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Abstract

In this paper we study optimal control problems governed by fractional stochastic partial neutral functional
integro-differential equations with infinite delay in Hilbert spaces. We prove an existence result of mild
solutions by using the fractional calculus, stochastic analysis theory, and fixed point theorems with the
properties of analytic α-resolvent operators. Next, we derive the existence conditions of optimal pairs of
these systems. Finally an example of a nonlinear fractional stochastic parabolic optimal control system is
worked out in detail. c⃝2015 All rights reserved.
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1. Introduction

The optimal control is one of the important fundamental concepts in mathematical control theory and
plays a vital role in both deterministic and stochastic control systems. Optimal control problems appear in
many applications. For example, for biological reasons delays occur naturally in population dynamics models.
Therefore, when dealing with optimal harvesting problem of biological systems, one is led to optimal control
of systems with delay. In recent years, optimal control problems for various types of nonlinear dynamical
systems in infinite dimensional spaces by using different kinds of approaches have been considered in many
publications (see [3], [7] and the references therein).
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The theory of stochastic differential equations has attracted great interest due to its applications in
characterizing many problems in physics, biology, chemistry, mechanics, and so on. The deterministic models
often fluctuate due to noise, so we must move from deterministic control to stochastic control problems. It
is well-known that the optimal control problems for stochastic differential equations have become a field of
increasing interest (see [18] and references therein). In particular, there are several papers devoted to the
existence of an optimal controls of systems governed by stochastic partial differential equations in abstract
spaces (see [4], [5], [23]). Recently, Ahmed [6] considered a class of partially observed semilinear stochastic
evolution equations on infinite dimensional Hilbert spaces. Zhu and Zhou [28] considered an infinite horizon
optimal control problem in which the controlled state dynamics is governed by a stochastic delay evolution
equation in Hilbert spaces. The existence of optimal controls for backward stochastic partial evolution
differential systems in the abstract space; see Meng and Shi [16], Zhou and Liu [27]. Brzeźniak and Serrano
[8] discussed the existence of optimal relaxed controls for a class of semilinear stochastic evolution equation
on Banach spaces perturbed by multiplicative noise and driven by a cylindrical Wiener process.

Fractional differential equations have gained considerable importance due to their applications in various
fields of the science such as physics, mechanics, chemistry engineering etc. Significant development has been
made in ordinary and partial differential equations involving fractional derivatives; see [20]. Further, many
authors investigated the existence of mild solutions of abstract fractional functional differential and integro-
differential equations in Banach spaces by using fixed point techniques; see [2], [10], [11] and references
therein. Optimal controls for system governed by fractional differential systems is studied; see Agrawal [1].
For semilinear fractional control systems including delay systems in Banach spaces, some papers discussed
the existence of optimal controls of systems. For instance, Mophou [17] considered the optimal control of
fractional diffusion equation by using the classical control theory. Wang et al. [25] discussed the optimal
control problems for a class of fractional integrodifferential controlled systems. The authors [24] also studied
the solvability and optimal controls of fractional integrodifferential evolution systems with infinite delay in
Banach spaces by using Banach contraction principle.

More recently, the existence, uniqueness and other quantitative and qualitative properties of mild so-
lutions to various semilinear fractional stochastic differential and integro-differential equations have been
studied; see [12], [22], [26] and references therein. However, to the best of our knowledge, the optimal control
problem for nonlinear fractional stochastic system in Hilbert spaces has not been investigated yet. Moti-
vated by this consideration, in this paper we will study the optimal control problem for nonlinear fractional
stochastic systems, which are natural generalizations of optimal control concepts well known in the theory
of infinite dimensional deterministic control systems. Specifically, we will consider the Bolza problem of sys-
tems governed by fractional stochastic partial neutral functional integro-differentia equations with infinite
delay in an ϑ-norm and the existence result of optimal controls will be presented. In fact, the results in
this paper are motivated by the recent work of [5], [6] and the fractional differential equations discussed in
[24], [25]. The main tools used in this paper are the fractional calculus, stochastic analysis theory, and the
Sadovskii’s fixed point theorem with the properties of analytic α-resolvent operators. Moreover, an example
is given to demonstrate the applicability of our results.

2. Problem Formulation and Preliminaries

Throughout this paper, we use the following notations. Let (Ω,F , P ) be a complete probability space
with probability measure P on Ω and a filtration {Ft}t≥0 satisfying the usual conditions, that is the filtration
is right continuous and F0 contains all P -null sets. Let H,K be two real separable Hilbert spaces and we
denote by ⟨·, ·⟩H , ⟨·, ·⟩K their inner products and by ∥ · ∥H , ∥ · ∥K their vector norms, respectively. L(K,H)
be the space of linear operators mapping K into H, and Lb(K,H) be the space of bounded linear operators
mapping K into H equipped with the usual norm ∥ · ∥H and Lb(H) denotes the Hilbert space of bounded
linear operators from H to H. Let {w(t) : t ≥ 0} denote an K-valued Wiener process defined on the
probability space (Ω,F , P ) with covariance operator Q, that is E⟨w(t), x⟩K⟨w(s), y⟩K = (t∧ s)⟨Qx, y⟩K , for
all x, y ∈ K, where Q is a positive, self-adjoint, trace class operator on K. In particular, we denote w(t) an
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K-valued Q-Wiener process with respect to {Ft}t≥0.
In order to define stochastic integrals with respect to the Q-Wiener process w(t), we introduce the

subspace K0 = Q1/2(K) of K which is endowed with the inner product ⟨ũ, ṽ⟩K0 = ⟨Q−1/2ũ, Q−1/2ṽ⟩K is
a Hilbert space. We assume that there exists a complete orthonormal system {en}∞n=1 in K, a bounded
sequence of nonnegative real numbers {λn}∞n=1 such that Qen = λnen, and a sequence βn of independent
Brownian motions such that

⟨w(t), e⟩ =
∞∑
n=1

√
λn⟨en, e⟩βn(t), e ∈ K, t ∈ [0, T ],

and Ft = Fw
t , where Fw

t is the σ-algebra generated by {w(s) : 0 ≤ s ≤ t}. Let L0
2 = L2(K0,H) be the

space of all Hilbert-Schmidt operators from K0 to H with the norm ∥ ψ ∥2
L0
2
= Tr((ψQ1/2)(ψQ1/2)∗) for any

ψ ∈ L0
2. Clearly for any bounded operators ψ ∈ Lb(K,H) this norm reduces to ∥ ψ ∥2

L0
2
= Tr(ψQψ∗).

In this article, we consider a mathematical model given by the following fractional stochastic partial
neutral functional integro-differential equations with infinite delay

cDα[x(t)− g(t, xt)] = Ax(t) +

∫ t

0
R(t− s)x(s)ds+B(t)u(t) + h(t, xt) + f(t, xt)

dw(t)

dt
, (2.1)

t ∈ J = [0, T ],

x0 = φ ∈ B, x′(0) = 0, (2.2)

where the state x(·) takes values in a separable real Hilbert space H, cDα is the Caputo fractional derivative
of order α ∈ (1, 2); A, (R(t))t≥0 are closed linear operators defined on a common domain D(A) which is
dense in (H, ∥ · ∥H), the control function u takes value from a separable reflexive Hilbert space Y, and B
is a linear operator from Y into H, p ≥ 2 be an integer. Dα

t σ(t) represents the Caputo derivative of order
α > 0 defined by

Dα
t σ(t) =

∫ t

0
gn−α(t− s)

dn

dsn
σ(s)ds,

where n is the smallest integer greater than or equal to α and gβ(t) :=
tβ−1

Γ(β) , t > 0, β ≥ 0. The time history

xt : (−∞, 0] → H given by xt(θ) = x(t+ θ) belongs to some abstract phase space B defined axiomatically;
and g, h, f are appropriate functions specified latter. The initial data {φ(t) : −∞ < t ≤ 0} is an F0-adapted,
B-valued random variable independent of the Wiener process w with finite second moment.

In this paper, the notation [D(A)] represents the domain of A endowed with the graph norm. Fur-
thermore, for appropriate functions K : [0,∞) → H the notation K̂ denotes the Laplace transform of K,
and Br(x,H) stands for the closed ball with center at x and radius r > 0 in H. We denote by (−A)ϑ the
fractional power of the operator −A for 0 < ϑ ≤ 1. The subspace D((−Aϑ)) is dense in H and the expression
∥ x ∥ϑ=∥ (−A)ϑx ∥, x ∈ D((−A)ϑ), defines a norm on D((−A)ϑ). Hereafter, we denote by Hϑ be the Banach
space D((−A)ϑ) endowed with the norm ∥ x ∥ϑ, which is equivalent to the graph norm of (−A)ϑ. For more
details about the above preliminaries, we refer to [19].

