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Abstract

In this paper, we investigate the general solution of a new quadratic functional equation. We prove that
a function admits, in appropriate conditions, a unique quadratic mapping satisfying the corresponding
functional equation. Finally, we discuss the Ulam stability of that functional equation by using the directed
method and fixed point method, respectively.
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1. Introduction and Preliminaries

In 1940, an important talk presented by S. M. Ulam has led to intense work on the stability problem of
functional equations [21]. Ulam posed the problem, in short, ”Give condition in order for a linear mapping
near an approximately linear mapping to exist.” In the following year, Hyers gave an partial answer to
the problem [6]. Since then, various generalizations of Ulam’s problem and Hyers’ theorem have been
extensively studied and many elegant results have been obtained [1, 18, 14, 19, 13, 15, 9, 11, 2]. The theory
of nonlinear analysis has become a fast developing field during the past decades. Functional equations
have substantially grown to become an important branch of this field. In [7], the authors deal with a
comprehensive illustration of the stability of functional equations, and then, the further research has been
presented [3]. Very recently, most classical results on the Hyers-Ulam-Rassias stability have been offered
in an integrated and self-contained version in [8]. It is worth noting that among the stability problem of
functional equations, the study of the Ulam stability of different types of quadratic functional equations is
an important and interesting topic, and it has attracted many scholars [20, 12, 10, 4, 16, 17].
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The functional equation
f(x+ y) + f(x− y) = 2f(x) + 2f(y),

is called a quadratic functional equation. Every solution of the quadratic functional equation is a quadratic
mapping. A mapping B : X ×X → Y is called biadditive if

B(x1 + x2, x3) = B(x1, x3) +B(x2, x3),

and
B(x1, x2 + x3) = B(x1, x2) +B(x1, x3)

for all x1, x2, x3 ∈ X. If B(x1, x2) = B(x2, x1), then we say that B is symmetric.
Now we recall a fundamental result in fixed point theory.

Theorem 1.1 ([5]). Let (X, d) be a complete generalized metric space and let J : X → X be a strictly
contractive mapping with Lipschitz constant L < 1. Then for each x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all n ≥ 0 or, there exists an n0 such that
(i) d(Jnx, Jn+1x) <∞ for all n ≥ n0.
(ii) the sequence {Jnx} converges to a fixed point y∗ of J ;
(iii) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(iv) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

In this paper, we introduce a new functional equation:

f(x+ y − z) + f(x+ z − y) + f(y + z − x) = f(x− y) + f(x− z) + f(z − y) + f(x) + f(y) + f(z). (1.1)

The aim of this paper is to discuss the general solution and then establish the Ulam stability of (1.1).
More precisely, we discuss the Ulam stability of (1.1) by applying the direct method and the fixed point
method, respectively.

Throughout this paper, let X and Y be a real vector space and a Banach space, respectively.

2. General solution of Eq.(1.1)

In this section, we discuss the general solution of (1.1) in a real vector space.

Lemma 2.1. Let f : X → Y be a mapping. If f satisfies (1.1) for all x, y, z ∈ X, then f is a quadratic
mapping.

Proof. Let x = y = z = 0 in (1.1), we obtain f(0) = 0. Plug x = y, z = 0 in (1.1), we get

f(2x) = 3f(x) + f(−x) (2.1)

Plug y = 2x, z = x in (1.1), we get
f(2x) = 2f(x) + 2f(−x) (2.2)

Subtracting (2.2) from (2.1) gives f(x) = f(−x), which means f is an even mapping. Thus by (2.1), we
have f(2x) = 4f(x).

Plug z = 0 in (1.1), since f is even, we have

f(x+ y) + f(x− y) = 2f(x) + 2f(y).

Hence, f is a quadratic mapping.
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Theorem 2.2. Let f : X → Y be a mapping. Then f satisfy (1.1) if and only if there exists a symmetric
biadditive mapping B : X ×X → Y such that, f(x) = B(x, x), for all x ∈ X.

