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Abstract

This paper considers estimation of Robin parameter by using measurements on partial boundary and solving
a Robin inverse problem associated with the Laplace equation. Typically, such problems are solved utilizing
a Gauss-Newton method in which the forward model constraints are implicitly incorporated. Variants
of Newton’s method which use second derivative information are rarely employed because their perceived
disadvantage in computational cost per step offsets their potential benefits of fast convergence. In this paper,
we show that by formulating the inversion as a constrained or unconstrained optimization problem, we can
carry out the sequential quadratic programming and the full Newton iteration with only a modest additional
cost. Our numerical results illustrate that Newton’s method can produce a solution in fewer iterations and,
in some cases where the data contain significant noise, requires fewer floating point operations than Gauss-
Newton methods.
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1. Introduction

Let Ω be a bounded domain in R2 with smooth boundary ∂Ω = Γ. Consider the Robin boundary value
problem for the Laplace equation {

∆u = 0, in Ω,
∂u
∂ν + pu = g, on ∂Ω = Γ,

(1.1)
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where ν is the unit outward normal direction on Γ, p = p(x) is the Robin coefficient with support contained
in Γ1 ⊂ Γ, and g = g(x) is a given input function. Many results concerned with important properties of the
forward map from p to u, such as uniqueness, continuity with respect to proper norms, and differentiability
and stability in various forms, have been developed; see [1, 7, 8, 9, 14, 15].

In this paper, we consider the Robin inverse problem: to recover the Robin coefficient p from a partial
boundary measurement of function u. That is, recover p by using u = u0 on a part Γ0 of the boundary with
Γ0 ∩ Γ1 = ∅. It is well-known that the above inverse problem is severely ill-conditioned. Applications of the
problem include various nondestructive evaluation methods.

Some numerical studies for this inverse problem have been studied; (see [4, 5, 6, 12, 13, 19, 20, 21, 22,
23, 25, 26, 27, 30]).

We first introduce the boundary integral equation formulation for the boundary value problem (1.1).
Let Φ = Φ(x, y) be the fundamental solution for the Laplace equation in R2:

Φ(x, y) =
1

2π
ln

1

|x− y|
for x ̸= y.

It is known that the boundary value of u satisfies the following boundary integral equation [3, 24, 28]:

1

2
u(x) +

∫
Γ

(
∂Φ(x, y)

∂νy
+ p(y)Φ(x, y)

)
u(y)dsy =

∫
Γ
Φ(x, y)g(y)dsy, x ∈ Γ. (1.2)

Let the operators D and S be defined by

(Du)(x) =
∫
Γ

∂Φ(x, y)

∂νy
u(y)dsy,

(Su)(x) =
∫
Γ
Φ(x, y)u(y)dsy,

for x ∈ Γ.

Then (1.2) can be written as
A(p)(u) = f, (1.3)

where A(p)(u) =
(
1
2I +D

)
u+ S(pu), f = Sg.

Assume that the discretize form of the operator equation is given by

A(p)u = f . (1.4)

(see Appendix A for more details) and denote the location of the observations by R0, then the Robin inverse
problem is to find p such that (1.4) holds and

||R0u− u0|| ≈ Tol, (1.5)

where Tol depends on the noise level.
Since the data are noisy, and the inverse problem of recovering p that satisfies (1.4) and (1.5) is ill-posed,

a process of regularization is required to recover stably a relatively smooth solution to a nearby problem. A
model which is often utilized in practice is to minimize a least squares residual vector where a regularization
term is added:

min
p,u

1

2
||R0u− u0||2 +

α

2
||E(p− pref )||2

s.t. A(p)u = f ,

(1.6)

where E is a weighting matrix involving discretized derivatives which does not depend on p, pref is a
reference model, and α > 0 is a regularization parameter.
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The problem (1.6) is a nonlinear constrained optimization problem. Since the forward model is linear in
u and allows an explicit elimination

u = A(p)−1f ,

the constrained optimization problem (1.6) can then be written as an unconstrained, nonlinear least squares
problems:

min
p

1

2
||R0A(p)

−1f − u0||22 +
α

2
||E(p− pref )||2. (1.7)

A common approach in the literature hitherto is to solve the unconstrained minimization (1.7) by the Gauss-
Newton method in which the term ||R0A(p)

−1f − u0||22 is approximated by a quadratic function. However,
the Gauss-Newton method may be costly since a lot of iterations are often required to achieve a given
tolerance.