Let Lp(FT ,H) be the Banach space of all Fb-measurable pth power integrable random variables with
values in the Hilbert space H. Let C([0, T ];Lp(F ,H)) be the Banach space of continuous maps from
[0, T ] into Lp(F ,H) satisfying the condition supt∈J E ∥ x(t) ∥p< ∞. In particular, we introduce the space
C(J,Hϑ) denote the closed subspace of C([0, T ];Lp(F ,Hϑ)) consisting of measurable and Ft-adapted Hϑ-
valued stochastic processes x ∈ C([0, T ];Lp(F ,Hϑ)) endowed with the norm

∥ x ∥C= ( sup
0≤t≤T

E ∥ x(t) ∥pϑ)
1
p

Then (C, ∥ · ∥C) is a Banach space.
Now, we give knowledge on the α-resolvent operator which appeared in [2].
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Definition 2.1. A one-parameter family of bounded linear operators (Rα(t))t≥0 on H is called an
α-resolvent operator for

cDαx(t) = Ax(t) +

∫ t

0
R(t− s)x(s)ds, (2.3)

x0 = φ ∈ H, x′(0) = 0, (2.4)

if the following conditions are verified.

(a) The function Rα(·) : [0,∞) → Lb(H) is strongly continuous and Rα(0)x = x for all x ∈ H and
α ∈ (1, 2).

(b) For x ∈ D(A),Rα(·)x ∈ C([0,∞), [D(A)]) ∩ C1((0,∞),H), and

Dα
t Rα(t)x = ARα(t)x+

∫ t

0
R(t− s)Rα(s)xds, Dα

t Rα(t)x = Rα(t)Ax+

∫ t

0
Rα(t− s)R(s)xds

for every t ≥ 0.

In this work we have considered the following conditions.

(P1) The operator A : D(A) ⊆ H → H is a closed linear operator with [D(A)] dense in H. Let α ∈ (1, 2).
For some ϕ0 ∈ (0, π2 ], for each ϕ < ϕ0 there is a positive constant C0 = C0(ϕ) such that λ ∈ ρ(A) for
each

λ ∈ Σ0,αϑ = {λ ∈ C, λ ̸= 0, | arg(λ)| < αϑ},

where ϑ = ϕ+ π
2 and ∥ R(λ,A) ∥H≤ C0

|λ| for all λ ∈ Σ0,αϑ.

(P2) For all t ≥ 0, R(t) : D(R(t)) ⊆ H → H is a closed linear operator, D(A) ⊆ D(R(t)) and R(·)x is
strongly measurable on (0,∞) for each x ∈ D(A). There exists b(·) ∈ L1

loc(R+) such that b̂(λ) exists
for Re(λ) > 0 and ∥ R(t)x ∥H≤ b(t) ∥ x ∥1 for all t > 0 and x ∈ D(A). Moreover, the operator valued
function R̂ : Σ0,π/2 → Lb([D(A)],H) has an analytical extension (still denoted by R̂) to Σ0,ϑ such that

∥ R̂(λ)x ∥H≤∥ R̂(λ) ∥H∥ x ∥1 for all x ∈ D(A), and ∥ R̂(λ) ∥H= O( 1
|λ|), as |λ| → ∞.

(P2) There exists a subspace D ⊆ D(A) dense in [D(A)] and a positive constant C1 such that
A(D) ⊆ D(A), R̂(λ)(D) ⊆ D(A), and ∥ AR̂(λ)x ∥H≤ C1 ∥ x ∥H for every x ∈ D and all λ ∈ Σ0,ϑ.

In the sequel, for r > 0 and θ ∈ (π2 , ϑ),

Σr,θ = {λ ∈ C, |λ| > r, | arg(λ)| < θ},

for Γr,θ,Γ
i
r,θ, i = 1, 2, 3, are the paths

Γ1
r,θ = {teiθ : t ≥ r}, Γ2

r,θ = {teiξ : |ξ| ≤ θ}, Γ3
r,θ = {te−iθ : t ≥ r},

and Γr,θ =
∪3

i=1 Γ
i
r,θ oriented counterclockwise. In addition, ρα(Gα) are the sets

ρα(Gα) = {λ ∈ C : Gα(λ) := λα−1(λαI −A− Q̂(λ))−1 ∈ L(H)}.

We now define the operator family (Rα(t))t≥0 by

Rα(t) :=

{
1

2πi

∫
Γr,θ

eλtGα(λ)dλ, t > 0,

I, t = 0.

Lemma 2.2 ([10]). There exists r1 > 0 such that Σr1,ϑ ⊆ ρα(Gα) and the function Gα : Σr1,ϑ → Lb(H) is
analytic. Moreover,

Gα(λ) = λα−1R(λα, A)[I − Q̂(λ)R(λα, A)]−1,

and there exist constants M̃i for i = 1, 2 such that
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∥ Gα(λ) ∥H=
M̃1

|λ|
,

∥ AGα(λ)x ∥H=
M̃2

|λ|
∥ x ∥1, x ∈ D(A),

∥ AGα(λ) ∥H=
M̃2

|λ|1−α

for every λ ∈ Σr1,ϑ.

Lemma 2.3 ([2]). Assume that conditions (P1)-(P3) are fulfilled. Then there exists a unique α-resolvent
operator for problem (2.3)-(2.4).

Lemma 2.4 ([2]). The function Rα : [0,∞) → Lb(H) is strongly continuous and Rα : (0,∞) → L(H) is
uniformly continuous.

Definition 2.5 ([2]). Let α ∈ (1, 2), we define the family (Sα(t))t≥0 by

Sα(t)x :=

∫ t

0
gα−1(t− s)Rα(s)ds

for each t ≥ 0.

Lemma 2.6 ([2]). If the function Rα(·) is exponentially bounded in Lb(H), then Sα(·) is exponentially
bounded in Lb(H).

Lemma 2.7 ([2]). If the function Rα(·) is exponentially bounded in Lb([D(A)]), then Sα(·) is exponentially
bounded in Lb([D(A)]).

Lemma 2.8 ([2]). If R(λα0 , A) is compact for some λα0 ∈ ρ(A), then Rα(t) and Sα(t) are compact for all
t > 0.

Lemma 2.9 ([10]). Suppose that the conditions (P1)-(P3) are satisfied. Let α ∈ (1, 2) and ϑ ∈ (0, 1) such
that αϑ ∈ (0, 1), then there exists positive number Mϑ such that

∥ (−A)ϑRα(t) ∥H≤Mϑe
rtt−αϑ, ∥ (−A)ϑSα(t) ∥H≤Mϑe

rttα(1−ϑ)−1

for all t > 0. If x ∈ [D((−A)ϑ)], then

(−A)ϑRα(t)x = Rα(t)(−A)ϑx, (−A)ϑSα(t)x = Sα(t)(−A)ϑx.

In this paper, we assume that the phase space (B, ∥ · ∥B) is a seminormed linear space of functions
mapping (−∞, 0] into Hϑ, and satisfying the following fundamental axioms due to Hale and Kato (see e.g.,
in [13]).

(A) If x : (−∞, σ + T ] → Hϑ, T > 0, is such that x|[σ,σ+T ] ∈ C([σ, σ + T ],Hϑ) and xσ ∈ B, then for every
t ∈ [σ, σ + T ] the following conditions hold:

(i) xt is in B;
(ii) ∥ x(t) ∥ϑ≤ H̃ ∥ xt ∥B;
(iii) ∥ xt ∥B≤ K(t − σ) sup{E ∥ x(s) ∥ϑ: σ ≤ s ≤ t} +M(t − σ) ∥ xσ ∥B, where H̃ ≥ 0 is a constant;

K,M : [0,∞) → [1,∞), K is continuous and M is locally bounded; H̃,K,M are independent of
x(·).

(B) For the function x(·) in (A), the function t→ xt is continuous from [σ, σ + b] into B.
(C) The space B is complete.
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In the following, let Y is a separable reflexive Hilbert space from which the controls u take the values.
Operator B ∈ L∞(J, L(Y,H)), ∥ B ∥∞ stands for the norm of operator B on Banach space L∞(J, L(Y,H)),
where L∞(J, L(Y,H)) denote the space of operator valued functions which are measurable in the strong
operator topology and uniformly bounded on the interval J. Let Lp

F (J, Y ) is the closed subspace of
Lp
F (J × Ω, Y ), consisting of all measurable and Ft-adapted, Y -valued stochastic processes satisfying the

condition E
∫ T
0 ∥ u(t) ∥pY dt <∞, and endowed with the norm

∥ u ∥Lp
F (J,Y )=

(
E

∫ T

0
∥ u(t) ∥pY dt

) 1
p

.

Let U be a nonempty closed bounded convex subset of Y. We define the admissible control set

Uad = {v(·) ∈ Lp
F (J, Y ); v(t) ∈ U a.e. t ∈ J}.

Then, Bu ∈ Lp(J,H) for all u ∈ Uad.
Now we will derive the appropriate definition of mild solutions of (2.1)-(2.2).