Proof. (⇐) Assume there exists a symmetric biadditive mapping B : X ×X → Y such that f(x) = B(x, x)
for all x ∈ X. Now we show that B satisfies (1.1). Indeed,

B(x+ y − z, x+ y − z) = B(x, x+ y − z) +B(y, x+ y − z)−B(z, x+ y − z)

= B(x, x) +B(y, y) +B(z, z) + 2B(x, y)− 2B(y, z)− 2B(x, z),

B(x+ z − y, x+ z − y) = B(x, x+ z − y) +B(z, x+ z − y)−B(y, x+ z − y)

= B(x, x) +B(y, y) +B(z, z)− 2B(x, y)− 2B(y, z) + 2B(x, z),

B(y + z − x, y + z − x) = B(y, y + z − x) +B(z, y + z − x)−B(x, y + z − x)

= B(x, x) +B(y, y) +B(z, z)− 2B(x, y) + 2B(y, z)− 2B(x, z),

B(x− y, x− y) = B(x, x− y)−B(y, x− y)

= B(x, x) +B(y, y)− 2B(x, y),

B(x− z, x− z) = B(x, x− z)−B(z, x− z)

= B(x, x) +B(z, z)− 2B(x, z),

B(z − y, z − y) = B(z, z − y)−B(y, z − y)

= B(y, y) +B(z, z)− 2B(y, z),

Hence,

B(x+ y − z, x+ y − z) +B(x+ z − y, x+ z − y) +B(y + z − x, y + z − x) =

B(x− y, x− y) +B(x− z, x− z) +B(z − y, z − y) +B(x, x) +B(y, y) +B(z, z),

which implies that B and thus f satisfy (1.1).
(⇒) Let

fe(x) =
f(x) + f(−x)

2
, fo(x) =

f(x)− f(−x)
2

for all x ∈ X. Then f(x) = fe(x)+ fo(x). Set B(x, x) = fe(x). Since f satisfies(1.1), it follows from Lemma
2.1 that f is even and a quadratic mapping. Therefore, we obtain a symmetric biadditive mapping B such
that f(x) = B(x, x).

3. Stability of Eq.(1.1) with direct method

In this section, we study the Ulam stability of (1.1) by employing the direct method. Define

Dqf(x, y, z) = f(x+ y − z) + f(x+ z − y) + f(y + z − x)

− f(x− y)− f(x− z)− f(z − y)− f(x)− f(y)− f(z)
(3.1)

Theorem 3.1. Let φ : X3 → [0,+∞) be a function such that

Φ(x, y, z) =
∞∑
k=0

4kφ(2−kx, 2−ky, 2−kz) <∞ (3.2)

for all x, y, z ∈ X. Assume that f : X → Y is a mapping satisfying

∥ Dqf(x, y, z) ∥≤ φ(x, y, z) (3.3)

for all x, y, z ∈ X. Then, Q(x) = limn→∞ 4nf( x
2n ), exists for each x ∈ X and defines a unique quadratic
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mapping Q : X → Y such that

∥ f(x)−Q(x) ∥≤ Φ(
x

2
,
x

2
, 0) (3.4)

for all x ∈ X.

Proof. Plug x = y = z = 0 in (3.3). Since Φ(0, 0, 0) =
∑∞

k=0 4
kφ(0, 0, 0) <∞ implies that φ(0, 0, 0) = 0, we

get f(0) = 0, and then, plug x = y, z = 0 in (3.3), it follows that

∥ f(2x)− 4f(x) ∥≤ φ(x, x, 0) (3.5)

for all x ∈ X. Replacing x by x
2 in (3.5), we obtain

∥ f(x)− 4f(
x

2
) ∥≤ φ(

x

2
,
x

2
, 0) (3.6)