In this paper, we propose a full Newton method for solving the Robin inverse problem and show that the
proposed Newton steps do not require too much additional computations compared to the Gauss-Newton
approximation. We notice that the Newton method converges quadratically while the Gauss-Newton method
converges linearly, and it follows that the Newton method can significantly reduce the number of iterations
required for convergence. Numerical results verify the above conclusion.

The rest of the paper is arranged as follows. In Section 2, we introduce the Lagrangian for the constrained
minimization and obtain the Newton and Gauss-Newton approximation for solving the constrained and
unconstrained minimization problem. We give the equivalent techniques for the Newton and Gauss-Newton
approximation, respectively. In Section 3, we present numerical results.

2. Newton’s method and Gauss-Newton approximation

Consider solving constrained minimization problem (1.6) by using the Lagrangian

L(u,p, λ) = 1

2
||R0u− u0||2 +

α

2
||E(p− pref )||2 + λT [A(p)u− f ], (2.1)

where λ is the Lagrange multiplier. A necessary condition for (u∗,p∗) to be an optimal solution of problem
(1.6) is that there exists a multiplier λ∗ such that (u∗,p∗, λ∗) satisfies the Karush-Kuhn-Tucker (KKT)
condition, i.e. the first derivatives Lu, Lp, and Lλ of the Lagrangian vanish:

Lu = RT
0 (R0u− u0) +A(p)Tλ = 0, (2.2a)

Lp = αETE(p− pref ) +GTλ = 0, (2.2b)

Lλ = A(p)u− f = 0, (2.2c)

where

G = G(u,p) =
∂(A(p)u)

∂p
.

To solve the nonlinear equations (2.2), Newton’s method can be used. Given the approximation u,p, λ,
the Newton correction direction is the solution of the linear system RT

0R0 K A(p)T

KT αETE + T GT

A(p) G 0

 δu
δp
δλ

 = −

 Lu

Lp

Lλ

 , (2.3)

where

K = K(p, λ) =
∂(A(p)Tλ)

∂p
, T = T (u,p, λ) =

∂(GTλ)

∂p

are two matrices introduced as part of the second derivative information. The coefficient matrix in Eq. (2.3)
is known as a saddle point (or KKT) matrix. The term of saddle point comes from the fact that a solution
to Eq. (2.3) is a saddle point for the Lagrangian.
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For the linear KKT system (2.3), we use the reduced Hessian methods to get the solution of it. That is,
we apply a block elimination for δu and δλ. Firstly from the last block of rows of (2.3) we get

δu = −A(p)−1[Lλ +Gδp]. (2.4)

Next, we substitute δu in the first block rows to get

δλ = A(p)−T [RT
0R0A(p)

−1G−K]δp−A(p)−T [Lu −RT
0R0A(p)

−1Lλ]. (2.5)

Finally, from the second block rows we obtain a linear system for δp alone:

Hδp = −q, (2.6)

where
H = H(u,p, λ) =MTM + αETE + T − S − ST (2.7)

with

M =M(u,p) = −R0A(p)
−1G, (2.8a)

S = S(u,p, λ) = KTA(p)−1G, (2.8b)

q = q(u,p, λ) = αETE(p− pref ) +MT (R0A(p)
−1f − u0)−KT (u−A(p)−1f). (2.8c)

From (2.6) we can obtain δp and use it to update p. Then we update u by

u = A(p)−1f (2.9)

and solve λ from (2.2a)
λ = A(p)−TRT

0 (u0 −R0u). (2.10)

These formulas satisfy (2.2c) and (2.2a), respectively. Alternatively, the basic Newton step calculates δp,
δu, δλ from (2.6), (2.4) and (2.5) respectively, and updates p, u, λ simultaneously. These Newton method
variants was proposed in [11, 18].

