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Abstract

In this paper, a harvested logistic equation with delay and piecewise constant argument of generalized type
is addressed. Both discrete and piecewise constant delays are incorporated into the logistic equation for
investigation. Existence, boundedness of positive solutions and permanence are studied for the proposed
logistic model. c⃝2015 All rights reserved.
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1. Introduction

Mathematical modeling of population dynamics is one of the important parts of applied mathematics. In
the literature, various mathematical models have been proposed to study population dynamics, and logistic
equation is among the most popular ones. Time delays exist in various biological processes [15], especially in
single population models like logistic equation. Delayed logistic equation has been investigated in numerous
papers where delays are incorporated in different forms [14, 18]. There are also several papers that are
interested in the logistic equation with piecewise constant arguments [6, 8, 17, 20]. Biologically, insertion of
piecewise constant arguments into a population model means that the rate of the population depends both
on the present size and the memorized values of the population.

Since introduced in [13], differential equations with piecewise constant arguments have been intensively
developed and used for modeling of real processes [19, 21, 22]. In the literature, most of the results for dif-
ferential equations with piecewise constant argument are obtained by reducing them into discrete equations
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and by applying numerical methods. The concept of differential equations with piecewise constant argu-
ments has been generalized by considering arbitrary piecewise constant functions as arguments by Akhmet
in [1, 2, 3, 5] and a new approach based on the construction of an equivalent integral equation has been used
in the investigation of these equations, called as differential equations with piecewise constant argument of
generalized type. Later, this new class of differential equations and its applications have been considered in
[4, 6, 7, 8, 10, 11]. Akhmet’s book [9] covers many theoretical and application problems in the theory of
differential equations with piecewise constant argument of generalized type.

Since most populations in ecology are subject to external forces, it is significant to study population
models with harvesting. Mathematically, harvesting term leads to various challenging issues especially in
the study of existence of positive solutions. It is probable that the harvesting term has a time delay [14].
It is also meaningful to consider a delay differential equation with both continuous and piecewise constant
arguments [10, 11, 12, 19].

In this study, we extend the logistic population model by using both discrete and piecewise constant
delays and also using a harvesting term. We shall consider time delays present both in the logistic and
the harvesting parts. Then, we establish sufficient conditions for several qualitative properties such as
existence, boundedness of positive solutions and permanence for the proposed model. For the existence and
boundedness of positive solutions, we adapt the previously obtained results [14] to differential equations
with piecewise constant arguments.

2. Preliminaries

Let Z and R+ be the sets of integers and nonnegative real numbers, respectively. Fix a real-valued,
strictly ordered sequence {θi}, i ∈ Z, with |θi| → ∞ as |i| → ∞.

In this paper, we consider the following logistic-type equation with a discrete delay, piecewise constant
arguments of generalized type and a deviated linear harvesting term:

x′(t) = rx(t)(1− ax(t− τ)− bx(β(t)))− E(t)x(β(t)), t ≥ 0 (2.1)

where x(t) is the population density at time t; r, a, b are positive constants; E(t) denotes the rate at which
individuals are harvested; τ > 0 is a single discrete delay; β(t) = θi if θi ≤ t < θi+1, i ∈ Z. We note
that (2.1) is a special case of the quasilinear retarded differential equation with functional dependence on
piecewise constant argument, which has been initiated in [11] by Akhmet.

We consider the equation (2.1) with the following initial function, initial condition and the assumptions
(A1)-(A3):

x(t) = ϕ0(t), t ∈ [−τ, 0], x(0) = x0, (2.2)

(A1) there exists a constant θ ∈ (0, τ) such that θi+1 − θi ≤ θ, i ∈ Z;
(A2) E : R+ → (0,∞) is a bounded, continuous function with the possible exception of the points θi ≥ 0,

where lim
t→θi

+
E(t) = E(θi) and

∫∞
0 E(s)ds = ∞;

(A3) ϕ0 : [−τ, 0] → [0, x0] is a continuous function with x0 > 0.

For convenience, we define κ :=
1

a+ b
and µ := max{1, x0

κ
}.

Note that there exists at least one and at most a finite number of discontinuity points, θi, i ∈ Z, in any
interval [nτ, (n+ 1)τ ], n ∈ Z. Moreover, we have θk0 ≤ 0 < θk0+1 for some k0 ∈ Z.

