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Abstract

This paper investigates the existence of solutions for a class of integral boundary value problems with causal
operators. The arguments are based upon the developed monotone iterative method. As applications, two
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1. Introduction and Preliminaries

The general theory of integral boundary value problems arises naturally from a wide variety of ap-
plications such as heat conduction, chemical engineering, underground water flow. Recently, the exis-
tence of solutions for such problems have received a great deal of attentions; for details see for exam-
ple [1, 2, 10, 11, 12, 19, 20, 21]. It is well known that monotone iterative technique is quite useful, see
[3, 13, 14, 15, 16, 17] and references therein. In [5, 6, 7, 9, 22], this method, combining upper and lower
solutions, has been successfully applied to obtain the existence of extremal solutions for boundary value prob-
lems with integral boundary conditions. Bhaskar [4] and West [18] developed monotone iterative method,
considered the generalized monotone iterative method for initial value problems, obtained the existence of
extremal solutions for differential equations where the forcing function is the sum of two monotone func-
tions, one of which is monotone non-decreasing and the other is non-increasing. In [8], Lakshmikantham also
discussed initial value problems for causal differential equations by using the generalized monotone iterative
method. The theory of causal differential equations has the powerful quality of unifying ordinary differential
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equations, integro differential equations, differential equations with finite or infinite delay, Volterra inte-
gral equations and neutral equations. For more information about the general theory of causal differential
equations, we refer to the book of Lakshmikantham [8].

However, integral boundary value problems for causal differential equations where the right-hand side is
the sum of two monotone functions, are not investigated till now. In this paper, we deal with the following
integral boundary value problems with causal operators:

y′(t) = (Py)(t) + (Qy)(t), t ∈ J = [0, T ],

y(0) = λ1y(τ) + λ2

∫ T

0
φ(t, y(t))dt+ c,

(1.1)

where P,Q : E → E = C(J,R) are causal operators. τ ∈ (0, T ] is a given point and φ ∈ C(J × R,R),
λ1, λ2, c ∈ R.

Note that the integral boundary value problem (1.1) reduces to initial value problems for λ1 = λ2 = 0
which has been studied in [8], periodic boundary value problems when λ1 = 1, λ2 = c = 0 and τ = T and
anti-periodic boundary value problems if λ1 = −1, λ2 = c = 0 and τ = T . Thus problem (1.1) can be
regarded as a generalization of the boundary value problems mentioned above.

The rest of this paper is organized as follows. In Sections 2, we develop the monotone technique and
establish the existence of coupled extremal solutions for (1.1). In Section 3, two examples are added to
verify the assumption and theoretical results.

2. Main results

In order to verify our main results, we first give the following definitions.

Definition 2.1. For the causal differential equation (1.1):
(1) a function y ∈ C1(J,R) is said to be a natural solution if it satisfies (1.1).
(2) y, z ∈ C1(J,R) are said to be coupled solutions of type I, if

y′(t) = (Py)(t) + (Qz)(t), y(0) = λ1y(τ) + λ2

∫ T

0
φ(t, y(t))dt+ c,

z′(t) = (Pz)(t) + (Qy)(t), z(0) = λ1z(τ) + λ2

∫ T

0
φ(t, z(t))dt+ c;

(3) y, z ∈ C1(J,R) are said to be coupled solutions of type II, if
y′(t) = (Pz)(t) + (Qy)(t), y(0) = λ1y(τ) + λ2

∫ T

0
φ(t, y(t))dt+ c,

z′(t) = (Py)(t) + (Qz)(t), z(0) = λ1z(τ) + λ2

∫ T

0
φ(t, z(t))dt+ c;

(4) y, z ∈ C1(J,R) are said to be coupled solutions of type III, if
y′(t) = (Pz)(t) + (Qz)(t), y(0) = λ1y(τ) + λ2

∫ T

0
φ(t, y(t))dt+ c,

z′(t) = (Py)(t) + (Qy)(t), z(0) = λ1z(τ) + λ2

∫ T

0
φ(t, z(t))dt+ c.