Replacing x by x
2n−1 and multiplying both sides by 4n−1 in (3.6), we have

∥ 4n−1f(
x

2n−1
)− 4nf(

x

2n
) ∥≤ 4n−1φ(

x

2n
,
x

2n
, 0) (3.7)

for all x ∈ X and n ∈ N. Consequently (3.6) and (3.7) together give

∥ f(x)− 4nf(
x

2n
) ∥≤

n−1∑
i=0

4iφ(
x

2i+1
,
x

2i+1
, 0) (3.8)

for all x ∈ X and any positive integer n. Hence, for any k ∈ N, we have

∥ 4kf(
x

2k
)− 4k+nf(

x

2k+n
) ∥ = 4k ∥ f( x

2k
)− 4nf(

x

2k+n
) ∥

≤ 4k
n−1∑
i=0

4iφ(
x

2k+i+1
,

x

2k+i+1
, 0)

=
1

4

n−1∑
i=0

4k+i+1φ(
x

2k+i+1
,

x

2k+i+1
, 0).

(3.9)

By condition (3.2) we obtain limk→∞
∑n−1

i=0 4k+i+1φ( x
2k+i+1 ,

x
2k+i+1 , 0) = 0. Therefore, the sequence {4nf( x

2n )}
is a Cauchy sequence in Banach space Y . Thus one can set

Q(x) = lim
n→∞

4nf(
x

2n
)

for all x ∈ X.
We want now to prove that Q is a solution of (1.1). Replacing x, y, z by x

2n ,
y
2n ,

z
2n , in (3.3), respectively,

and, multiplying both sides by 4n, we get

4n ∥ f(x+ y − z

2n
) +f(x+z−y

2n ) + f(y+z−x
2n )− f(x−y

2n )− f(x−z
2n )− f( z−y

2n )− f( x
2n )− f( y

2n )− f( z
2n ) ∥

≤ 4nφ( x
2n ,

y
2n ,

z
2n ).

Since limn→∞ 4nφ( x
2n ,

y
2n ,

z
2n ) = 0, the function Q satisfies (1.1). From (3.8) we obtain

lim
n→∞

∥ f(x)− 4nf(
x

2n
) ∥≤ lim

n→∞

n−1∑
i=0

4iφ(
x

2i+1
,
x

2i+1
, 0),

or equivalently,

∥ f(x)−Q(x) ∥≤ Φ(
x

2
,
x

2
, 0) (3.10)
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for all x ∈ X.Thus we have obtained (3.4).
To complete the proof, it remains to show the uniqueness of Q. Assume that there exists another one,

denoted by R : X → Y such that Q(x) ̸≡ R(x). Then

∥ Q(x)−R(x) ∥ = 4n ∥ Q(
x

2n
)−R(

x

2n
) ∥

≤ 4n(∥ Q(
x

2n
)− f(

x

2n
) ∥ + ∥ f( x

2n
)−R(

x

2n
) ∥)

≤ 1

8
4n+1Φ(

x

2n+1
,
x

2n+1
, 0).

(3.11)

Since limn→∞ 4n+1Φ( x
2n+1 ,

x
2n+1 , 0) = 0, we have Q(x) ≡ R(x) for all x ∈ X.

Corollary 3.2. Let X be a real normed space, and let p > 2, θ > 0. Assume f : X → Y is a mapping
satisfying

∥ Dqf(x, y, z) ∥≤ θ(∥ x ∥p + ∥ y ∥p + ∥ z ∥p)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that both (1.1) and

∥ f(x)−Q(x) ∥≤ θ

2p−1 − 2
∥ x ∥p

hold for all x ∈ X.

Proof. The proof follows from Theorem 3.1 by taking

φ(x, y, z) = θ(∥ x ∥p + ∥ y ∥p + ∥ z ∥p)

for all x, y, z ∈ X.

Theorem 3.3. Let Ψ : X3 → [0,+∞) be a function such that

Ψ(x, y, z) =

∞∑
k=0

1

4k
ψ(2kx, 2ky, 2kz) <∞ (3.12)

for all x, y, z ∈ X. Assume that f : X → Y is a mapping with f(0) = 0 and satisfies

∥ Dqf(x, y, z) ∥≤ ψ(x, y, z) (3.13)

for all x, y, z ∈ X. Then

Q(x) = lim
n→∞

f(2nx)

4n

exists for each x ∈ X and defines a unique quadratic mapping Q : X → Y such that

∥ f(x)−Q(x) ∥≤ 1

4
Ψ(x, x, 0) (3.14)

for all x ∈ X.