Definition 2.10. An Ft-adapted stochastic process x : (−∞, T ] → H is called a mild solution of the system
(2.1)-(2.2) with respect to u on (−∞, T ], if x0 = φ ∈ B, x|J ∈ C(J,Hϑ) for every u ∈ Uad there exists a
T = T (u) > 0 and

(i) x(t) is measurable and adapted to Ft, t ≥ 0.

(ii) x(t) ∈ H has càdlàg paths on t ∈ J a.s and for each t ∈ J , x(t) satisfies

x(t) = Rα(t)[φ(0)− g(0, φ)] + g(t, xt) +

∫ t

0
ASα(t− s)g(s, xs)ds

+

∫ t

0

∫ s

0
R(s− τ)Sα(t− s)g(τ, xτ )dτds+

∫ t

0
Sα(t− s)B(s)u(s)ds

+

∫ t

0
Sα(t− s)h(s, xs)ds+

∫ t

0
Sα(t− s)f(s, xs)dw(s), t ∈ J.

The next result is a consequence of the phase space axioms.

Lemma 2.11. Let x : (−∞, T ] → H be an Ft-adapted measurable process such that the F0-adapted process
x0 = φ(t) ∈ L0

2(Ω,B) and x|J ∈ C(J,Hϑ), then

∥ xs ∥B≤MTE ∥ φ ∥B +KT sup
0≤s≤T

E ∥ x(s) ∥ϑ,

where MT = supt∈J M(t) and KT = supt∈J K(t).

Lemma 2.12 ([9]). For any p ≥ 1 and for arbitrary L0
2(K,H)-valued predictable process ϕ(·) such that

sup
s∈[0,t]

E

wwww∫ s

0
ϕ(v)dw(v)

wwww2p

H

≤ (p(2p− 1))p
(∫ t

0
(E ∥ ϕ(s) ∥2p

L0
2
)1/pds

)p

, t ∈ [0,∞).

Lemma 2.13 ([15]). A measurable function V : J → H is Bochner integrable, if ∥ V ∥H is Lebesgue
integrable.

Lemma 2.14 ([21]). Let Φ be a condensing operator on a Banach space X, that is, Φ is continuous and
takes bounded sets into bounded sets, and κ(Φ(D)) ≤ κ(D) for every bounded set D of X with κ(D) > 0.
If Φ(N) ⊂ N for a convex, closed and bounded set N of X, then Φ has a fixed point in X (where κ(·) denotes
Kuratowski’s measure of noncompactness.)
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3. Existence of solutions for fractional stochastic control system

In this section, we prove the existence of solutions for fractional stochastic control system (2.1)-(2.2).
We make the following hypotheses:

(H1) The operator families Rα(t) and Sα(t) are compact for all t > 0, and there exist constants M and M1

such that ∥ Rα(t) ∥Lb(H)≤M and ∥ Sα(t) ∥Lb(H)≤M for every t ∈ J and

∥ (−A)ϑSα(t) ∥H≤M1t
α(1−ϑ)−1, 0 < t ≤ T.

(H2) R(·)x ∈ C(J,H) for every x ∈ [D((−A)1−ϑ)], and there exist a constant M2 and a positive function
µ : J → R+ such that the function µp(·) ∈ L1(J,R+) and

∥ R(s)Sα(t) ∥Lb([D((−A)ϑ)],H)≤M2µ(s)t
αϑ−1, 0 ≤ s < t ≤ T.

(H3) There exists a constant β ∈ (0, 1) such that g : J×B → [D((−A)β+ϑ)] satisfies the Lipschitz condition,
i.e., there exists a constant Lg > 0 such that

E ∥ (−A)β+ϑg(t1, ψ1)− (−A)β+ϑg(t2, ψ2) ∥pH≤ Lg ∥ ψ1 − ψ2 ∥pB
for any 0 ≤ ti ≤ T, ψi ∈ B, i = 1, 2, and

E ∥ (−A)β+ϑg(t, ψ) ∥pH≤ Lg(∥ ψ ∥pB +1)

for all 0 ≤ t ≤ T, ψ ∈ B.
(H4) The function h : J × B → H satisfies the following conditions:

(i) The function h(t, ·) : B → H is continuous for each t ∈ J, and for every ψ ∈ B, the function
t→ h(t, ψ) is strongly measurable.

(ii) There exists a positive function mh ∈ Lp(J,R+) such that

E ∥ h(t, ψ) ∥pH≤ mh(t)

for all t ∈ J, ψ ∈ B.
(H5) The function f : J × B → Lb(K,H) satisfies the following conditions:

(i) The function f(t, ·) : B → Lb(K,H) is continuous for each t ∈ J, and for every ψ ∈ B, the function
t→ f(t, ψ) is strongly measurable.

(ii) There exists a positive function mf ∈ Lp(J,R+) such that

E ∥ f(t, ψ) ∥pH≤ mf (t)

for all t ∈ J, ψ ∈ B.

Theorem 3.1. Let x0 ∈ L0
2(Ω,Hα). If the assumptions (H1)-(H5) are satisfied, then for each u ∈ Uad, the

system (2.1)-(2.2) has at least one mild solution on J with respect to u, provided that p2(α(1−ϑ)−1)+p > 1
and

14p−1Kp
TLg

[
∥ (−A)−β ∥pH +Mp

1

T pαβ

p(αβ − 1) + 1
+Mp

2 ∥ µp ∥L1
T pαβ+p−1

p(αβ − 1) + 1

]
< 1. (3.1)

Proof. Consider the space BC = {x ∈ C(J,Hϑ) : x(0) = φ(0)} endowed with the uniform convergence
topology and define the operator Φ : BC → BC by

(Φx)(t) =Rα(t)[φ(0)− g(0, φ)] + g(t, x̄t) +

∫ t

0
ASα(t− s)g(s, x̄s)ds

+

∫ t

0

∫ s

0
R(s− τ)Sα(t− s)g(τ, x̄τ )dτds+

∫ t

0
Sα(t− s)B(s)u(s)ds

+

∫ t

0
Sα(t− s)h(s, x̄s)ds+

∫ t

0
Sα(t− s)f(s, x̄s)dw(s), t ∈ J,
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where x̄(t) : (−∞, 0] → Hϑ is such that x̄(0) = φ and x̄ = x on J. From axiom (A), the strong continuity of
Rα(t),Sα(t) and assumptions (H1)-(H5), we infer that Φx ∈ BC. For x ∈ Br(0,BC), from Lemma 2.11, it
follows that

∥ x̄s ∥pB ≤ 2p−1(MT ∥ φ ∥B)p + 2p−1Kp
T r := r∗. (3.2)

By (H1)-(H3) and (3.2), we have

E

wwww∫ t

0
(−A)1−βSα(t− s)(−A)β+ϑg(s, x̄s)ds

wwwwp

H

≤Mp
1T

p−1

∫ t

0
(t− s)p(αβ−1)E ∥ (−A)β+ϑg(s, x̄s) ∥pH ds

≤Mp
1T

p−1

∫ t

0
(t− s)p(αβ−1)Lg(∥ x̄s ∥pB +1)ds

≤Mp
1T

p−1Lg(r
∗ + 1)

1

p(αβ − 1) + 1
T p(αβ−1)+1,

E

wwww∫ t

0

∫ s

0
R(s− τ)Sα(t− s)(−A)ϑg(τ, x̄τ )dτds

wwwwp

H

≤ T 2(p−1)

∫ t

0

∫ s

0
E ∥ R(s− τ)Sα(t− s)(−A)ϑg(τ, x̄τ ) ∥pH dτds

≤Mp
2T

2(p−1)

∫ t

0

∫ s

0
µp(t− τ)(t− s)p(αβ−1)Lg(∥ x̄τ ∥pB +1)dτds

≤Mp
2T

2(p−1) ∥ µ ∥p
L1 Lg(r

∗ + 1)
1

p(αβ − 1) + 1
T p(αβ−1)+1,

and

E

wwww∫ t

0
(−A)ϑSα(t− s)B(s)u(s)ds

wwwwp

H

≤ E

[ ∫ t

0
∥ (−A)ϑSα(t− s) ∥H∥ B(s)u(s) ∥H ds

]p
≤Mp

1 ∥ B ∥p∞ E

[ ∫ t

0
(t− s)α(1−ϑ)−1 ∥ u(s) ∥Y ds

]p
≤Mp

1 ∥ B ∥p∞
(∫ t

0
(t− s)

p(α(1−ϑ)−1)
p−1 ds

)p−1

E

∫ t

0
∥ u(s) ∥pY ds

≤Mp
1 ∥ B ∥p∞

(
p− 1

pα(1− ϑ)− 1

)p−1

T pα(1−ϑ)−1 ∥ u ∥p
Lp
F (J,Y )

,

by p2(α(1 − ϑ) − 1) + p > 1, we know that pα(1 − ϑ) > 1. Then from Lemma 2.13, it follows that
ASα(t − s)g(s, x̄s),Sα(t − s)B(s)u(s) are integrable on J. Therefore, Φ is well defined on Br(0,BC). In
order to apply Lemma 2.14, we break the proof into a sequence of steps.