Below, we give an example in order to give an idea about the considered strategy.

Example 2.1. (Metapopulation model) One of the metapopulation models considering the immigration of
some species such as birds from a continent to islands in the ocean was initiated in [16]. Let us consider
(2.1) as a metapopulation model with delay and piecewise constant argument. Let x(t) denote the density
of the species colonized on the islands at time t; r be the colonization rate and E(t) be the extinction rate
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due to the immigration. According to the model (2.1), the rate of change of the population depends not
only on the time t at which they are determined, but somehow depends on its past history denoted by t− τ
as well as on constant values given by the function β(t). For a logistic type equation with a harvesting
term where we do not know the population at the exact time, we need it to determine the harvesting rate.
Hence, there is always a delay in getting the information of the population. We take this effect into account
by the term E(t)x(β(t)). To illustrate the effect, we may think the population which meet at the beginning
of immigration season with their instinctive evaluations of the population state, environment and implicitly
decide which living conditions to prefer and where to go in line with group hierarchy, communications,
dynamics and then adapt to those conditions [8].

In particular, if we set θi =
2i− 1

10
for i ∈ Z, ϕ0(t) = 1 on [−τ, 0] and E(t) =

{
1 if θ2i ≤ t < θ2i+1,
2 if θ2i+1 ≤ t < θ2i+2,

we can apply the results obtained below for appropriate parameters r, a and b of the model.

Definition 2.2. A function x(t) is a solution of (2.1) and (2.2) on [−τ,∞) if:

(i) x(t) is continuous on [−τ,∞) and x(t) = ϕ0(t), t ∈ [−τ, 0],
(ii) the derivative x′(t) exists for t ∈ R+ with the possible exception of the points θi, i ≥ k0 + 1, where

one-sided derivatives exist. (We understand x′(0) to mean the right hand derivative)

(iii) equation (2.1) is satisfied by x(t) on each interval [0, θk0+1), [θi, θi+1), i ≥ k0 + 1.

Theorem 2.3. Let (A1)-(A3) be satisfied. Then (2.1)-(2.2) has a unique solution defined for all t ∈ [−τ,∞)
in the sense of Definition 2.2.

Proof. We shall apply the method of steps. We can find kn ∈ Z such that θkn ≤ nτ < θkn+1for n = 0, 1, 2, · · · .
We have x(t) = ϕ0(t) for all t ∈ [−τ, 0]. First, we consider the interval [0, τ ]. For t ∈ [0, τ ], we obtain

x′(t) = rx(t)(1− aϕ0(t− τ)− bx(β(t)))− E(t)x(β(t)),

which is a differential equation with piecewise constant argument. For t ∈ [0, θk0+1), the solution x(t)
satisfies the following initial value problem

y′(t) = ry(t)(1− aϕ0(t− τ)− bϕ0(θk0))− E(t)ϕ0(θk0),
y(0) = x0,

which is a linear ordinary differential equation. Since the functions ϕ0(t − τ) and E(t) are continuous
on [0, θk0+1), it follows that x(t) exists uniquely on this interval. From the continuity of solutions, we
have x(θk0+1) = lim

t→θk0+1
−
x(t). Continuing the process on each interval t ∈ [θj , ω], where ω = θj+1 if

k0 + 1 ≤ j ≤ k1 − 1, and ω = τ if j = k1, we can see that x(t) satisfies the initial value problem

y′(t) = ry(t)(1− aϕ0(t− τ)− by(θj))− E(t)y(θj),
y(θj) = x(θj).

For the same reason as that behind the existence and uniqueness of the solution of linear ordinary differential
equations with continuous coefficients, we obtain that the solution is uniquely defined on [θj , ω]. Therefore,
there exists a unique solution x(t) = ϕ1(t) of (2.1)-(2.2) on t ∈ [0, τ ].

Next, consider the interval [τ, 2τ ]. For t ∈ [τ, 2τ ], we have

x′(t) = rx(t)(1− aϕ1(t− τ)− bx(β(t)))− E(t)x(β(t)),

a differential equation with piecewise constant argument. If we apply a similar technique used for the interval
[0, τ ], we see that the solution x(t) = ϕ2(t) exists and it is unique on the interval [τ, 2τ ]. In fact, if we proceed
for t ∈ [nτ, (n+ 1)τ ], n = 2, 3, · · · , similarly, we find a unique solution x(t) = ϕn+1(t).
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In the next result, we shall construct an equivalent integral equation for the system (2.1)-(2.2) by applying
a similar technique considered in the book [9].