Proof. Plug x = y, z = 0 in (3.13), and, as f(0) = 0, we get

∥ f(2x)− 4f(x) ∥≤ ψ(x, x, 0)

or equivalently,

∥ 1

4
f(2x)− f(x) ∥≤ 1

4
ψ(x, x, 0) (3.15)

for all x ∈ X.
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Replacing x by 2n−1x in and multiplying both sides by 1
4n−1 (3.15), we have

∥ 1

4n
f(2nx)− 1

4n−1
f(2n−1x) ∥≤ 1

4n
ψ(2n−1x, 2n−1x, 0) (3.16)

for all x ∈ X and n ∈ N. Thus it follows from (3.15) and (3.16) that

∥ 1

4n
f(2nx)− f(x) ∥ ≤

n∑
i=1

1

4i
ψ(2i−1x, 2i−1x, 0)

=
1

4

n−1∑
i=0

1

4i
ψ(2ix, 2ix, 0)

(3.17)

for all x ∈ X and any positive integer n.

We now prove the sequence {f(2nx)
4n } is a Cauchy sequence. For any k ∈ N, by (3.17), we have

∥ 1

4n+k
f(2n+kx)− 1

4k
f(2kx) ∥ =

1

4k
∥ 1

4n
f(2n+kx)− f(2kx) ∥

≤ 1

4k+1

n−1∑
i=0

1

4i
ψ(2i+kx, 2i+kx, 0)

=
1

4

n−1∑
i=0

1

4i+k
ψ(2i+kx, 2i+kx, 0).

(3.18)

It follows from (3.12) that limk→∞
1
4k
ψ(2kx, 2ky, 2kz) = 0, and, the last expression of (3.18) tends to zero

as k → ∞. Consequently, the sequence {f(2nx)
4n } is Cauchy and hence converges, since the completeness of

Y . Thus we define

Q(x) = lim
n→∞

f(2nx)

4n

for all x ∈ X.
We want now to prove that Q satisfies 1.1. Replacing x, y, z by 2nx, 2ny, 2nz, in (3.13), respectively, and,

dividing both side by 4n, we get

1

4n
∥ f [2n(x+ y − z)] + f [2n(x+ z − y)] + f [2n(y + z − x)]− f [2n(x− y)]

− f [2n(x− z)]− f [2n(z − y)]− f(2nx)− f(2ny)− f(2nz) ∥≤ 1

4n
ψ(2nx, 2ny, 2nz).

Since limn→∞ 4n 1
4nψ(2

nx, 2ny, 2nz) = 0, the function Q is a solution of 1.1.
From (3.17) we have

lim
n→∞

∥ 1

4n
f(2nx)− f(x) ∥≤ lim

n→∞

1

4

n−1∑
i=0

1

4i
ψ(2ix, 2ix, 0),

that is,

∥ Q(x)− f(x) ∥≤ 1

4
Ψ(x, x, 0)

for all x ∈ X. Thus (3.14) holds.
Finally, we need to show that Q is unique. Suppose Q′ : X → Y is another different solution of (1.1).

Thus

∥ Q(x)−Q′(x) ∥ =
1

4n
∥ Q(2nx)−Q′(2nx) ∥

≤ 1

4n
(∥ Q(2nx)− f(2nx) ∥ + ∥ f(2nx)−Q′(2nx) ∥) ≤ 1

2

1

4n
Ψ(2nx, 2nx, 0).

(3.19)
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Since limn→∞
1
4nΨ(2nx, 2nx, 0) = 0, we have Q(x) ≡ Q′(x) for all x ∈ X.