It is well-known that the Newton method for solving the nonlinear equation (2.2) is equivalent to an
sequential quadratic programming (SQP) method (see [29]). The SQP method which converges globally
and typically requires only a few iterations and function evaluations to locate a solution point, is one of
the leading methods for solving constrained optimization problems. In fact, an SQP algorithm defines an
appropriate direction (δu, δp) from the the current approximate point as the minimizer of a quadratic model
of the objective subject to a linearization of the constraints:

min
δu,δp

(
δu δp

)( RT
0R0 K

KT αETE + T

)(
δu
δp

)
+
(
Lu Lp

)( δu
δp

)
, (2.11a)

s.t.
(
A(p) G

)( δu
δp

)
= f −A(p)u. (2.11b)

See for instance [29].
However, a step may move away from a minimizer, or may be trapped near a stationary point of the

Lagrangian. Thus, merit functions more appropriate to constrained optimization should be considered. In
this paper, we make use of the commonly used l1 penalty function

ϕ(u,p;µ) =
1

2
||R0u− u0||2 +

α

2
||E(p− pref )||2 + µ||A(p)u− f ||1,

where µ > 0 known as the penalty parameter.



Y. B. Ma, J. Nonlinear Sci. Appl. 8 (2015), 660–669 664

Upon the calculation and acceptance of the search direction (δu, δp) for a particular value µk of the
penalty parameter, we perform a backtracking line search to compute a step length τ satisfying the Armijo
condition, i.e.

ϕ(u+ τδu,p+ τδp;µk) ≤ ϕ(u,p;µk) + γτD(ϕ(u,p;µk))

for some 0 < γ < 1, where D(ϕ(u,p;µk)) denotes the directional derivative of ϕ(u,p;µ) in the direction
(δu, δp).

In summary, our approach which solving the optimal problem (1.7) with fixed regular parameter α
follows a standard line search SQP framework. In each iteration, a step is computed as a solution to the
system (2.11) satisfying appropriate conditions that deem the step acceptable. The penalty parameter is
then set based on properties of the computed step, after which a backtracking line search is performed to
compute a step length τ satisfying the Armijo condition. Finally, the iteration is updated.

Because the matrix of the second derivative of the Lagrangian in the SQP formulation (2.11) may not
be positive definite on the constraint null-space when the approximate solution is not close to the solution,
the reduced Hessian matrix H (cf. (2.7)) is not positive definite. Thus computational difficulty can occur
and special care is required, e.g. applying the trust region method to ensure the positive definiteness of the
reduced Hessian.

Positive definiteness is immediately obtained by dropping the second derivative information which get
the Gauss-Newton approximation. Thus, setting K = 0 and T = 0, we obtain also S = 0 in (2.8b) and

HGN (u,p, λ) =MTM + αETE (2.12)

is positive definite. The direction vector δp = δpGN is now the solution of the linear system

HGNδpGN = −qGN , (2.13)

where
qGN = αETE(p− pref ) +MT (R0A(p)

−1f − u0).

It is often the case in inverse problems that the cost of the formation of MTM is prohibitively large.
Alternatively, we solve the least squares problem

min
δp

∥∥∥∥( M√
αE

)
δp+

(
R0A(p)

−1f − u0√
αE(p− pref )

)∥∥∥∥2
2

(2.14)

by using the LSQR technique to obtain δp; See for instance [29]. The explicit calculation of λ is now
unnecessary as well, because it appears only in the discarded K and T .

2.1. Determination of regularization parameter

The methods developed in the previous section are for solving the nonlinear problem with a specific
regularization parameter α. Different regularization parameters will result in different numerical solutions.
Thus, in order to obtain a reasonable numerical solution, the optimization problem (1.7) or (1.6) must be
solved several times for different regularization parameter values α. This contributes in a major way to the
total cost of the solution process. A solution is accepted when some stopping criterion is satisfied. The
simplest criterion is the discrepancy principle. That is, one seeks α such that

||R0A(p)
−1f − u0||2 ≈ Tol2, (2.15)

for some specified tolerance level Tol which depends on the noise level and is assumed given.
In this paper, we apply simple continuation, or cooling [2, 16, 17], in order to find the regularization

parameter. We start with a relative large value of α, for which we solve an almost quadratic problem,
and we then gradually reduce α and solve each new problem with the solution for the previous α as the
initial guess. The minimization process with a specific α is referred to as an outer iteration and the Newton
or Gauss-Newton iteration within each outer iteration is referred to an inner iteration. The algorithm is
terminated when (2.15) is reached.