Definition 2.2. Related to equation (1.1), the functions α, β ∈ C1(J,R) are said to be
(1) natural lower and upper solutions if
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α′(t) ≤ (Pα)(t) + (Qα)(t), α(0) ≤ λ1α(τ) + λ2

∫ T

0
φ(t, α(t))dt+ c,

β′(t) ≥ (Pβ)(t) + (Qβ)(t), β(0) ≥ λ1β(τ) + λ2

∫ T

0
φ(t, β(t))dt+ c;

(2) coupled lower and upper solutions of type I, if
α′(t) ≤ (Pα)(t) + (Qβ)(t), α(0) ≤ λ1α(τ) + λ2

∫ T

0
φ(t, α(t))dt+ c,

β′(t) ≥ (Pβ)(t) + (Qα)(t), β(0) ≥ λ1β(τ) + λ2

∫ T

0
φ(t, β(t))dt+ c;

(3) coupled lower and upper solutions of type II, if
α′(t) ≤ (Pβ)(t) + (Qα)(t), α(0) ≤ λ1α(τ) + λ2

∫ T

0
φ(t, α(t))dt+ c,

β′(t) ≥ (Pα)(t) + (Qβ)(t), β(0) ≥ λ1β(τ) + λ2

∫ T

0
φ(t, β(t))dt+ c;

(4) coupled lower and upper solutions of type III, if
α′(t) ≤ (Pβ)(t) + (Qβ)(t), α(0) ≤ λ1α(τ) + λ2

∫ T

0
φ(t, α(t))dt+ c,

β′(t) ≥ (Pα)(t) + (Qα)(t), β(0) ≥ λ1β(τ) + λ2

∫ T

0
φ(t, β(t))dt+ c.

In this paper, we set α(t) ≤ β(t), t ∈ J , then (Py) is non-decreasing and (Qy) is non-increasing. Therefore,
the natural lower and upper solutions satisfy type II and the coupled lower and upper solutions of type III
satisfy type II. Thus, we only need to consider the cases of the coupled lower and upper solutions of type I
and II for (1.1).

Definition 2.3. Coupled solutions ρ, r ∈ C1(J,R) are said to be coupled minimal and maximal solutions
of (1.1), respectively, if for any coupled solutions y, z ∈ C1(J,R), we have

ρ(t) ≤ y(t) ≤ r(t) and ρ(t) ≤ z(t) ≤ r(t), t ∈ J .

Theorem 2.4. Assume that the following conditions hold,
(A1) the functions α0, β0 ∈ C1(J,R) are coupled lower and upper solutions of type I for (1.1) with
α0(t) ≤ β0(t) on J ;
(A2) the operators P,Q in (1.1) are such that P,Q : E → E, (Py) is non-decreasing in y and (Qy) is
non-increasing in y;

(A3) λ1(u(τ)− v(τ)) + λ2

∫ T

0

(
φ(s, u(s))− φ(s, v(s))

)
ds ≤ 0 where α0(t) ≤ u(t) ≤ v(t) ≤ β0(t), λ1, λ2 ∈ R.

Then there exist monotone sequences {αn(t)}, {βn(t)} which converge uniformly to the coupled minimal
and maximal solutions of type I for (1.1).

Proof. First, we consider the following linear problems:
α′
n+1(t) = (Pαn)(t) + (Qβn)(t),

αn+1(0) = λ1αn(τ) + λ2

∫ T

0
φ(s, αn(s))ds+ c.

(2.1)
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β′
n+1(t) = (Pβn)(t) + (Qαn)(t),

βn+1(0) = λ1βn(τ) + λ2

∫ T

0
φ(s, βn(s))ds+ c.

(2.2)

Obviously, by general results on the initial value problems of causal differential equations [8], (2.1) and (2.2)
have solutions, hence the above definitions are adequate.

Due to (2.1) and (2.2), we get two monotone sequences {αn(t)}, {βn(t)}. Next, we shall show that the
sequences satisfy

α0(t) ≤ α1(t) ≤ · · · ≤ αn(t) ≤ βn(t) ≤ · · · ≤ β1(t) ≤ β0(t) (2.3)

for t ∈ J , n = 1, 2, · · · through two steps.
Step 1. We prove that (2.3) is true for n = 1, i.e., α0(t) ≤ α1(t) ≤ β1(t) ≤ β0(t), t ∈ J . For this

purpose, let p(t) = α0(t)− α1(t), we acquire

p′(t) = α′
0(t)− α′

1(t) ≤ (Pα0)(t) + (Qβ0)(t)− (Pα0)(t)− (Qβ0)(t) = 0,

note that p(0) ≤ 0. We get p(t) ≤ 0 on J , which implies α0(t) ≤ α1(t), t ∈ J . Similarly, we can obtain
β1(t) ≤ β0(t), t ∈ J .