Theorem 2.4. Let (A1)-(A3) be fulfilled. Then finding a solution of equation (2.1) through (2.2) is equiv-
alent to solving the following integral equation

x(t) = x0 +

∫ t

0
{rx(s)(1− ax(s− τ)− bx(β(s)))− E(s)x(β(s))}ds, (2.3)

for t ≥ 0 where x(t) = ϕ0(t), t ∈ [−τ, 0].

Proof. Necessity. Let x(t) be a solution of (2.1) satisfying (2.2). Then x(t) satisfies the conditions listed in
Definition 2.2. We define a function ψ such that ψ(t) = ϕ0(t), t ∈ [−τ, 0] and

ψ(t) = x0 +

∫ t

0
{rx(s)(1− ax(s− τ)− bx(β(s)))− E(s)x(β(s))}ds, t ≥ 0.

We can see by direct computation that the integral on the right side of the last equation exists.
Denote z(t) = ψ(t)− x(t) for t ≥ −τ. It is clear that z(t) = 0 on [−τ, 0]. For t ̸= θj , j ≥ k0 + 1, we have

ψ′(t) = rx(t)(1− ax(t− τ)− bx(β(t)))− E(t)x(β(t))

and
x′(t) = rx(t)(1− ax(t− τ)− bx(β(t)))− E(t)x(β(t)).

Thus, we obtain z′(t) = 0 for t ̸= θj , j ≥ k0 + 1. Moreover, it can be seen by straightforward evaluation
that lim

t→θi
−
z′(t) = lim

t→θi
+
z′(t). Hence, z′(t) = 0 for all t ≥ 0 and z(0) = 0. Consequently, we derive z(t) = 0,

t ∈ [−τ, 0], i.e., ψ(t) = x(t) for t ≥ −τ.
Sufficiency. Assume that (2.3) holds true. Consider the interval [0, θk0+1). If we differentiate (2.3) for

t ∈ (0, θk0+1), we can see that x(t) satisfies (2.1). Since x(β(t)) and E(t) are right continuous functions,
we find by taking the limit as t→ θi

+ that x(t) satisfies (2.1) on [0, θk0+1). Now, fix i ∈ Z, i ≥ k0 + 1 and
differentiate (2.3) for t ∈ (θi, θi+1). Then, we derive that x(t) satisfies (2.1). In fact, x(t) satisfies (2.1) on
t ∈ [θi, θi+1) due to a similar discussion made for the interval [0, θk0+1).

3. Existence and boundedness of positive solutions

First, let us consider the following linear differential equation with piecewise constant argument of
generalized type

X ′(t) = −E(t)X(β(t)), t ≥ 0, (3.1)

and the corresponding differential inequality with piecewise constant argument of generalized type

Y ′(t) ≤ −E(t)Y (β(t)), t ≥ 0, (3.2)

where assumption (A2) holds for the function E(t).

Lemma 3.1. Let Y (t) be a positive continuous solution of (3.2) for t ≥ θi for some i ≥ k0 + 1. Suppose
that X(t) is a solution of (3.1) with X(θi) = Y (θi). Then Y (t) ≤ X(t) for t ≥ θi.

Proof. Let t ∈ [θi, θi+1). For θi ≤ t1 < t2 < θi+1, we get

Y (t2)− Y (t1) ≤ −
∫ t2

t1

E(s)Y (θi)ds = −
∫ t2

t1

E(s)X(θi)ds = X(t2)−X(t1).
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If we set t1 = θi and t2 = t in the last inequality, it follows from the assumption X(θi) = Y (θi) that

Y (t) ≤ X(t), t ∈ [θi, θi+1). (3.3)

From the continuity of solutions, it follows that

Y (θi+1) ≤ X(θi+1). (3.4)

Letting t1 = t and t2 → θi+1 in the inequality Y (t2)− Y (t1) ≤ X(t2)−X(t1), we find that

X(t)−X(θi+1) ≤ Y (t)− Y (θi+1), t ∈ [θi, θi+1). (3.5)

The inequalities (3.4) and (3.5) lead us to
X(t)−X(θi+1)

X(θi+1)
≤ Y (t)− Y (θi+1)

Y (θi+1)
or equivalently,

X(t) ≤ X(θi+1)

Y (θi+1)
Y (t), t ∈ [θi, θi+1].