Corollary 3.4. Let X be a real normed space, and let 0 < p < 2, θ > 0. Assume f : X → Y is a mapping
with f(0) = 0 satisfying

∥ Dqf(x, y, z) ∥≤ θ(∥ x ∥p + ∥ y ∥p + ∥ z ∥p)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that both (1.1) and

∥ f(x)−Q(x) ∥≤ 2θ

1− 2p−2
∥ x ∥p

hold for all x ∈ X.

Proof. The proof follows from Theorem 3.3 by taking

φ(x, y, z) = θ(∥ x ∥p + ∥ y ∥p + ∥ z ∥p)

for all x, y, z ∈ X.

4. Stability of Eq.(1.1)with fixed point method

Using the fixed point method, the Ulam stability of (1.1) have been investigated in this section.

Theorem 4.1. Let φ : X3 → [0,+∞) be a function with Lipschitz constant L < 1 such that

φ(
x

2
,
y

2
,
z

2
) ≤ L

4
φ(x, y, z) (4.1)

for all x, y, z ∈ X. Assume that f : X → Y is a mapping satisfying

∥ Dqf(x, y, z) ∥≤ φ(x, y, z) (4.2)

for all x, y, z ∈ X. Then

Q(x) = lim
n→∞

4nf(
x

2n
)

exists for each x ∈ X and defines a unique quadratic mapping Q : X → Y such that

∥ f(x)−Q(x) ∥≤ L

4(1− L)
φ(x, x, 0) (4.3)

for all x ∈ X.

Proof. Set S = {g | g : X → Y, g(0) = 0}. Define d(g1, g2) = inf{C > 0 |∥ g1(x)− g2(x) ∥≤ Cφ(x, x, 0)} for
all x ∈ X, where inf ∅ = +∞.

Claim that (S, d) is complete. Suppose {gn} is a Cauchy sequence in (S, d), then for every ε > 0, there
exists N ∈ N such that for all n,m > N , we have d(gn, gm) < ε, thus for each x ∈ X, we get

∥ gn(x)− gm(x) ∥≤ εφ(x, x, 0). (4.4)

Fix x0 ∈ X, we obtain {gn(x0)} converges, which means that for each x ∈ X, {gn(x)} converges. Set

lim
n→∞

gn(x) = g(x),

where g : X → Y .
We want now to prove that {gn} converges to g in (S, d). Note that

∥ gn(x)− g(x) ∥= lim
m→∞

∥ gn(x)− gm(x) ∥≤ εφ(x, x, 0) (n > N)
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for all x ∈ X. Therefore, {gn} uniformly converges to g and g ∈ S. Hence (S, d) is complete.
Consider a linear mapping T : S → S with

Tg(x) = 4g(
x

2
)

for all x ∈ X. Let g1, g2 ∈ S such that d(g1, g2) = ε. Then

∥ Tg1(x)− Tg2(x) ∥ = 4 ∥ g1(
x

2
)− g2(

x

2
) ∥

≤ 4εφ(
x

2
,
x

2
, 0)

≤ Lεφ(x, x, 0),

which implies that d(Tg1, T g2) ≤ Lε = Ld(g1, g2). Note that from (3.6) and (4.1), we have

∥ f(x)− Tf(x) ∥ =∥ f(x)− 4f(
x

2
) ∥

≤ φ(
x

2
,
x

2
, 0)

≤ L

4
φ(x, x, 0).

Therefore, d(f, Tf) ≤ L
4 . By Theorem 1.1 , there exists a mapping Q : X → Y satisfying the following:

(1) There exists a unique fixed point Q of T , i.e., Q(x) = 4Q(x2 ).
(2) d(Tnf, f) → 0 as n→ ∞. Thus we define Q(x) = limn→∞ 4nf( x

2n ) for all x ∈ X.
(3) d(f,Q) ≤ 1

1−Ld(f, Tf). Since d(f, Tf) ≤
L
4 , we get d(f,Q) ≤ L

4(1−L) and (4.3) holds.