If we set p(t) = α1(t)− β1(t), t ∈ J , then from (A2), (A3) and the fact α0(t) ≤ β0(t), t ∈ J , we have

p′(t) = α′
1(t)− β′

1(t) = (Pα0)(t) + (Qβ0)(t)− (Pβ0)(t)− (Qα0)(t) ≤ 0

and
p(0) = α1(0)− β1(0)

= λ1(α0(τ)− β0(τ)) + λ1

∫ T

0

(
φ(s, α0(s))− φ(s, β0(s))

)
ds

≤ 0.

Therefore, we get p(t) ≤ 0 on J , which gives α1(t) ≤ β1(t), t ∈ J .
Step 2. Assume that for some integer n > 1,

αn−1(t) ≤ αn(t) ≤ βn(t) ≤ βn−1(t), t ∈ J.

We need to prove that
αn(t) ≤ αn+1(t) ≤ βn+1(t) ≤ βn(t), t ∈ J.

For this purpose, setting p(t) = αn(t)− αn+1(t) and use (A2), (A3), then we get

p′(t) = α′
n(t)− α′

n+1(t) = (Pαn−1)(t) + (Qβn−1)(t)− (Pαn)(t)− (Qβn)(t) ≤ 0,

p(0) = αn(0)− αn+1(0)

= λ1(αn−1(τ)− αn(τ)) + λ2

∫ T

0

(
φ(s, αn−1(s))− φ(s, αn(s))

)
ds ≤ 0.

It follows that αn(t) ≤ αn+1(t), t ∈ J . In the same way, we can get βn+1(t) ≤ βn(t), t ∈ J . To
prove αn+1(t) ≤ βn+1(t) on J , taking p(t) = αn+1(t) − βn+1(t), employing (A2), (A3) and the fact that
αn(t) ≤ βn(t), t ∈ J , we obtain

p′(t) = α′
n+1(t)− β′

n+1(t) = (Pαn)(t) + (Qβn)(t)− (Pβn)(t)− (Qαn)(t) ≤ 0

and
p(0) = αn+1(0)− βn+1(0)

= λ1(αn(τ)− βn(τ)) + λ2

∫ T

0

(
φ(s, αn(s))− φ(s, βn(s))

)
ds ≤ 0.
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Then p(t) ≤ 0, which gives αn+1(t) ≤ βn+1(t), t ∈ J .
From the above discussion, applying the mathematical induction, we have

α0(t) ≤ α1(t) ≤ · · · ≤ αn(t) ≤ βn(t) ≤ · · · ≤ β1(t) ≤ β0(t), t ∈ J.

Consequently, there exist ρ, r ∈ C1(J,R) such that lim
n→∞

αn(t) = ρ(t), lim
n→∞

βn(t) = r(t) on J . Apparently,

ρ, r are coupled solutions of type I for (1.1).
Finally, we show that ρ(t), r(t) are coupled minimal and maximal solutions of type I for (1.1). To do it,

put [α0, β0] = {y ∈ C(J,R) : α0(t) ≤ y(t) ≤ β0(t), t ∈ J}. Let y1, y2 ∈ [α0, β0] be any coupled solutions of
type I for (1.1) and assume that there exists a positive integer n such that αn(t) ≤ yi(t) ≤ βn(t) (i = 1, 2)
on J . Then setting p(t) = αn+1(t)− y1(t) on J and using (A2) and (A3), we have

p′(t) = α′
n+1(t)− y′1(t) = (Pαn)(t) + (Pβn)(t)− (Py1)(t)− (Qy2)(t) ≤ 0

and
p(0) = αn+1(0)− y1(0) ≤ 0.