Define Y1(t) =
X(θi+1)

Y (θi+1)
Y (t). Then, we obtain that

X(t) ≤ Y1(t), t ∈ [θi, θi+1) and Y1(θi+1) = X(θi+1).

Next, we shall consider the interval [θi+1, θi+2). For θi+1 ≤ t1 < t2 < θi+2, inequality (3.2) leads to

Y1(t2)− Y1(t1) ≤ X(t2)−X(t1).

Taking t1 = θi+1 and t2 = t, and remembering the fact that Y1(θi+1) = X(θi+1), we find that

Y1(t) ≤ X(t), t ∈ [θi+1, θi+2).

Since Y (t) ≤ Y1(t), it follows that

Y (t) ≤ X(t), t ∈ [θi+1, θi+2), (3.6)

and in particular Y (θi+2) ≤ X(θi+2). If we combine the results given by (3.3) and (3.6), we see that
Y (t) ≤ X(t), t ∈ [θi, θi+2]. Continuing the process on each interval [θk, θk+1), k = i + 2, i + 3, · · · , in a
similar manner, we get Y (t) ≤ X(t) for all t ≥ θi.

Definition 3.2. A solution X(t) of (3.1) is said to be eventually positive (or eventually negative) if there
exists T ≥ 0 such that X(t) > 0 (or X(t) < 0) for all t ≥ T. A solution of X(t) of (3.1) is said to be
nonoscillatory if it is either eventually positive or eventually negative; otherwise, it is oscillatory.

Lemma 3.3. If X(t) is a nonoscillatory solution of (3.1), then lim
t→∞

X(t) = 0.

Proof. Suppose that X(t) is a nonoscillatory solution of (3.1). Without loss of generality, we may assume
that X(t) > 0 for t ≥ T ≥ 0. It is clear that there exists i ≥ k0 such that T ∈ [θi, θi+1). Thus, X(β(t)) > 0
for t ≥ θi+1. This means that X ′(t) ≤ 0 for t ≥ θi+1 and hence there exists L ≥ 0 such that lim

t→∞
X(t) = L.

Suppose L > 0. Then for any ε > 0, we can find t∗ ≥ θi+1 such that L < X(t) < L+ ε for t ≥ t∗. Then
−E(t)(L + ε) ≤ X ′(t) ≤ −E(t)L for t ≥ β(t∗) + θ. Integrating the last inequality from β(t∗) + θ to t and
using the condition (A2), we see that lim

t→∞
X(t) = −∞, a contradiction. This shows that L = 0.

Lemma 3.4. Suppose that assumptions (A1)-(A3) hold. If sup
t>0

∫ t

β(t)
E(u)du < 1, then the solution X(t)

of (3.1) satisfying X(t) = ϕ0(t) for t ∈ [−τ, 0] and X(0) = x0 is positive for all t ≥ 0, and thus it is
nonoscillatory.
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Proof. First, consider the interval [0, θk0+1). For t ∈ [0, θk0+1), we have X ′(t) = −E(t)ϕ0(θk0) with X(0) =
x0. It follows from the hypotheses of the statement that the solution of this initial value problem satisfies
the inequality X(t) ≥ x0(1 −

∫ t
0 E(u)du) and hence it is positive. Continuity of solutions implies that

X(θk0+1) > 0.
Suppose that solution of (3.1) with X(t) = ϕ0(t), t ∈ [−τ, 0] and X(0) = x0 is positive on [0, θj ] for some

j ≥ k0 + 1. If t ∈ [θj , θj+1], then we have X(t) = X(θj)(1 −
∫ t
θ1
E(u)du) > 0. Therefore, solution of (3.1)

with X(t) = ϕ0(t), t ∈ [−τ, 0] and X(0) = x0 is positive for all t ≥ 0, and thus it is nonoscillatory.

Lemma 3.5. If there exists t̂ ≥ 0 such that x(t̂ ) > κ for any solution x(t) of (2.1), then x(t̃ ) = κ for some
t̃ > t̂.