Step 1. There exists r > 0 such that Φ(Br(0,BC)) ⊂ Br(0,BC).
For each r > 0, Br(0,BC) is clearly a bounded closed convex subset in BC. We claim that there exists
r > 0 such that Φ(Br(0,BC)) ⊂ Br(0,BC). In fact, if this is not true, then for each r > 0 there exists
xr ∈ Br(0,BC) and tr ∈ J such that r < E ∥ (−A)ϑ(Φxr)(tr) ∥pH . Then, by using (H1)-(H5), we have

r < E ∥ (−A)ϑ(Φxr)(tr) ∥pH
≤ 7p−1 ∥ Rα(t

r)[(−A)ϑφ(0)− (−A)−β(−A)β+ϑg(0, φ)] ∥pH
+ 7p−1E ∥ (−A)−β(−A)β+ϑg(tr, xrtr) ∥pH

+ 7p−1E

wwww∫ tr

0
(−A)1−βSα(t

r − s)(−A)β+ϑg(s, xrs)ds

wwwwp

H
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+ 7p−1E

wwww∫ tr

0

∫ s

0
R(s− τ)Sα(t

r − s)(−A)ϑg(τ, xrτ )dτds
wwwwp

H

+ 7p−1E

wwww∫ tr

0
(−A)ϑSα(t

r − s)B(s)u(s)ds

wwwwp

H

+ 7p−1E

wwww∫ tr

0
(−A)ϑSα(t

r − s)h(s, xrs)ds

wwwwp

H

+ 7p−1E

wwww∫ tr

0
(−A)ϑSα(t

r − s)f(s, xrs)dw(s)

wwwwp

H

≤ 14p−1Mp[∥ (−A)ϑφ(0) ∥pH + ∥ (−A)−β ∥pH E ∥ (−A)β+ϑg(0, φ) ∥pH ]

+ 7p−1 ∥ (−A)−β ∥pH E ∥ (−A)β+ϑg(t, xrtr) ∥pH

+ 7p−1T p−1

∫ tr

0
∥ (−A)1−βSα(t

r − s) ∥pH E ∥ (−A)β+ϑg(s, xrs) ∥∥pH ds

+ 7p−1T 2(p−1)

∫ tr

0

∫ s

0
E ∥ R(s− τ)Sα(t

r − s)(−A)ϑg(τ, xrτ ) ∥pH dτds

+ 7p−1E

[ ∫ tr

0
∥ (−A)ϑSα(t

r − s) ∥H∥ B(s)u(s) ∥H ds

]p
+ 7p−1T p−1

∫ tr

0
∥ (−A)ϑSα(t

r − s) ∥pH E ∥ h(s, xrs) ∥pH ds

+ 7p−1Cp

[ ∫ tr

0
[∥ (−A)ϑSα(t

r − s) ∥pH E ∥ f(s, xrs) ∥pH ]2/pds

]p/2
≤ 14p−1Mp[(H̃ ∥ φ ∥B)p+ ∥ (−A)−β ∥pH Lg(∥ φ ∥pB +1)]

+ 7p−1 ∥ (−A)−β ∥pH Lg(∥ xrtr ∥pB +1)

+ 7p−1Mp
1T

p−1

∫ tr

0
(tr − s)p(αβ−1)Lg(∥ xrs ∥pB +1)ds

+ 7p−1Mp
2T

2(p−1)

∫ tr

0

∫ s

0
µp(tr − τ)(tr − s)p(αβ−1)Lg(∥ xrτ ∥pB +1)dτds

+ 7p−1Mp
1 ∥ B ∥p∞

(
p− 1

pα(1− ϑ)− 1

)p−1

T pα(1−ϑ)−1 ∥ u ∥p
Lp
F (J,Y )

+ 7p−1Mp
1T

p−1

(
p− 1

p2(α(1− ϑ)− 1) + p− 1

) p−1
p

T
p2(α(1−ϑ)−1)+p−1

p

(∫ tr

0
(mh(s))

pds

) 1
p

+ 7p−1CpM
p
1T

p/2−1

(
p− 1

p2(α(1− ϑ)− 1) + p− 1

) p−1
p

T
p2(α(1−ϑ)−1)+p−1

p

(∫ tr

0
(mf (s))

pds

) 1
p

,

where Cp = (p(p− 1)/2)p/2. Using (3.2), it follows that

r∗ < 2p−1(MT ∥ φ ∥B)p + 28p−1MpKp
T [(H̃ ∥ φ ∥B)p+ ∥ (−A)−β ∥pH Lg ∥ φ ∥pB +1)]

+ 14p−1Kp
T ∥ (−A)−β ∥pH Lg(r

∗ + 1) + 14p−1Kp
TM

p
1T

p−1 T p(αβ−1)+1

p(αβ − 1) + 1
Lg(r

∗ + 1)

+ 14p−1Kp
TM

p
2T

2(p−1) ∥ µp ∥L1
T p(αβ−1)+1

p(αβ − 1) + 1
Lg(r

∗ + 1) + 2p−1Kp
T M̃,

where

M̃ = 7p−1Mp
1 ∥ B ∥p∞

(
p− 1

pα(1− ϑ)− 1

)p−1

T pα(1−ϑ)−1 ∥ u ∥p
Lp
F (J,Y )
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+ 7p−1Mp
1T

p−1

(
p− 1

p2(α(1− ϑ)− 1) + p− 1

) p−1
p

T
p2(α(1−ϑ)−1)+p−1

p

(∫ T

0
(mh(s))

pds

) 1
p

+ 7p−1CpM
p
1T

p/2−1

(
p− 1

p2(α(1− ϑ)− 1) + p− 1

) p−1
p

T
p2(α(1−ϑ)−1)+p−1

p

(∫ T

0
(mf (s))

pds

) 1
p

.

Dividing both sides by r∗ and taking the lower limit, we have

1 ≤ 14p−1Kp
TLg

[
∥ (−A)−β ∥pH +Mp

1

T pαβ

p(αβ − 1) + 1
+Mp

2 ∥ µp ∥L1

T pαβ+p−1

p(αβ − 1) + 1

]
,

which contradicts (3.1). Hence, there exists r > 0 such that Φ(Br(0,BC)) ⊂ Br(0,BC). In what follows, we
aim to show that the operator Φ has a fixed point on Br(0,BC), which implies that (2.1)-(2.2) has a mild
solution. To this end, we decompose Φ as Φ1 +Φ2 where

(Φ1x)(t) = −Rα(t)g(0, φ) + g(t, x̄t) +

∫ t

0
ASα(t− s)g(s, x̄s)ds

+

∫ t

0

∫ s

0
R(s− τ)Sα(t− s)g(τ, x̄τ )dτds, t ∈ J,

(Φ2x)(t) = Rα(t)φ(0) +

∫ t

0
Sα(t− s)B(s)u(s)ds

+

∫ t

0
Sα(t− s)h(s, x̄s)ds+

∫ t

0
Sα(t− s)f(s, x̄s)dw(s), t ∈ J.

We will verify that Φ1 is a contraction while Φ2 is a completely continuous operator.
Step 2. Φ1 is a contraction.
Let t ∈ [0, T ] and x∗, x∗∗ ∈ Br(0,BC). From (H3), we have

E ∥ (−A)ϑ(Φ1x
∗)(t)− (−A)ϑ(Φ1x

∗∗)(t) ∥pH
≤ 3p−1E ∥ (−A)−β [(−A)β+ϑg(t, x∗t)− (−A)β+ϑg(t, x∗∗t)] ∥pH

+ 3p−1E

wwww∫ t

0
(−A)1−βSα(t− s)[(−A)β+ϑg(s, x∗s)− (−A)β+ϑg(s, x∗∗s)]ds

wwwwp

H

+ 3p−1E

wwww∫ t

0

∫ s

0
R(s− τ)Sα(t− s)[(−A)ϑg(τ, x∗τ )− (−A)ϑg(τ, x∗∗τ )]dτds

wwwwp

H

≤ 3p−1 ∥ (−A)−β ∥pH Lg ∥ x∗t − x∗∗t ∥pB

+ 3p−1Mp
1T

p−1

∫ t

0
(t− s)p(αβ−1)Lg ∥ x∗s − x∗∗s ∥pB ds

+ 3p−1Mp
2T

2(p−1)

∫ t

0

∫ s

0
µp(t− τ)(t− s)p(αβ−1)Lg ∥ x∗τ − x∗∗τ ∥pB dτds

≤ 6p−1 ∥ (−A)−β ∥pH Kp
TLg sup

s∈[0,T ]
E ∥ x∗(s)− x∗∗(s) ∥pϑ

+ 6p−1Mp
1K

p
TLgT

p−1

∫ t

0
(t− s)p(αβ−1)ds sup

s∈[0,T ]
E ∥ x∗(s)− x∗∗(s) ∥pϑ

+ 6p−1Mp
2K

p
TLgT

2(p−1)

∫ t

0

∫ s

0
µp(t− τ)(t− s)p(αβ−1)dτds sup

s∈[0,T ]
E ∥ x∗(s)− x∗∗(s) ∥pϑ

≤ 6p−1Kp
TLg

[
∥ (−A)−β ∥pH +Mp

1T
p−1 T p(αβ−1)+1

p(αβ − 1) + 1
+Mp

2 ∥ µp ∥L1 T 2(p−1)
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× T p(αβ−1)+1

p(αβ − 1) + 1

]
sup

s∈[0,T ]
E ∥ x∗(s)− x∗∗(s) ∥pϑ (since x̄ = x on J)

= 6p−1Kp
TLg

[
∥ (−A)−β ∥pH +Mp

1

T pαβ

p(αβ − 1) + 1
+Mp

2 ∥ µp ∥L1

T pαβ+p−1

p(αβ − 1) + 1

]
∥ x∗ − x∗∗ ∥pC .