Finally, we want to prove that Q is a quadratic mapping. Replacing x, y, z by x
2n ,

y
2n ,

z
2n in (4.2),

respectively.

∥ f(x+y−z
2n ) + f(x+z−y

2n ) + f(y+z−x
2n )− f(x−y

2n )− f(x−z
2n )− f( z−y

2n )− f( x
2n )− f( y

2n )− f( z
2n ) ∥

≤ φ( x
2n ,

y
2n ,

z
2n ).

Then

4n ∥ f(x+y−z
2n ) + f(x+z−y

2n ) + f(y+z−x
2n )− f(x−y

2n )− f(x−z
2n )− f( z−y

2n )− f( x
2n )− f( y

2n )− f( z
2n ) ∥

≤ 4nφ( x
2n ,

y
2n ,

z
2n ).

Since limn→∞ 4nφ( x
2n ,

y
2n ,

z
2n ) = 0, the function Q satisfies (1.1) and hence is quadratic. This completes the

proof.

Theorem 4.2. Let φ : X3 → [0,+∞) be a function with Lipschitz constant L < 1 such that

ψ(x, y, z) ≤ 4Lψ(
x

2
,
y

2
,
z

2
)

for all x, y, z ∈ X. Assume that f : X → Y is a mapping satisfying

∥ Dqf(x, y, z) ∥≤ ψ(x, y, z)

for all x, y, z ∈ X. Then

Q(x) = lim
n→∞

f(2nx)

4n

exists for each x ∈ X and defines a unique quadratic mapping Q : X → Y such that

∥ f(x)−Q(x) ∥≤ L

4(1− L)
ψ(x, x, 0)

for all x ∈ X.
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Proof. Define
S = {g | g : X → Y, g(0) = 0},

and introduce
d(g1, g2) = inf{C > 0 |∥ g1(x)− g2(x) ∥≤ Cψ(x, x, 0)}

for all x ∈ X, where inf ∅ = +∞.
Consider a linear mapping T : S → S with

Tg(x) =
1

4
g(2x)

for all x ∈ X.
The rest of proof is similar to the proof of Theorem 4.1.
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(1998).1
[8] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York,

(2011).1
[9] S. M. Jung, On the Hyers-Ulam-Rassias stability of a quadratic functional equation, J. Math. Anal. Appl., 232

(1999), 384–393.1
[10] S. M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math.

Anal. Appl., 222 (1998), 126–137.1
[11] H. A. Kenary, H. Rezaei, Y. Gheisari, C. Park, On the stability of set-valued functional equations with the fixed

point alternative, Fixed Point Theory Appl., 2012 (2012), 17 pages.1
[12] Y. W. Lee, On the stability of a quadratic Jensen type functional equation, J. Math. Anal. Appl., 270 (2002),

590–601.1
[13] A. K. Mirmostafaee, M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Set. Sys., 159

(2008), 720–729.1
[14] M. S. Moslehian, T. M. Rassias, Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete

Math., 1 (2007), 325–334.1
[15] K. Nikodem, D. Popa, On single-valuedness of set-valued maps satisfying linear inclusions, Banach J. Math.

Anal., 3 (2009), 44–51.1
[16] C. G. Park, On the Hyers-Ulam-Rassias stability of generalized quadratic mappings in Banach modules, J. Math.

Anal. Appl., 291 (2004), 214–223.1
[17] C. Park, H. A. Kenary, T. M. Rassias, Hyers-Ulam-Rassias stability of the additive-quadratic mappings in non-

Archimedean Banach spaces, J. Inequal. Appl., 2012 (2012), 18 pages.1
[18] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978),

297–300.1



Y. Lan, Y. Shen, J. Nonlinear Sci. Appl. 8 (2015), 640–649 649

[19] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91–96.
1

[20] H. Y. Shen, Y. Y. Lan, On the general solution of a quadratic functional equation and its Ulam stability in various
abstract spaces, J. Nonlinear Sci. Appl., 7 (2014), 368–378.1

[21] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, (1964).1