Proof. Assume on the contrary that x(t) > κ for all t ≥ t̂. We can find an i ∈ Z such that t̂+ τ ∈ [θi, θi+1).
For t ≥ θi+1, we have 1− ax(t− τ)− bx(β(t)) ≤ 0. Hence, it follows from the equation (2.1) that

x′(t) ≤ −E(t)x(β(t)), t ≥ θi+1.

Let X(t) be the solution of the equation

X ′(t) = −E(t)X(β(t)), t ≥ θi+1,

with X(θi+1) = x(θi+1).
Lemma 3.1 and Lemma 3.3 imply that x(t) ≤ X(t) for t ≥ θi+1 and lim

t→∞
X(t) = 0. Hence, we obtain

lim
t→∞

x(t) = 0, a contradiction proving the lemma.

Lemma 3.6. Let x(t) be a solution of (2.1) satisfying (2.2) and x0 > κ. Then there exists t̂ > 0 such that
x(t̂ ) = κ and 0 < x(t) ≤ x0e

rτ , t ∈ [0, t̂].

Proof. Define A = {t > 0 : x(t) = κ}. Since x0 > κ, Lemma 3.5 implies that A is not empty. Let t̂ be
the smallest element of A. Then, x(t) > κ for t ∈ [0, t̂ ) and x(t̂ ) = κ. Being continuous on [0, t̂], x(t) has
a maximum at a point belonging to the interval [0, t̂ ). Let t̃ ∈ [0, t̂ ) denote the smallest member such that
x(t̃ ) is maximum.

Now, we claim that t̃ ∈ [0, τ ]. In order to prove this assertion, let us consider the cases t̂ ≤ τ and t̂ > τ.
Suppose t̂ ≤ τ . Then, it is obviuos that t̃ ∈ [0, τ ] holds true.

Suppose t̂ > τ. Then, x(t − τ) > κ and x(β(t)) ≥ κ for t ∈ [τ, t̂ ]. Hence, it can be inferred from (2.1)
that x′(t) ≤ 0 for t ∈ [τ, t̂ ]. This means that t̃ should be located in the interval [0, τ ].

Note that x(t) is nonnegative for t ∈ [−τ, t̃ ]. Hence, we can derive from (2.1) that x′(t) ≤ rx(t) for all
t ∈ [0, t̃ ]. If we integrate the last inequality over the interval [0, t̃ ], we obtain

x(t̃ ) ≤ x0e
rt̃ ≤ x0e

rτ .

That is, 0 < x(t) ≤ x0e
rτ , t ∈ [0, t̂), as desired.

Lemma 3.7. For a solution x(t) of (2.1) and (2.2), if there exists t̂ ≥ 0 such that x(t̂ ) = κ and x(t) ≥ 0
on [0, t̃ ) for some t̃ > t̂, then x(t̃ ) ≤ κerτ .

Proof. Assume that x(t̃ ) > κerτ and consider the set

S = {t ≥ t̂ : x(t− τ) = κ}.

Since t̂ + τ ∈ S, S ̸= ∅. By Lemma 3.5, there exists a T > t̃ such that x(T ) = κ. Hence, x(t) has a local
maximum on [t̃,∞). Let t∗, t∗ ≥ t̃, be the first point at which these local maximums occur. Thus, we have
x(t∗) ≥ x(t̃ ). Set

S∗ = {t ∈ S : t− τ < t∗}.
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We can see that the set S∗ is not empty since it contains the element t̂+ τ. We denote α = supS∗ and claim
that t∗ ∈ [α − τ, α]. It is clear from the definition of α that α − τ ≤ t∗. In order to verify the inequality
t∗ ≤ α, we consider two cases:

In the first case, assume that there exist t0 ∈ (α − τ, α] such that x(t0) ≤ κ. It will be sufficient to
show that t∗ < t0. On the contrary, assume that t∗ > t0. We note that t0 ̸= t∗ due to the fact that
x(t0) ≤ κ < x(t∗). Additionally, this fact together with the continuity of solutions and intermediate value
theorem leads to the existence of w ∈ [t0, t

∗) such that x(w) = κ. Thus, w + τ ∈ S∗. By the definition of
α, we should have w + τ ≤ α, which implies in turn that w ≤ α − τ < t0. However, t0 ∈ (α − τ, α] and
w ∈ [t0, t

∗) give us w + τ > α, which is a contradiction. Thus, for that case the assertion is valid.
Secondly, we assume that x(t) > κ for all t ∈ (α − τ, α]. Lemma 3.5 implies that we can find a point

t > α such that x(t) = κ. Denote by α∗ the smallest member of these values. Then, x′(t) ≤ 0 on the interval
[α, α∗]. It follows from the definition of t∗ that t∗ < α, conforming the assertion for the second case.