Taking supremum over t,
∥ Φ1x

∗ − Φ1x
∗∗ ∥pC≤ L0 ∥ x∗ − x∗∗ ∥pC ,

where L0 = 14p−1Kp
TLg[∥ (−A)−β ∥pH +Mp

1
T pαβ

p(αβ−1)+1+M
p
2 ∥ µp ∥L1

T pαβ+p−1

p(αβ−1)+1 ] < 1. Thus Φ1 is a contraction

on Br(0,BC).
Step 3. Φ2 is completely continuous on Br(0,BC).
(1) Φ2 is continuous on Br(0,BC).
Let {xn} ⊆ Br(0,BC) with xn → x(n → ∞) in BC. From axiom (A), it is easy to see that (xn)s → x̄s

uniformly for s ∈ (−∞, T ] as n→ ∞. By the assumptions (H4)-(H5), we have

h(s, xns) → h(s, x̄s) as n→ ∞,

f(s, xns) → f(s, x̄s) as n→ ∞

for each s ∈ [0, t], and since
E ∥ h(s, xns)− h(s, x̄s) ∥pH≤ 2p−1mh(s),

E ∥ f(s, xns)− f(s, x̄s) ∥pH≤ 2p−1mf (s),

and (
∫ t
0 (mh(s))

pds)
1
p < +∞, (

∫ t
0 (mf (s))

pds)
1
p < +∞. Then, by the dominated convergence theorem, we

have

E ∥ (−A)ϑ(Φ2x
n)(t)− (−A)ϑ(Φ2x)(t) ∥pH

≤ sup
t∈J

E

wwww∫ t

0
(−A)ϑSα(t− s)[h(s, xns)− h(s, x̄s)]ds

+

∫ t

0
(−A)ϑSα(t− s)[f(s, xns)− f(s, x̄s)]dw(s)

wwwwp

H

≤ 2p−1T p−1

∫ t

0
∥ (−A)ϑSα(t− s) ∥pH E ∥ h(s, xns)− h(s, x̄s) ∥pH ds

+ 2p−1

[ ∫ t

0
[∥ (−A)ϑSα(t− s) ∥pH E ∥ f(s, xns)− f(s, x̄s) ∥pH ]2/pds

]p/2
≤ 2p−1Mp

1T
p−1

(∫ t

0
(t− s)

p2(α(1−ϑ)−1)
p−1 ds

) p−1
p
(∫ t

0
[E ∥ h(s, xns)− h(s, x̄s) ∥pH ]pds

) 1
p

+ 2p−1Mp
1CpT

p/2−1

(∫ t

0
(t− s)

p2(α(1−ϑ)−1)
p−1 ds

) p−1
p
(∫ t

0
[E ∥ f(s, xns)− f(s, x̄s) ∥pH ]pds

) 1
p

→ 0 as n→ ∞.

Therefore, Φ2 is continuous.
(2) Φ2(Br(0,BC)) = {Φ2x : x ∈ Br(0,BC)} is clearly bounded.
(3) Φ2(Br(0,BC)) = {Φ2x : x ∈ Br(0,BC)} is equicontinuous.
Let 0 < t1 < t2 ≤ T. For each x ∈ Br(0,BC), we have

E ∥ (−A)ϑ(Φ2x)(t2)− (−A)ϑ(Φ2x)(t1) ∥pH
≤ 4p−1E ∥ [Rα(t2)−Rα(t1)](−A)ϑφ(0) ∥pH

+ 4p−1E

wwww∫ t2

0
(−A)ϑSα(t2 − s)B(s)u(s)ds−

∫ t1

0
(−A)ϑSα(t1 − s)B(s)u(s)ds

wwwwp

H
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+ 4p−1E

wwww∫ t2

0
(−A)ϑSα(t2 − s)B(s)u(s)ds−

∫ t1

0
(−A)ϑSα(t1 − s)B(s)u(s)ds

wwwwp

H

+ 4p−1E

wwww∫ t2

0
(−A)ϑSα(t2 − s)B(s)u(s)ds−

∫ t1

0
(−A)ϑSα(t1 − s)B(s)u(s)ds

wwwwp

H

+ 4p−1E

wwww∫ t2

0
(−A)ϑSα(t2 − s)h(s, x̄s)ds−

∫ t1

0
(−A)ϑSα(t1 − s)h(s, x̄s)ds

wwwwp

H

+ 4p−1E

wwww∫ t2

0
(−A)ϑSα(t2 − s)f(s, x̄s)dw(s)−

∫ t1

0
(−A)ϑSα(t1 − s)f(s, x̄s)dw(s)

wwwwp

H

=
4∑

i=1

Ii.

In view of (H1),(H2), (H4) and (H5) and Hölder’s inequality, it follows that

I1 = 4p−1E ∥ [Rα(t2)−Rα(t1)](−A)ϑφ(0) ∥pH ,

I2 ≤ 2p−1E

wwww∫ t1

0
(−A)ϑ[Sα(t2 − s)− Sα(t1 − s)]B(s)u(s)ds

wwwwp

H

+ 2p−1E

wwww∫ t2

t1

(−A)ϑSα(t2 − s)B(s)u(s)ds

wwwwp

H

≤ 2p−1 ∥ B ∥p∞
(∫ t1

0
∥ (−A)ϑ[Sα(t2 − s)− Sα(t1 − s)] ∥

p
p−1

H ds

)p−1

E

∫ t1

0
∥ u(s) ∥pY ds

+ 2p−1 ∥ B ∥p∞ Mp
1

(∫ t2

t1

(t2 − s)
p(α(1−ϑ)−1)

p−1 ds

)p−1

E

∫ t2

t1

∥ u(s) ∥pY ds,

I3 ≤ 2p−1E

wwww∫ t1

0
(−A)ϑ[Sα(t2 − s)− Sα(t1 − s)]h(s, x̄s)ds

wwwwp

H

+ 2p−1E

wwww∫ t2

t1

(−A)ϑSα(t2 − s)h(s, x̄s)ds

wwwwp

H

≤ 2p−1(t1)
p−1

∫ t1

0
∥ (−A)ϑ[Sα(t2 − s)− Sα(t1 − s)] ∥pH E ∥ h(s, x̄s) ∥pH ds

+ 2p−1(t2 − t1)
p−1

∫ t2

t1

∥ (−A)ϑSα(t2 − s) ∥pH E ∥ h(s, x̄s) ∥pH ds

≤ 2p−1(t1)
p−1

(∫ t1

0
∥ (−A)ϑ[Sα(t2 − s)− Sα(t1 − s)] ∥

p2

p−1

H ds

) p−1
p
(∫ t1

0
(mh(s))

pds

) 1
p

+ 2p−1Mp
1 (t2 − t1)

p−1

(∫ t2

t1

(t2 − s)
p2(α(1−ϑ)−1)

p−1 ds

) p−1
p
(∫ t2

t1

(mh(s))
pds

) 1
p

,

I4 ≤ 2p−1E

wwww∫ t1

0
(−A)ϑ[Sα(t2 − s)− Sα(t1 − s)]f(s, x̄s)dw(s)

wwwwp

H

+ 2p−1E

wwww∫ t2

t1

(−A)ϑSα(t2 − s)f(s, x̄s)dw(s)

wwwwp

H

≤ 2p−1

[ ∫ t1

0
[∥ (−A)ϑ[Sα(t2 − s)− Sα(t1 − s)] ∥pH E ∥ f(s, x̄s) ∥pH ]2/pds

]p/2
+ 2p−1

[ ∫ t2

t1

[∥ (−A)ϑSα(t2 − s) ∥pH E ∥ f(s, x̄s)]2/pds
]p/2
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≤ 2p−1Cp(t1)
p/2−1

(∫ t1

0
∥ (−A)ϑ[Sα(t2 − s)− Sα(t1 − s)] ∥

p
p−1

H ds

) p−1
p
(∫ t1

0
(mf (s))

pds

) 1
p

+ 2p−1CpM
p
1 (t2 − t1)

p/2−1

(∫ t2

t1

(t2 − s)
p2(α(1−ϑ)−1)

p−1 ds

) p−1
p
(∫ t2

t1

(mf (s))
pds

) 1
p

.