In this work α was reduced to be 0.1 of its previous value upon convergence of the inner iteration. If
that value was deemed unacceptable, α was increased by the formula α = α+ 0.5(αpre − α).
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3. Numerical results

In this section, we compare the methods presented in the previous section for solving the Robin inverse
problem (1.7) on the ellipse x21/a

2 + x22/b
2 ≤ 1 with a = 1, b = 0.2; see Appendix A. The parametrization

for Γ is
(x1, x2) = (ϕ(t), ψ(t)) = (a cos(2πt), b sin(2πt)) for 0 ≤ t ≤ 1.

The segments Γ0 and Γ1 are chosen as

Γ0 = {x(t) : t ∈ [0.55, 0.85]} and Γ1 = {x(t) : t ∈ [0.15, 0.45]}.

As for the input function g, we choose it as

g(a cos(2πt)), b sin(2πt)) =

{
1 if t ∈ [0.4, 0.6],

0 elsewhere on Γ.

We use two different profiles for the Robin coefficient p(t) that have been tested in the literature (e.g.
[25]). In our tests below, we first use the true p(t) to obtain approximate values of the solution u(t) at the
grid points by solving a linear system corresponding to (2.9), i.e.,

A(p)u = f .

by using the Gaussian Elimination method. Then we generate the synthetic data u0 from u|Γ0 with certain
level δ of uniformly distributed random noise.

We choose pref = 0, E to be the discretized matrix of the first derivative, and the initial iteration guess
p0 is to be the vector with all elements being 0.1. In order to evaluate an initial guess for the regularization
parameter α, we estimate the largest generalized singular value of the sensitivity matrix M(p0) and the
matrix E. We then set α such that the initial value, the leading term which corresponds to the misfit
function in the Hessian, M(p0)

TM(p0), is very small compared with the regularization term αETE, i.e., set
α ensure the condition:

αETE +M(p0)
TM(p0) ≈ αETE.

We choose a regularization parameter α0 = 3max(svd(M(p0))).
In the tests, we compare the following factors: The total number of inner iterations which were needed in

order to converge. This number is given by the sum of all iterations for different α. The number of α values
(outer iterations) which were needed to achieve convergence within the tolerance. The stopping criterion
for all algorithms is that the norm of the gradient is not more than 10−6 times that of the initial step.

The recovered profiles are shown in Figure 1. We can see that one can obtain a satisfiable profile by
using the Newton method or the Newton-Gauss method.

To compare the number of iterations required by each method, we use noisy data with two
different noisy levels, namely, 2% (which implies a low residual problem) and for 20% (which implies large
residuals). The results of the two-hump profile are presented in Table 1 and those of the smooth single-
hump case are presented in Table 2. The results in Tables 1–2 indicate that when the noise is low, both the
Gauss-Newton method and the Newton method perform well. In the other hand, if the noise is large, the
Newton method converges much faster than the Gauss-Newton method. This is expected because for large
residual problems the second order terms are important to achieve rapid convergence.

Noise=2% Outer Total Noise=20% Outer Total

N 7 46 N 7 44

GN 8 41 GN 7 125

Table 1: The number of iterations required by the Newton method and the Gauss-Newton method (two-hump case).



Y. B. Ma, J. Nonlinear Sci. Appl. 8 (2015), 660–669 666

0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 
Reconstructed
True

0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 
Reconstructed
True

Figure 1: The reconstructed Robin coefficient with noise level δ = 10%.

Noise=2% Outer Total Noise=20% Outer Total

N 6 31 N 6 30

GN 6 34 GN 6 73

Table 2: The number of iterations required by the Newton method and the Gauss-Newton method (single-hump case).

Finally, we plot the convergence process of the last outer iteration for the case of the two-hump profile
with 20% of noise is added to the input data; see Figure 2. We observe that while the Newton method
converges in 3 iterations and displays a quadratic rate of convergence, the Gauss-Newton method requires
6 iterations and displays linear convergence, which is typical to the whole process.
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Figure 2: The norm of the gradient for the Full Newton and Gauss-Newton method for the last α

Appendix A. The discretization of the integral operators

For the sake of completeness, we introduce the parametrization of Γ and the discretization of relevant
operators, which were presented in [25]. We use the mid-point quadrature rule to discretize the integral
operators and central difference quotients to approximate derivatives.