By the discussions made above, we see that t∗ ∈ [α−τ, α] holds true. Now, we will show that α−τ < t̃. In
order to prove the last inequality, let us assume that α−τ > t̃ noting that α−τ ̸= t̃ since x(α−τ) = κ < x(t̃ ).
This assumption implies the existence of a point of local maximum in [t̃, α − τ), which is a contradiction
to the definition of t∗ and to the fact that t∗ ∈ [α − τ, α]. Hence, we have α − τ < t̃ and thus x(t) ≥ 0 for
t ≤ t∗. All these discussions lead us to the inequality x′(t) ≤ rx(t) on [α− τ, t∗]. Integrating this differential
inequality over the interval [α− τ, t∗], we obtain that

x(t∗) ≤ x(α− τ)er(t
∗−(α−τ)) ≤ κerτ < x(t̃ ),

which contradicts that x(t∗) ≥ x(t̃ ). Thus, the proof is completed.

Intuitively, one expects the existence of a positive solution, i.e., the survival of the species only for small
harvesting. Our results given below supports this expectation.

Theorem 3.8. Let (A1)-(A3) be fulfilled and erθ(µe
rτ−1) sup

t>0

∫ t

β(t)
E(u)du < 1. If x(t) is a solution of (2.1)

and (2.2) with ϕ0(t) ≤ x0 ≤ κ on [−τ, 0], then

0 < x(t) ≤ κerτ . (3.7)

Proof. Assume, on the contrary, that (3.7) does not hold. Then, exactly one of the following two possibilities
must occur:

(i) there exists T > 0 such that x(t) > 0 on [0, T ) and x(T ) > κerτ , or

(ii) there exists T > 0 such that 0 < x(t) ≤ κerτ on [0, T ) and x(T ) = 0.

Suppose that the first possibility (i) holds for a solution x(t) of (2.1) and (2.2). Then, we have x(0) =
x0 ≤ κ < x(T ). So, the equality x(t̄) = κ is satisfied for some t̄ ∈ [0, T ). Now, it follows from Lemma 3.7
that x(T ) ≤ κerτ , which contradicts the hypothesis. Hence, (i) can never hold.

Now let us take the second possibility (ii) into consideration. Suppose that (ii) is fulfilled. If we write

x(t) = exp

(
r

∫ t

0
(1− ax(s− τ)− bx(β(s))) ds

)
X(t) (3.8)

in (2.1) and (2.2) and assume that r = 0 for t ∈ [−τ, 0), we obtain the following system

X ′(t) = −P (t)X(β(t)), t ≥ 0,
X(t) = ϕ0(t), t ∈ [−τ, 0], X(0) = x0,

(3.9)

where P (t) = E(t) exp

(
−r
∫ t

β(t)
(1− ax(s− τ)− bx(β(s))) ds

)
.
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Since x0 ≤ κ, we have µ = 1. For t ∈ [0, T ), we get∫ t

β(t)
P (u)du =

∫ t

β(t)
E(u) exp

(
−r
∫ u

β(u)
(1− ax(s− τ)− bx(β(s))) ds

)
du

≤ erθ(µe
rτ−1) sup

t>0

∫ t

β(t)
E(u)du < 1.

Since X(0) = x(0) > 0, it follows from Lemma 3.4 that X(T ) > 0. Therefore, we find x(T ) > 0, which
contradicts (ii). This completes the proof.