Hence p(t) ≤ 0, t ∈ J , which implies αn+1(t) ≤ y1(t), t ∈ J . Similarly, we can conclude y1(t) ≤ βn+1(t)
and αn+1(t) ≤ y2(t) ≤ βn+1(t), t ∈ J . Since α0(t) ≤ yi(t) ≤ β0(t) (i = 1, 2) on J , by induction we see that
αn(t) ≤ yi(t) ≤ βn(t) (i = 1, 2) holds for all n. Therefore ρ(t) ≤ yi(t) ≤ r(t) (i = 1, 2) on J as n → ∞. ρ(t)
and r(t) are coupled minimal and maximal solutions of type I for (1.1). Since that any natural solution y(t)
of (1.1) can be considered as (y, y) coupled solutions of type I, we also have ρ(t) ≤ y(t) ≤ r(t), t ∈ J . Then
the proof is finished.

Remark 2.5. When λ1 = λ2 = 0, the problem (1.1) is reduced to initial value problems with causal operators,
see causal differential equations Theorem 3.4.1. in [8].

Corollary 2.6. Assume that λ1 = 1, λ2 = c = 0, τ = T and conditions of Theorem 2.4 hold. The problem
(1.1) is reduced to periodic boundary value problems with causal operators. Then there exist two monotone
sequences which converge uniformly to the coupled minimal and maximal solutions of type I for (1.1).

Corollary 2.7. If λ1 = −1, λ2 = c = 0 and conditions of Theorem 2.4 hold. The problem (1.1) is reduced to
anti-periodic boundary value problems with causal operators. We can get two monotone sequences converging
to the coupled minimal and maximal solutions of type I for (1.1).

Theorem 2.8. Assume conditions of Theorem 2.4 hold. Then for any natural solution y of (1.1)with
α0(t) ≤ y(t) ≤ β0(t), t ∈ J , there exist alternating sequences

{α2n(t), β2n+1(t)} → ρ(t), {β2n(t), α2n+1(t)} → r(t)

on J with α0(t) ≤ β1(t) ≤ · · · ≤ α2n(t) ≤ β2n+1(t) ≤ y(t) ≤ α2n+1(t) ≤ β2n(t) ≤ · · · ≤ α1(t) ≤ β0(t) on J
and ρ, r ∈ C1(J,R) are the coupled minimal and maximal solutions of type I for (1.1).

Proof. Consider the equations
α′
n+1(t) = (Pβn)(t) + (Qαn)(t), αn+1(0) = λ1βn(τ) + λ2

∫ T

0
φ(s, βn(s))ds+ c,

β′
n+1(t) = (Pαn)(t) + (Qβn)(t), βn+1(0) = λ1αn(τ) + λ2

∫ T

0
φ(s, αn(s))ds+ c.

(2.4)

Notice that the initial value problemd of causal differential equations (2.4) have unique solution, hence the
above definitions are adequate.

We complete the proof by five steps.
Step 1. We prove that α0(t) ≤ α1(t) and β1(t) ≤ β0(t), t ∈ J .
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Let p(t) = α0(t)− α1(t). From (2.4), we have

p′(t) = α′
0(t)− α′

1(t) = (Pα0)(t) + (Qβ0)(t)− (Pβ0)(t)− (Qα0)(t) ≤ 0,

and
p(0) = α0(0)− α1(0) ≤ 0.

Then we get p(t) ≤ 0, t ∈ J , which gives α0(t) ≤ α1(t), t ∈ J . Similarly, we can prove β1(t) ≤ β0(t), t ∈ J .
Step 2. We shall show that

α0(t) ≤ β1(t) ≤ α2(t) ≤ β3(t) ≤ y(t) ≤ α3(t) ≤ β2(t) ≤ α1(t) ≤ β0(t), t ∈ J. (2.5)

First taking p(t) = y(t)− α1(t), t ∈ J , using the fact α0(t) ≤ y(t) ≤ β0(t) on J , we get

p′(t) = y′(t)− α′
1(t) = (Py)(t) + (Qy)(t)− (Pβ0)(t)− (Qα0)(t) ≤ 0

and
p(0) = y(0)− α1(0)

= λ1(y(τ)− β0(τ)) + λ2

∫ T

0

(
φ(s, y(s))− φ(s, β0(s))

)
ds ≤ 0.

