order discrete matrix isospectral problem through the discrete zero curvature
equation and then the Liouville integrability of the obtained the family of differential-difference equations
is proved. Furthermore, under the binary Bargmann symmetry constraint between the potentials and the
eigenfunctions, the binary nonlinearization of the Lax pairs and the adjoint Lax pairs of the obtained family
is presented. This will provide us with a large number of examples of the related fields.

As we know that the r-matrix formula [2], Lax representation and separation of variables [25, 26] have
a direct link between the classical integrable problem and the finite-dimensional integrable problem. In ad-
dition, bilinear Bäcklund transformation [8, 19], Darboux transformation [28, 33], Bell polynomials [6, 20],
Hirota bilinear solution [21, 27]are all the key areas for solitons which will motivated us do further research
to improve the classical binary nonlinearization.
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