Suppose the boundary Γ of a planar domain Ω has a regular parametrization given by

(x1, x2) = (ϕ(t), ψ(t)) for 0 ≤ t ≤ L,
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with (ϕ(0), ψ(0)) = (ϕ(L), ψ(L)). Assume also that ϕ(·) and ψ(·) are both C2 functions.
Define

Kd(t, s) =
1

2π

ψ
′
(s)(ϕ(t)− ϕ(s))− ϕ

′
(s)(ψ(t)− ψ(s))

(ϕ(s)− ϕ(t))2 + (ψ(s)− ψ(t))2

and

Ks(t, s) = − 1

2π

(
ln
√
(ϕ(s)− ϕ(t))2 + (ψ(s)− ψ(t))2

)√
(ϕ′(s))2 + (ψ′(s))2

for x = (ϕ(t), ψ(t)) and y = (ϕ(s), ψ(s)) on Γ with x ̸= y (t ̸= s). We can write the operators D and S as

(Du)(t) =
∫ L

0
Kd(t, s)u(s)ds,

(Su)(t) =
∫ L

0
Ks(t, s)u(s)ds,

where u(s) = u(ϕ(s), ψ(s)).
In our numerical tests, we choose the ellipse domain x21/a

2 + x22/b
2 ≤ 1 with a = 1, b = 0.2. The usual

parametrization for Γ is

(x1, x2) = (ϕ(t), ψ(t)) = (a cos(2πt), b sin(2πt)) for 0 ≤ t ≤ 1.

In this case, the kernel in the integral operator D is

Kd(t, s) = − ab

2(a2 sin2(π(t+ s)) + b2 cos2(π(t+ s)))
.

The kernel in the integral operator S is weakly singular at s = t and (t, s) = (0, 1) and (1, 0), special
case should be taken in discretizing

∫ 1
0 Ks(t, s)u(s)ds to avoid large errors. By decomposing Ks(t, s) as

Ks(t, s) = (Ks1(t, s) +Ks2(t, s))Ks3(t, s),

where

Ks1(t, s) = ln(2| sin(π(t− s))|),

Ks2(t, s) = ln

√
a2 sin2(π(t+ s)) + b2 cos2(π(t+ s)),

Ks3(s) = −
√
a2 sin2(2π(s)) + b2 cos2(2π(s)),

and using the singularity subtraction technique (see for instance [10]), the integrals involving singularity can
be evaluated exactly.

Let the interval [0, 1] be partitioned into n uniform subintervals: [(i − 1)h, ih], i = 1, 2, . . . , n, where
h = 1/n. Then the quadrature points are ti = (i− 1/2)h, i = 1, 2, . . . , n. Suppose

{ti}ni=1

∩
{t : (ϕ(t), ψ(t)) ∈ Γ0} = {tm1+1, . . . , tm2}

and
{ti}ni=1

∩
{t : (ϕ(t), ψ(t)) ∈ Γ1} = {tm3+1, . . . , tm4}.

Denote by p and u discretized functions of p(t) on Γ1, and u(t) on Γ, respectively:

p = [p(tm3+1), · · · , p(tm4)]
T , u = [p(t1), · · · , p(tn)]T ,
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and the discrete data

u0 = [u0(tm1+1), · · · , u0(tm2)]
T , g = [g(t1), · · · , g(tn)]T .

Let D = h[Kd(ti, tj)]
n
i,j=1 and S = h[Ks(ti, tj)]

n
i,j=1, then the matrix in the discretize form of the operator

equation (1.3) is given by

A(p) =
1

2
I +D + S1P

where S1 = S(:,m3 + 1 : m4) and P = diag(p(m3 + 1 : m4)).

The matrix G = ∂A(p)u
∂p is easily obtained by the differentiating the product S(p)u with respect to p. It

is easy to show that G is given by
G = S1U,

where S1 = S(:,m3 + 1 : m4) and U = diag(u(m3 + 1 : m4)). Similarly, we can obtain that the matrix

K = ∂ATλ
∂p is a sparsity matrix which the elements of the m3 + 1 diagonal are that of ST

1 λ and the others

vanish. the matrix T = ∂GTλ
∂p is a matrix which the elements are all zeros because G is independent of p.
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