We see that E ∥ (−A)ϑ(Φ2x)(t2) − (−A)ϑ(Φ2x)(t1) ∥pH tends to zero independently of x ∈ Br(0,BC) as
t2 − t1 → 0, since the compactness of Rα(t), Sα(t) for t > 0 implies imply the continuity in the uniform
operator topology The equicontinuities for the cases t1 < t2 ≤ 0 or t1 ≤ 0 ≤ t2 ≤ T are very simple. Thus
the set {Φ2x : x ∈ Br(0,BC)} is equicontinuous.

(4) (Φ2(Br(0,BC))(t) = {(Φ2x)(t) : x ∈ Br(0,BC)} is relatively compact for each t ∈ J.
We note that (Φ2(Br(0,BC))(t) is relatively compact in BC for t = 0. Let 0 < t ≤ s ≤ T be fixed and ε

a real number satisfying 0 < ε < t for x ∈ Br(0,BC). We define

(Φε
2x)(t) = Rα(t)φ(0) +

∫ t−ε

0
Sα(t− s)B(s)u(s)ds

+

∫ t−ε

0
Sα(t− s)h(s, x̄s)ds+

∫ t−ε

0
Sα(t− s)f(s, x̄s)dw(s).

Using the compactness of Rα(t),Sα(t) for t > 0, we deduce that the set Uε(t) = {(Φε
2x)(t) : x ∈ Br(0,BC)}

is relatively compact in Hϑ for every ε, 0 < ε < t. Moreover, for every x ∈ Br(0,BC) we have

E ∥ (−A)ϑ(Φ2x)(t)− (−A)ϑ(Φε
2x)(t) ∥

p
H

≤ 3p−1E

wwww∫ t

t−ε
(−A)ϑSα(t− s)B(s)u(s)ds

wwwwp

H

+ 3p−1E

wwww∫ t

t−ε
(−A)ϑSα(t− s)h(s, x̄s)ds

wwwwp

H

+ 3p−1E

wwww∫ t

t−ε
(−A)ϑSα(t− s)f(s, x̄s)dw(s)

wwwwp

H

≤ 3p−1E

[ ∫ t

t−ε
∥ (−A)ϑSα(t− s) ∥H∥ B(s)u(s) ∥H ds

]p
+ 3p−1T p−1

∫ t

t−ε
∥ (−A)ϑSα(t− s) ∥pH E ∥ h(s, x̄s) ∥pH ds

+ 3p−1Cp

[ ∫ t

t−ε
[∥ (−A)ϑSα(t− s) ∥pH E ∥ f(s, x̄s) ∥pH ]2/pds

]p/2
≤ 3p−1 ∥ B ∥p∞ Mp

1

(∫ t

t−ε
(t− s)

p(α(1−ϑ)−1)
p−1 ds

)p−1

E

∫ t

t−ε
∥ u(s) ∥pH ds

+ 3p−1Mp
1T

p−1

(∫ t

t−ε
(t− s)

pp(α(1−ϑ)−1)
p−1 ds

) p−1
p
(∫ t

t−ε
(mh(s))

pds

) 1
p

+ 3p−1Mp
1T

p/2−1

(∫ t

t−ε
(t− s)

pp(α(1−ϑ)−1)
p−1 ds

) p−1
p
(∫ t

t−ε
(mf (s))

pds

) 1
p

,

and there are relatively compact sets arbitrarily close to the set {(Φ2x)(t) : x ∈ Br(0,BC)}, and (Φ2(Br(0,
BC))(t) is a relatively compact in Hϑ. By the Arzelá-Ascoli theorem, we can conclude that Φ2 is a completely
continuous map.

Therefore, Φ = Φ1 + Φ2 is a condensing map from Br(0,BC) into Br(0,BC). Consequently, by Lemma
2.14, we deduce that Φ has a fixed point x ∈ Br(0,BC), which is a mild solution of problem (2.1)-(2.2). The
proof is complete.
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4. Existence of fractional stochastic optimal controls

In this section we consider a control problem and present a result on the existence of fractional stochastic
optimal controls.

Let xu denote the mild solution of system (2.1)-(2.2) corresponding to the control u ∈ Uad. We consider
the Bolza problem (P): find an optimal pair (x0, u0) ∈ BC × Uad such that

J (x0, u0) ≤ J (xu, u) for all u ∈ Uad,

where the cost function

J (xu, u) = E

∫ T

0
l(t, xut , x

u(t), u(t))dt+ EΨ(xu(T )).

We introduce the following assumption on l and Ψ.

(B1) The functional l : J × B ×H × Y → R ∪ {∞} is Borel measurable.

(B2) l(t, ·, ·, ·) is sequentially lower semicontinuous on B ×H × Y for almost all t ∈ J.

(B2) l(t, x, y, ·) is convex on Y for each x ∈ B, y ∈ H and almost all t ∈ J.

(B3) There exist constants d1, d2 ≥ 0, d3 > 0, µ is nonnegative and µ ∈ L1(J,R) such that l(t, x, y, u) ≥
µ(t) + d1 ∥ x ∥B +d2 ∥ x ∥H +d2 ∥ u ∥pY .

(B4) The functional Ψ : H → R is continuous and nonnegative.

To prove the existence of solution for problem (P), we need the following important lemma.

Lemma 4.1. Operator Q : Lp(J, Y ) → BC for some pα(1− ϑ) > 1 given by

(Qu)(·) =
∫ ·

0
Sα(· − s)B(s)u(s)ds

is completely continuous.

Proof. Suppose that un ⊆ Lp
F (J, Y ) is bounded, we define Θn(t) = (Qun)(t), t ∈ J. Similar to the proof of

Theorem 3.1, one can know that for any fixed t ∈ J and, E ∥ Θn(t) ∥pϑ is bounded. By using (H1)-(H5),
it is ease to verify that Θn(t) is relatively compact in Hϑ and is also equicontinuous. Due to Ascoli-Arzela
Theorem again, {Θn(t)} is compact in Hϑ. Obviously, Q is linear and continuous. Hence, Q is a completely
continuous operator. The proof is complete.

Next we can give the following result on existence of optimal controls for problem (P).

Theorem 4.2. Let x0 ∈ L0
2(Ω,Hα). If the assumptions (B1)-(B4) and the assumptions of Theorem 3.1

hold. Then the Bolza problem (P) admits at least one optimal pair on BC × Uad.

Proof. Without loss of generality, we assume that inf{J (xu, u)|u ∈ Uad} = ε < +∞. Otherwise, there is
nothing to prove. Using assumptions (B1)-(B4), we have

J (xu, u) ≥
∫ T

0
µ(t)dt+ d1

∫ T

0
∥ xut (t) ∥B dt+ d2

∫ T

0
∥ xu(t) ∥H dt

+ d3

∫ T

0
∥ u(t) ∥pY dt+Ψ(xu(T )) ≥ −η > −∞,

where η > 0 is a constant. Hence, ε ≥ −η > −∞. On the other hand, by using definition of in-
fimum there exists a minimizing sequence of feasible pair {(xm, um)} ⊂ Aad, where Aad = {(x, u)|x
is a mild solution of system (2.1)-(2.2) corresponding to u ∈ Uad}, such that J (xm, um) → ε as m → +∞.
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For {um} ⊆ Uad, {um} is bounded in Lp
F (J, Y ), so there exists a subsequence, relabeled as {um}, and

u0 ∈ Lp
F (J, Y ) such that

um
w−→ u0 in Lp

F (J, Y ) as m→ ∞.

Since Uad is closed and convex, by Marzur Lemma, we conclude that u0 ∈ Uad.
Now we suppose that xm are the mild solutions of system (2.1)-(2.2) corresponding to um(m = 0, 1, 2, . . .),

and xm satisfied the following integral equation

xm(t) = Rα(t)[φ(0)− g(0, φ)] + g(t, xmt) +

∫ t

0
ASα(t− s)g(s, xms)ds

+

∫ t

0

∫ s

0
R(s− τ)Sα(t− s)g(τ, xmτ )dτds+

∫ t

0
Sα(t− s)B(s)um(s)ds

+

∫ t

0
Sα(t− s)h(s, xms)ds+

∫ t

0
Sα(t− s)f(s, xms)dw(s), t ∈ J.

Let hm(s) ≡ h(s, xms), fm(s) ≡ f(s, xms). Then by (H4) and (H5), we obtain that

∥ hm ∥pLp(J,H) = E

(∫ T

0
∥ hm(s) ∥pH ds

)
=

∫ T

0
E ∥ hm(s) ∥pH ds

≤
∫ T

0
mh(s)ds ≤ T

p−1
p

(∫ T

0
(mh(s))

pds

) 1
p

,

∥ fm ∥pLp(J,Lb(K,H) = E

(∫ T

0
∥ fm(s) ∥pLb(K,H) ds

)
=

∫ T

0
E ∥ fm(s) ∥pLb(K,H) ds

≤
∫ T

0
mf (s)ds ≤ T

p−1
p

(∫ T

0
(mf (s))

pds

) 1
p

.