Hence p(t) ≤ 0 on J , i.e., y(t) ≤ α1(t), t ∈ J . Similarly, we can conclude β1(t) ≤ y(t), t ∈ J . In order
to avoid repetition, we can prove α2(t) ≤ y(t), y(t) ≤ β2(t), y(t) ≤ α3(t) and β3(t) ≤ y(t), t ∈ J by using
similar arguments.

Next we shall show that α0(t) ≤ β1(t) ≤ α2(t) ≤ β3(t) and α3(t) ≤ β2(t) ≤ α1(t) ≤ β0(t), t ∈ J . Set
p(t) = α0(t)− β1(t), then we have p(0) ≤ 0 and

p′(t) = α′
0(t)− β′

1(t) ≤ (Pα0)(t) + (Qβ0)(t)− (Pα0)(t)− (Qβ0)(t) = 0.

Then p(t) ≤ 0 on J , thus α0(t) ≤ β1(t), t ∈ J . Similarly, we have α1(t) ≤ β0(t), t ∈ J .
Taking p(t) = β1(t)− α2(t), from (A2) and (A3), we derive

p′(t) = β′
1(t)− α′

2(t) = (Pα0)(t) + (Qβ0)(t)− (Pβ1)(t)− (Qα1)(t) ≤ 0,

and

p(0) = λ1(α0(τ)− β1(τ)) + λ2

∫ T

0

(
φ(s, α0(s))− φ(s, β1(s))

)
ds ≤ 0.

This implies that p(t) ≤ 0 on J , which gives β1(t) ≤ α2(t), t ∈ J . In the same way, we can obtain
α2(t) ≤ β3(t), α3(t) ≤ β2(t), β2(t) ≤ α1(t), t ∈ J . Combining all these arguments, we get (2.5).

Step 3. Assume there exists an integer k ≥ 2 such that β2k−1(t) ≤ α2k(t) ≤ β2k+1(t) ≤ y(t) ≤
α2k+1(t) ≤ β2k(t) ≤ α2k−1(t) on J . Now, we need to prove

β2k+1(t) ≤ α2k+2(t) ≤ β2k+3(t) ≤ y(t) ≤ α2k+3(t) ≤ β2k+2(t) ≤ α2k+1(t), t ∈ J.

Take p(t) = β2k+1(t)− α2k+2(t), then for t ∈ J , we get

p′(t) = β′
2k+1(t)− α′

2k+2(t) = (Pα2k)(t) + (Qβ2k)(t)− (Pβ2k+1)(t)− (Qα2k+1)(t) ≤ 0

and

p(0) = λ1(α2k(τ)− β2k+1(τ)) + λ2

∫ T

0

(
φ(s, α2k(s))− φ(s, β2k+1(s))

)
ds ≤ 0,

by using the hypotheses α2k(t) ≤ β2k+1(t), α2k+1(t) ≤ β2k(t), t ∈ J and (A2), (A3). This implies that
p(t) ≤ 0 on J and β2k+1(t) ≤ α2k+2(t), t ∈ J . Using similar argument we obtain β2k+2(t) ≤ α2k+1(t),
α2k+2(t) ≤ β2k+3(t), and α2k+3(t) ≤ β2k+2(t), t ∈ J .
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To prove α2k+2(t) ≤ y(t), let p(t) = α2k+2(t)− y(t), then we have

p′(t) = α′
2k+2(t)− y′(t) = (Pβ2k+1)(t) + (Qα2k+1)(t)− (Py)(t)− (Qy)(t) ≤ 0

and
p(0) = α2k+2(0)− y(0)

= λ1(β2k+1(τ)− y(τ)) + λ2

∫ T

0

(
φ(s, β2k+1(s))− φ(s, y(s))

)
ds ≤ 0.

Then we get p(t) ≤ 0 on J , which gives α2k+2(t) ≤ y(t), t ∈ J . Similarly, we can conclude that
y(t) ≤ β2k+2(t), β2k+3(t) ≤ y(t) and y(t) ≤ α2k+3(t), t ∈ J .

Step 4. Following the first three steps, we obtain α0(t) ≤ β1(t) ≤ · · · ≤ α2n(t) ≤ β2n+1(t) ≤ y(t) ≤
α2n+1(t) ≤ β2n(t) ≤ · · · ≤ α1(t) ≤ β0(t), t ∈ J .