Theorem 3.9. Let (A1)-(A3) be fulfilled and erθ(µe
rτ−1) sup

t>0

∫ t

β(t)
E(u)du < 1. If x(t) is a solution of (2.1)

and (2.2) with ϕ0(t) ≤ x0 for t ∈ [−τ, 0] and x0 > κ, then there exists t̂ > 0 such that

0 < x(t) ≤ x0e
rτ , t ∈ [0, t̂ ) (3.10)

and
0 < x(t) ≤ κerτ , t ≥ t̂. (3.11)

Proof. Suppose the contrary. We know from Lemma 3.6 that there exists t̂ > 0 such that 0 < x(t) ≤ x0e
rτ

on [0, t̂ ) and x(t̂ ) = κ, i.e., (3.10) holds true. Thus, we assume that (3.11) is not true. Then, exactly one of
the following two possibilities must occur:

(i) there exists T > 0 such that x(t) > 0 on [t̂, T ) and x(T ) > κerτ , or

(ii) there exists T > 0 such that 0 < x(t) ≤ κerτ on [t̂, T ) and x(T ) = 0.

It can be shown easily that the first possibility (i) can not be true due to Lemma 3.7. Suppose that (ii)
is valid. Similar to the proof of Theorem 3.8, when (3.8) is substituted in (2.1) and (2.2), (3.9) is obtained.
Note that µ = (a+ b)x0. Then for t ∈ [t̂, T ), we have∫ t

β(t)
P (u)du =

∫ t

β(t)
E(u) exp

(
−r
∫ u

β(u)
(1− ax(s− τ)− bx(β(s))) ds

)
du

≤ erθ(µe
rτ−1) sup

t>0

∫ t

β(t)
E(u)du < 1.

Then, it follows from Lemma 3.4 that X(T ) > 0, which implies in turn that x(T ) > 0. Since the last
inequality contradicts (ii), the proof is done.

4. Permanence results

Let us review a few mathematical terms which will be used in this section.

Definition 4.1. A set V ⊂ R is called a positively invariant set of (2.1) if for all s ∈ [−τ, 0], ϕ0(s) ⊂ V
implies x(t, 0, ϕ0) ⊂ V, t ≥ 0.

Definition 4.2. The solution of (2.1) is said to be ultimately bounded if there exists B > 0 such that for
every solution x(t) of (2.1), there exists T > 0 such that |x(t)| ≤ B, for all t ≥ T , where B is independent
of particular solution while T may depend on the solution.

Definition 4.3. Equation (2.1) is said to be permanent if there exist positive constants ρ and ν such that

ρ ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤ ν

for all solutions of (2.1) with the initial condition (2.2).
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Definition 4.4. Equation (2.1) is said to be non-persistent if there exists a positive solution x(t) satisfying

lim inf
t→∞

x(t) = 0.

Now, let us consider the permanence results for (2.1). Unless otherwise stated, we shall assume the
following inequality in addition to (A1)-(A3):

(A4) erθ(µe
rτ−1) sup

t>0

∫ t

β(t)
E(u)du < 1,

which ensures that a solution x(t) of (2.1)-(2.2) is positive.
From Theorem 3.8 and Theorem 3.9, we can conclude the following result.

Theorem 4.5. The set (0, µκerτ ) is positively invariant for system (2.1).

Denote El := inf
t∈R+

E(t), Eu := sup
t∈R+

E(t).

Lemma 4.6. If r − Ele−rθ > 0, then lim sup
t→+∞

x(t) ≤ K =
r − Ele−rθ

r(ae−rτ + be−rθ)
.

Proof. From equation (2.1) and the positivity of solutions of this equation, it follows that

x′(t) ≤ rx(t) for all t ≥ 0.

This inequality leads us to
x(t) ≤ x(θi)e

r(t−θi) ≤ x(β(t))erθ

on each interval [0, θk0+1) and [θi, θi+1), i ≥ k0 + 1. Since the solution x(t) is continuous, we can state that

x(t) ≤ x(β(t))erθ for all t ≥ 0,

which is equivalent to x(β(t)) ≥ x(t)e−rθ for all t ≥ 0. We can also find that

x(t) ≤ x(t− τ)erτ for all t ≥ τ.

Then for t ≥ τ, we have

x′(t) ≤ rx(t)
(
1− ae−rτx(t)− be−rθx(t)

)
− Ele−rθx(t)

= x(t)
[
r − Ele−rθ −

(
rae−rτ + rbe−rθ

)
x(t)

]
.

A comparison argument [4] shows that

lim sup
t→+∞

x(t) ≤ K =
r − Ele−rθ

r(ae−rτ + be−rθ)
.

For convenience, let us adopt the following notations.