That is to say, hm : J → H and fm : J → Lb(K,H) are bounded continuous operators. Hence,
hm(·) ∈ Lp(J,H), fm(·) ∈ Lp(J, Lb(K,H)). Furthermore, {hm(·)}, {fm(·)} is bounded in Lp(J,H) and
in Lp(J, Lb(K,H)), and there are subsequences, relabeled as {hm(·)}, {fm(·)}, and ĥ(·) ∈ Lp(J,H),f̂(·) ∈
Lp(J, Lb(K,H)) such that

hm(·) w−→ ĥ(·) in Lp(J,H) as m→ ∞,

fm(·) w−→ f̂(·) in Lp(J, Lb(K,H)) as m→ ∞.

By Lemma 4.1, we have
Qhm → Qĥ in BC as m→ ∞,

Qfm → Qf̂ in BC as m→ ∞.

Next we turn to consider the following controlled system

cDα[x(t)− g(t, xt)] = Ax(t) +

∫ t

0
R(t− s)x(s)ds+B(t)u0(t) + ĥ(t) + f̂(t)

dw(t)

dt
, (4.1)

t ∈ J = [0, T ], u0 ∈ Uad,

x0 = φ ∈ B, x′(0) = 0. (4.2)

By Theorem 3.1, it is easy to see that system (4.1)-(4.2) has a mild solution

x̂(t) = Rα(t)[φ(0)− g(0, φ)] + g(t, x̂t) +

∫ t

0
ASα(t− s)g(s, x̂s)ds

+

∫ t

0

∫ s

0
R(s− τ)Sα(t− s)g(τ, x̂τ )dτds+

∫ t

0
Sα(t− s)B(s)u0(s)ds
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+

∫ t

0
Sα(t− s)ĥ(s)ds+

∫ t

0
Sα(t− s)f̂(s)dw(s), t ∈ J.

For each t ∈ J, xm(·), x̂(·) ∈ BC, we have

E ∥ xm(t)− x̂(t) ∥pϑ≤ ν(1)m (t) + ν(2)m (t) + ν(3)m (t) + ν(4)m (t) + ν(5)m (t) + ν(6)m (t),

where
ν(1)m (t) = 6p−1E ∥ (−A)−βSα(t− s)(−A)β+ϑ[g(t, xmt)− g(t, x̂t)] ∥pH ,

ν(2)m (t) = 6p−1E

wwww∫ t

0
(−A)1−βSα(t− s)(−A)β+ϑ[g(s, xms)− g(s, x̂s)]ds

wwwwp

H

,

ν(3)m (t) = 6p−1E

wwww∫ t

0

∫ s

0
R(s− τ)(−A)ϑSα(t− s)[g(τ, xmτ )− g(τ, x̂τ )]dτds

wwwwp

H

,

ν(4)m (t) = 6p−1E

wwww∫ t

0
(−A)ϑSα(t− s)B(s)[um(s)− u0(s)]ds

wwwwp

H

,

ν(5)m (t) = 6p−1E

wwww∫ t

0
(−A)ϑSα(t− s)[hm(s)− ĥ(s)]ds

wwwwp

H

,

ν(6)m (t) = 6p−1E

wwww∫ t

0
(−A)ϑSα(t− s)[fm(s)− f̂(s)]dw(s)

wwwwp

H

.

By (H1)-(H3), we can obtain

ν(1)m (t) + ν(2)m (t) + ν(3)m (t)

≤ 6p−1 ∥ (−A)−β ∥pH Lg ∥ xmt − x̂t ∥pB +6p−1Mp
1T

p−1

∫ t

0
(t− s)p(αβ−1)Lg ∥ xms − x̂s ∥pB ds

+ 6p−1Mp
2T

2(p−1)

∫ t

0

∫ s

0
µp(t− τ)(t− s)p(αβ−1)Lg ∥ xmτ − x̂τ ∥pB dτds

≤ 6p−1 ∥ (−A)−β ∥pH Kp
TLg sup

s∈[0,T ]
∥ xm(s)− x̂(s) ∥pϑ

+ 6p−1Mp
1K

p
TLgT

p−1

∫ t

0
(t− s)p(αβ−1)ds sup

s∈[0,T ]
∥ xm(s)− x̂(s) ∥pϑ

+ 6p−1Mp
2K

p
TLgT

2(p−1)

∫ t

0

∫ s

0
µp(t− τ)(t− s)αβ−1dτds sup

s∈[0,T ]
∥ xm(s)− x̂(s) ∥pϑ

≤ 6p−1Kp
TLg

[
∥ (−A)−β ∥pH +Mp

1T
p−1 T

p(αβ−1)

p(αβ − 1)
+Mp

2 ∥ µp ∥L1 T 2(p−1) T
p(αβ−1)

p(αβ − 1)

]
× sup

s∈[0,T ]
∥ xm(s)− x̂(s) ∥pϑ (since x̄ = x on J)

≤ L0 ∥ xm − x̂ ∥pC .

Using the Hölder inequality again, we have

ν(4)m (t) ≤ 6p−1E

[ ∫ t

0
∥ B(s)(−A)ϑSα(t− s)[um(s)− u0(s)] ∥H ds

]p
≤ 6p−1 ∥ B ∥p∞ T p−1

∫ t

0
E ∥ (−A)ϑSα(t− s)[um(s)− u0(s)] ∥pH ds,
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ν(5)m (t) ≤ 6p−1E

[ ∫ t

0
∥ (−A)ϑSα(t− s)[hm(s)− ĥ(s)] ∥H ds

]p
≤ 6p−1T p−1

∫ t

0
E ∥ (−A)ϑSα(t− s)[hm(s)− ĥ(s)] ∥pH ds,

ν(6)m (t) ≤ 6p−1Cp

[ ∫ t

0
[E ∥ (−A)ϑSα(t− s)[fm(s)− f̂(s)] ∥pH ]2/pds

]p/2
≤ 6p−1CpT

p/2−1

∫ t

0
E ∥ (−A)ϑSα(t− s)[fm(s)− f̂(s)] ∥pH ds.

By virtue of Lemma 4.1 and Lebesgue’s dominated convergence theorem,∫ t

0
E ∥ (−A)ϑSα(t− s)[um(s)− u0(s)] ∥pH ds→ 0 as m→ ∞,

∫ t

0
E ∥ (−A)ϑSα(t− s)[hm(s)− ĥ(s)] ∥pH ds→ 0 as m→ ∞,∫ t

0
E ∥ (−A)ϑSα(t− s)[fm(s)− f̂(s)] ∥pH ds→ 0 as m→ ∞.

Thus

ν(4)m (t), ν(5)m (t), ν(6)m (t) → 0 as m→ ∞.

Then we have

E ∥ xm(t)− x̂(t) ∥pϑ≤ L0 ∥ xm − x̂ ∥pC +ν(4)m (t) + ν(5)m (t) + ν(6)m (t),

which implies that

∥ xm − x̂(t) ∥pC≤
ν
(4)
m (t) + ν

(5)
m (t) + ν

(6)
m (t)

1− L0
,

and we can infer that
xm → x̂ in BC as m→ ∞.

Further, by (H4) and (H5), we can obtain

hm(·) → h(·, x̄·) BC as m→ ∞,

fm(·) → f(·, x̄·) BC as m→ ∞.

Using the uniqueness of limit, we have

ĥ(t) = h(t, x̄t), f̂(t) = f(t, x̄t).

Therefore, x̂ can be given by

x̂(t) = Rα(t)[φ(0)− g(0, φ)] + g(t, x̂t) +

∫ t

0
ASα(t− s)g(s, x̂s)ds

+

∫ t

0

∫ s

0
R(s− τ)Sα(t− s)g(τ, x̂τ )dτds+

∫ t

0
Sα(t− s)B(s)u0(s)ds

+

∫ t

0
Sα(t− s)ĥ(s)ds+

∫ t

0
Sα(t− s)f̂(s)dw(s), t ∈ J,

which is just a mild solution of system (2.1)-(2.2) corresponding to u0. Since BC ↪→ L1(J,H), using (B1)-
(B5) and Balder’s theorem, we can obtain
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ε = lim
m→∞

E

∫ T

0
l(t, xmt x

m(t), um(t))dt+ lim
m→∞

EΨ(xm(T ))

≥ E

∫ T

0
l(t, x̂t, x̂(t), u

0(t))dt+ EΨ(x̂(T )) = J (x̂, u0) ≥ ε.