Obviously, each αn(t), βn(t) (n = 1, 2, · · · ) satisfy (2.4). Therefore there exist ρ(t) and r(t) such that the
sequences {α2n(t), β2n+1(t)} converge uniformly to ρ(t) and {β2n(t), α2n+1(t)} converge uniformly to r(t) on
J respectively. Clearly ρ, r are coupled solutions of type I for (1.1).

Step 5. We prove that ρ(t) and r(t) are coupled minimal and maximal solutions of equation (1.1).
Put [α0, β0] = {y ∈ C(J,R) : α0(t) ≤ y(t) ≤ β0(t), t ∈ J}. Let y1, y2 ∈ [α0, β0] be any coupled solutions

of type I for (1.1). Suppose that there exists an integer k such that β2k−1(t) ≤ α2k(t) ≤ β2k+1(t) ≤
yi(t) ≤ α2k+1(t) ≤ β2k(t) ≤ α2k−1(t) (i = 1, 2) for t ∈ J . Using similar arguments above, we can see that
β2k+1(t) ≤ α2k+2(t) ≤ β2k+3(t) ≤ yi(t) ≤ α2k+3(t) ≤ β2k+2(t) ≤ α2k+1(t) (i = 1, 2) on J . By the induction,
we have α2n(t) ≤ β2n+1(t) ≤ yi(t) ≤ α2n+1(t) ≤ β2n(t) (i = 1, 2) hold on J for all n. Taking the limit as
n → ∞, we have ρ(t) ≤ yi(t) ≤ r(t) (i = 1, 2) on J proving ρ, r are coupled minimal and maximal solutions
of type I for (1.1). Since that we have shown α2n(t) ≤ β2n+1(t) ≤ y(t) ≤ α2n+1(t) ≤ β2n(t), if n → ∞, then
ρ(t) ≤ y(t) ≤ r(t) on J . This ends the proof.

Remark 2.9. When λ1 = λ2 = 0, the problem (1.1) is reduced to initial value problem with causal operators,
see causal differential equations Theorem 3.4.2 in [8].

Corollary 2.10. Assume that λ1 = 1, λ2 = c = 0, τ = T and conditions of Theorem 2.8 hold. The problem
(1.1) is reduced to periodic boundary value problems with causal operators. Then there exist alternating
sequences which converge uniformly to the coupled minimal and maximal solutions of type I for (1.1).

Corollary 2.11. If λ1 = −1, λ2 = c = 0, and conditions of Theorem 2.8 hold. The problem (1.1) is reduced
to anti-periodic boundary value problems with causal operators. We can get alternating sequences converging
to the coupled minimal and maximal solutions of type I for (1.1).

Theorem 2.12. Assume conditions (A2) and (A3) of Theorem 2.4 hold, let α0, β0 ∈ C1(J,R) be the coupled
lower and upper solutions of type II with α0(t) ≤ β0(t) on J .

Then there exist two monotone sequences {αn(t)} and {βn(t)} such that

α0(t) ≤ α1(t) ≤ · · · ≤ αn(t) ≤ βn(t) ≤ · · · ≤ β1(t) ≤ β0(t), t ∈ J,

provided α0(t) ≤ α1(t) and β1(t) ≤ β0(t), t ∈ J , where the sequences are given by

α′
n+1(t) = (Pαn)(t) + (Qβn)(t), αn+1(0) = λ1αn(τ) + λ2

∫ T

0
φ(s, αn(s))ds+ c

and

β′
n+1(t) = (Pβn)(t) + (Qαn)(t), βn+1(0) = λ1βn(τ) + λ2

∫ T

0
φ(s, βn(s))ds+ c.

Moreover, the monotone sequences {αn(t)}, {βn(t)} converge uniformly to the coupled minimal and maximal
solutions of type I for (1.1).
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It is analogous to the proof of Theorem 2.4, so we omit it.