(N1) A = r(1− aK − bK) and B = EuK;

(N2) L1 = −r(ae−Aτ + be−Aθ);

(N3) L2 = r

[
1− aB

A (1− e−Aτ )− bBA (1− e−Aθ)− Eue−Aθ

r

]
;

(N4) L3 = −Eu B
A (1− e−Aθ).
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Lemma 4.7. If κ < K, L2 > 0 and L2
2 − 4L1L3 ≥ 0 then

lim inf
t→+∞

x(t) ≥ k =
−L2 +

√
L2

2 − 4L1L3

2L1
.

Proof. Since lim sup
t→+∞

x(t) ≤ K, for any sufficiently small ε > 0, there is some T > 0 such that for t ≥ T,

x(t) < Kε where Kε = K+ε.We can find a j ∈ Z such that θj ≤ T +τ < θj+1.We derive from the equation
(2.1) for t ≥ θj+1 that

x′(t) ≥ rx(t) (1− aKε − bKε)− EuKε.

We denote Aε = r (1− aKε − bKε) and Bε = EuKε. Note that Aε < 0 and Bε > 0. Then for t ≥ θj+1,
we have

x(β(t)) ≤ Bε

Aε
(1− e−Aεθ) + e−Aεθx(t) and x(t− τ) ≤ Bε

Aε
(1− e−Aετ ) + e−Aετx(t),

which imply in turn that
x′(t) ≥ L1(ε)x

2(t) + L2(ε)x(t) + L3(ε), (4.1)

where
L1(ε) = −r(ae−Aετ + be−Aεθ) < 0,

L2(ε) = r

[
1− aBε

Aε
(1− e−Aετ )− bBε

Aε
(1− e−Aεθ)− Eue−Aεθ

r

]
and

L3(ε) = −EuBε
Aε

(1− e−Aεθ) < 0.

Pick ε > 0 so small that L2(ε) > 0 and L2(ε)
2−4L1(ε)L3(ε) ≥ 0. Then L1(ε)x

2(t)+L2(ε)x(t)+L3(ε) = 0
has two real roots.

Using a comparison argument for the differential inequality (4.1) in a similar manner in the proof of
Lemma 4.6 and considering ε→ 0, we find lim inf

t→+∞
x(t) ≥ k, where

k =
−L2 +

√
L2

2 − 4L1L3

2L1
.

The following assertions on the ultimate boundedness, permanence and persistence follow directly from
the proofs of Lemma 4.6 and Lemma 4.7.

Theorem 4.8. Suppose all of the conditions of Lemma 4.6 and Lemma 4.7 are satisfied. Then the set
defined by

Σ = {x ∈ R | k ≤ x ≤ K}

is an ultimately bounded region for the system (2.1)-(2.2).

Theorem 4.9. Suppose all of the conditions of Lemma 4.6 and Lemma 4.7 are satisfied. Then equation
(2.1) with the initial condition (2.2) is permanent.

Theorem 4.10. Suppose all of the conditions of Lemma 4.6 and Lemma 4.7 are satisfied. Then equation
(2.1) with the initial condition (2.2) is persistent.

5. Conclusion

We conclude with a brief discussion of our results. In ecology, we can observe some perturbations such
as time delays that are not suitable to be treated classically. Time delays can be introduced into a model
in several forms; including discrete delays, infinite delays or piecewise constant delays. It is reasonable,
especially for ecological applications, to have a system with both constant (discrete) and piecewise constant
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delays as evolution of the system may depend not only on the past history but also on some previous
constant values of the unknown function that corresponds to the fundamental information in memory. In
this light, it is important to discuss the qualitative behaviors such as existence and uniqueness of solutions,
existence and boundedness of positive solutions, permanence, persistence of such systems. Based on the
realistic nature of the problem, we study the dynamics of a logistic equation which consists of both discrete
and piecewise constant delays as well as a delayed harvesting term. These results can be worthy of future
investigations.
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[4] M. U. Akhmet, D. Aruğaslan, X. Liu, Permanence of nonautonomous ratio-dependent predator-prey systems with
piecewise constant argument of generalized type, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15
(2008), 37–51. 1, 4

[5] M. U. Akhmet, Asymptotic behavior of solutions of differential equations with piecewise constant arguments, Appl.
Math. Lett., 21 (2008), 951–956. 1
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