This shows that J attains its minimum at (x̂, u0) ∈ BC × Uad and the proof is complete.

5. Application

Consider the following fractional stochastic partial neutral functional integro-differential system of the
form

Dα
t

[
z(t, x)−

∫ t

−∞

∫ π

0
b̃1(t− s, τ, x)z(s, τ)dτds

]
=

∂2

∂x2
z(t, x) +

∫ t

0
(t− s)ζe−ς(t−s) ∂

2

∂x2
z(s, x)ds+

∫
[0,π]

∫ T

0
q(t, x)u(s, τ))dsdτ

+

∫ t

−∞
b̃2(t, t− s, x, z(s, x))ds+

∫ t

−∞
b̃3(t, t− s, x, z(s, x))ds

w(t)

dt
, (5.1)

0 ≤ t ≤ T, 0 ≤ x ≤ π, u ∈ Uad,

z(t, 0) = z(t, π) = 0, 0 ≤ t ≤ T, (5.2)

zt(0, x) = 0, 0 ≤ x ≤ π, (5.3)

z(t, x) = φ(t, x), t ≤ 0, 0 ≤ x ≤ π, (5.4)

where Dα
t is a Caputo fractional partial derivative of order α ∈ (1, 2), ζ and ς are positive numbers, and

q : [0, T ]× [0, π] → R is continuous. w(t) denotes a one-dimensional standard Wiener process in H defined
on a stochastic space (Ω,F , P ). Let H = Y = L2([0, π]) with the norm ∥ · ∥ and define the operators
A : D(A) ⊆ H → H by Aω = ω′′ with the domain

D(A) := {ω ∈ H : ω, ω′ are absolutely continuous, ω′′ ∈ H,ω(0) = ω(π) = 0}.

Then A generates a compact, analytic semigroup T (·) of uniformly bounded linear operator. Moreover,
the eigenvalues of A are n2π2 and the corresponding normalized eigenvectors are en(x) =

√
2 sin(nπx),

n = 1, 2, · · · . Let H 1
2
:= (D((−A)

1
2 ), ∥ · ∥ 1

2
), where ∥ · ∥ 1

2
:=∥ (−A)

1
2x ∥ for each x ∈ D((−A)

1
2 ). The

operator (−A)
1
2 is given by

(−A)
1
2ω =

∞∑
n=1

n⟨ω, en⟩en

on the space D((−A)
1
2 ) = {ω(·) ∈ H,

∑∞
n=1 n⟨ω, en⟩en ∈ H} and ∥ (−A)−

1
2 ∥= 1. Hence, A is sectorial of

type and (P1) is satisfied. The operator R(t) : D(A) ⊆ H → H, t ≥ 0, R(t)x = tζe−ςtx′′ for x ∈ D(A).
Moreover, it is easy to see that conditions (P2) and (P3) in Section 2 are satisfied with b(t) = tζe−ςt and
D(A) = C∞

0 ([0, π]), where C∞
0 ([0, π]) is the space of infinitely differentiable functions that vanish at x = 0

and x = π.
For d > 0, we define the admissible control set Uad = {u(·, y)|[0, T ] → Y measurable, Ft-adapted

stochastic processes, and ∥ u ∥Lp
F ([0,T ],Y )≤ d}. Next we consider that the following the phase space.

Let r ≥ 0, 1 ≤ p < 1 and let h̃ : (−∞,−r] → R be a nonnegative measurable function which satisfies the
conditions (h-5), (h-6) in the terminology of Hino et al. [14]. Briefly, this means that h is locally integrable
and there is a non-negative, locally bounded function γ on (−∞, 0] such that h̃(ξ + τ) ≤ γ(ξ)h(τ) for all
ξ ≤ 0 and θ ∈ (−∞,−r) \Nξ, where Nξ ⊆ (−∞,−r) is a set whose Lebesgue measure zero. We denote by
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Cr×L2(h̃,H 1
2
) the set consists of all classes of functions φ : (−∞, 0] → H 1

2
such that φ|[−r,0]

∈ C([−r, 0], H 1
2
),

φ(·) is Lebesgue measurable on (−∞,−r), and h̃ ∥ φ ∥p1
2

is Lebesgue integrable on (−∞,−r). The seminorm

is given by

∥ φ ∥B= sup
−r≤θ≤0

∥ φ(θ) ∥ 1
2
+

(∫ −r

−∞
h̃(θ) ∥ φ(θ) ∥p1

2

dθ

)1/p

.

The space B = Cr × Lp(h̃,H 1
2
) satisfies axioms (A)-(C). Moreover, when r = 0 and p = 2, we can take

H̃ = 1, M(t) = γ(−t)
1
2 and K(t) = 1 + (

∫ 0
−t h̃(θ)dθ)

1
2 , for t ≥ 0 (see [14], Theorem 1.3.8 for details).

Additionally, we choose β = 1
2 and assume that the following conditions hold:

(i) The functions b̃1(s, τ, x),
∂b̃1(s,τ,x)

∂x , ∂
2b̃1(s,τ,x)

∂2x
are measurable, b̃1(s, τ, π) = b̃1(s, τ, 0) = 0 for every

(s, τ) ∈ (−∞, 0]× [0, π] and

L̃g = max

{(∫ π

0

∫ 0

−∞

∫ π

0

1

h̃(s)

(
∂ib̃1(s, τ, x)

∂xi

)2

dτdsdx

) 1
2

: i = 0, 1, 2

}
<∞.

(i) The function b̃2 : R4 → R is continuous and there is continuous function µ1 : R2 → R such that

|b̃2(t, s, x, y)| ≤ µ1(t, s) cos |y|, (t, s, x, y) ∈ R4.

(i) The function b̃3 : R4 → R is continuous and there is continuous function µ2 : R2 → R such that

|b̃3(t, s, x, y)| ≤ µ2(t, s) cos |y|, (t, s, x, y) ∈ R4.

Take φ ∈ B = C0 × L2(h̃,H 1
2
) with φ(s)(τ) = φ(s, τ).

Let g : [0, T ]× B → H, h : [0, T ]× B → H, f : [0, T ]× B → Lb(K,H) be the operators defined by

g(t, ψ)(x) =

∫ 0

−∞

∫ π

0
b̃1(−s, υ, x)ψ(s, υ)dυds,

h(t, ψ)(x) =

∫ 0

−∞
b̃2(t,−s, x, ψ(s, x))ds,

f(t, ψ)(x) =

∫ 0

−∞
b̃3(t,−s, x, ψ(s, x))ds,

and B(t)u(t)(x) =

∫
[0,π]

∫ T

0
q(t, x)u(s, τ))dsdτ.

Using these definitions, we can represent the system (5.1)-(5.4) in the abstract form (2.1)-(2.2) with the cost
function

J (z, u) = E

∫
[0,π]

∫ 0

−∞
∥ zu(t+ s, x) ∥21

2

dsdx+ E

∫
[0,π]

∥ zu(t, x) ∥21
2

dx

+ E

∫
[0,π]

∥ u(x, t) ∥2Y dx+ E ∥ z(T ) ∥ 1
2
.

Moreover, using (i) we can prove that g is D(A)-valued and

E ∥ Ag(t, ψ) ∥p ≤
[
L̃g

[
∥ ψ(0) ∥ +

(∫ 0

−∞
h(θ) ∥ ψ(θ) ∥2 dθ

) 1
2
]]p

≤
[
L̃g

[
∥ (−A)−

1
2 ∥∥ (−A)

1
2ψ(0) ∥

+

(∫ 0

−∞
h(θ) ∥ (−A)−

1
2 ∥2∥ (−A)

1
2ψ(θ) ∥2 dθ

) 1
2
]]p



Z. Yan, F. Lu, J. Nonlinear Sci. Appl. 8 (2015), 557–577 576

=

[
L̃g

[
∥ ψ(0) ∥ 1

2
+

(∫ 0

−∞
h(θ) ∥ ψ(θ) ∥21

2

dθ

) 1
2
]]p

= (L̃g)
p ∥ ψ ∥pB .

It follows by assumptions (ii) and (iii) that

E ∥ g(t, ψ) ∥p≤ (a1(t))
p, E ∥ f(t, ψ) ∥p≤ (a2(t))

p

for all (t, ψ) ∈ [0, T ]× B, where a1(t) = (
∫ 0
−∞

(µ1(t,s))2

h̃(s)
ds)

1
2 <∞,a2(t) = (

∫ 0
−∞

(µ2(t,s))2

h̃(s)
ds)

1
2 <∞. Moreover,

suppose that conditions p2(12α − 1) + p > 1 and (3.1) hold. Then it satisfies all the assumptions given in
Theorem 4.2. Therefore, we can conclude that problem (5.1)-(5.4) has at least one optimal pair.
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