Theorem 2.13. Assume the hypotheses of Theorem 2.12 hold. Then for any natural solution y of (1.1)
with α0(t) ≤ y(t) ≤ β0(t), t ∈ J , there exist the alternating sequences {α2n(t), β2n+1(t)}, {β2n(t), α2n+1(t)}
satisfying

α0(t) ≤ β1(t) ≤ · · · ≤ α2n(t) ≤ β2n+1(t) ≤ y(t) ≤ α2n+1(t) ≤ β2n(t) ≤ · · · ≤ α1(t) ≤ β0(t),

provided α0(t) ≤ α1(t) and β1(t) ≤ β0(t) on J , for every n ≥ 1, where the iterative schemes are developed
by

α′
n+1(t) = (Pβn)(t) + (Qαn)(t), αn+1(0) = λ1βn(τ) + λ2

∫ T

0
φ(s, βn(s))ds+ c

and

β′
n+1(t) = (Pαn)(t) + (Qβn)(t), βn+1(0) = λ1αn(τ) + λ2

∫ T

0
φ(s, αn(s))ds+ c.

Moreover, the monotone sequences {α2n(t), β2n+1(t)} converge to ρ(t) and {β2n(t), α2n+1(t)} converge to
r(t) on J , where ρ, r are coupled minimal and maximal solutions of type I for (1.1), respectively.

One can imitate the proof of Theorem 2.4, so we omit it.

Remark 2.14. Theorem 2.12 and Theorem 2.13 hold if λ1 = λ2 = 0 and the problem (1.1) is reduced to
initial value problems with causal operators.

Remark 2.15. Theorem 2.12 and Theorem 2.13 hold when λ1 = 1, λ2 = c = 0, and τ = T . Problem (1.1) is
reduced to periodic boundary value problems with causal operators.

Remark 2.16. Theorem 2.12 and Theorem 2.13 hold when λ1 = −1, λ2 = c = 0. Problem (1.1) is reduced
to anti-periodic boundary value problems with causal operators.

3. Examples

In this section, we give two simple but illustrative examples, thereby validating the proposed theorems.

Example 3.1. Consider the problem:
y′(t) = (sin t)y(t) +

1

15
e−y(t), t ∈ J = [0, 1],

y(0) = −y(1) + 2

∫ 1

0
y2(s)ds+

1

100
.

(3.1)

Set

α0(t) = 0, β0(t) = t+
1

10
, t ∈ J.

We can easily verify that α0(t) ≤ β0(t) and
α′
0(t) = 0 ≤ (sin t)α0(t) +

1

15
e−β0(t) =

1

15
e−t− 1

10 , t ∈ [0, 1],

α0(0) = 0 <
1

100
,

β′
0(t) = 1 ≥ (sin t)β0(t) +

1

15
e−α0(t) = (sin t)(t+

1

10
) +

1

15
, t ∈ [0, 1],

β0(0) =
1

10
> −(1 +

1

10
) + 2

∫ 1

0
(s+

1

10
)2ds+

1

100
= − 1

300
.

This implies that α0(t), β0(t) are coupled lower and upper solutions of type I for problem (3.1). Then the
conditions of Theorem 2.4 are all satisfied. So problem (3.1) has coupled minimal and maximal solutions of
type I in the sector [0, t+ 1

10 ]. Moreover, from Theorem 2.8, we obtain the existence of alternating sequences
that also converge to the coupled minimal and maximal solutions.
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Example 3.2. Consider the following problem:
y′(t) = y3(t)− t2y(t), t ∈ J = [0, 1],

y(0) = y
(1
3

)
−

∫ 1

0
(s+ y(s))ds+

1

2
= 0.

(3.2)

Setting α0(t) = −1, β0(t) = 1, t ∈ J , we can easily verify that α0(t) ≤ β0(t), and{
α′
0(t) = 0 ≤ β3

0(t)− t2α0(t) = 1 + t2,
α0(0) = −1 < −1 + 1/2 + 1/2 = 0,{
β′
0(t) = 0 ≥ α3

0(t)− t2β0(t) = −1− t2,
β0(0) = 1 > 1− 3/2 + 1/2 = 0.

Then functions α0(t), β0(t) are coupled lower and upper solutions of type II for problem (3.2), then the
conditions of Theorem 2.12 are all satisfied. Applying Theorem 2.12 and using (2.1) and (2.2), problem (3.2)
has coupled minimal and maximal solutions of type I for (3.2) in the segment [−1, 1]. From Theorem 2.13,
we obtain the existence of alternating sequences that also converge to the coupled minimal and maximal
solutions.
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