Research Article

Journal of Nonlinear Science and Applications Print: ISSN 2008-1898 Online: ISSN 2008-1901

Some fixed point results for nonlinear mappings in convex metric spaces

Chao Wang

School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China

Communicated by P. Kumam

Abstract

In this paper, we consider an iteration process to approximate a common random fixed point of a finite family of asymptotically quasi-nonexpansive random mappings in convex metric spaces. Our results extend and improve several known results in recent literature.

Keywords: Asymptotically quasi-nonexpansive random mappings, random iteration process, common random fixed point, convex metric spaces. 2010 MSC: 47H09, 47H10.

1. Introduction and Preliminaries

Random fixed point theorems are stochastic generalizations of classical fixed point theorems, which are usually used to obtain the solutions of nonlinear random systems [3]. Some random fixed point theorems for random mappings on separable metric spaces were first proved by Spacek [18] and Hans [7]. Itoh [8] introduced multivalued random contractive mappings on separable metric spaces and considered some random fixed point theorems for the mappings. Choudhury [5] gave a random Ishikawa iteration process to converge to fixed points of the given random mappings. After that, many authors [1, 2, 5, 11, 12, 13, 14, 17, 16] have worked on random iterative algorithms for contractive and asymptotically nonexpansive random mappings in separable normed spaces, Banach spaces and uniformly convex Banach spaces.

In 1970, Takahashi [19] introduced a notion of convex metric space which is a more general space, and each linear normed space is a special example of a convex metric space. Recently [4, 10, 21, 22] have discussed different iteration processes to obtain fixed point of asymptotically quasi-nonexpansive mappings in convex metric spaces.

*Corresponding author

Email address: wangchaosx@126.com (Chao Wang)

Inspried and motived by the above facts, we will construct an iteration process which converges strongly to a common random fixed point of a finite family of asymptotically quasi-nonexpansive random mappings in convex metric spaces. The results extend and improve the corresponding results in [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 16, 20, 21, 22].

Let (Ω, Σ) be a mesurable space with Σ being a σ -algebra of subsets of Ω , and let K be a nonempty subset of a metric space (X, d).

Definition 1.1 ([1]). (i) A mapping $\xi : \Omega \to X$ is measurable if $\xi^{-1}(U) \in \Sigma$ for each open subset U of X; (ii) The mapping $T : \Omega \times K \to X$ is a random mapping if and only if for each fixed $x \in K$, the mapping $T(\cdot, x) : \Omega \to X$ is measurable, and it is continuous if for each $\omega \in \Omega$, the mapping $T(\omega, \cdot) : K \to X$ is continuous;

(iii) A measurable mapping $\xi : \Omega \to K$ is a random fixed point of the random mapping $T : \Omega \times K \to X$ if and only if $T(\omega, \xi(\omega)) = \xi(\omega)$ for each $\omega \in \Omega$.

We denote by \mathbb{N} the set of natural numbers, F(T) the set of all random fixed points of a random map T and $T^n(\omega, x)$ the *n*th iteration $T(\omega, T(\omega, T(\omega, \cdots T(\omega, x) \cdots)))$ of T for each $\omega \in \Omega$. The letter I denotes the random mapping $T: \Omega \times K \to K$ defined by $I(\omega, x) = x$ and $T^0 = I$ for each $\omega \in \Omega$.

Next, we introduce some random mappings in metric spaces.

Definition 1.2. Let K be a nonempty subset of a separable metric space (X, d) and $T : \Omega \times K \to K$ be a random mapping. The mapping T is said to be

(i) a nonexpansive random mapping if

$$d(T(\omega, x), T(\omega, y)) \le d(x, y)$$

for each $\omega \in \Omega$ and $x, y \in K$;

(ii) an asymptotically nonexpansive random mapping if there exists a sequence of measurable mappings $\{r_n(\omega)\}: \Omega \to [0,\infty)$ with $\lim_{\omega \to \infty} r_n(\omega) = 0$ such that

$$d(T^{n}(\omega, x), T^{n}(\omega, y)) \leq (1 + r_{n}(\omega))d(x, y)$$

for each $\omega \in \Omega$, $n \in \mathbb{N}$ and $x, y \in K$;

(iii) an asymptotically quasi-nonexpansive random mapping if there exists a sequence of measurable mappings $\{r_n(\omega)\}: \Omega \to [0, \infty)$ with $\lim_{\omega \to \infty} r_n(\omega) = 0$ such that

$$d(T^{n}(\omega,\eta(\omega)),\xi(\omega)) \leq (1+r_{n}(\omega))d(\eta(\omega),\xi(\omega))$$

for each $\omega \in \Omega$ and $n \in \mathbb{N}$, where $\xi \in F(T) \neq \emptyset$ and $\eta : \Omega \to K$ is any measurable mapping.

(iv) an semicompact random mapping if for any sequence of measurable mappings $\{\xi_n(\omega)\}: \Omega \to K$, with $\lim_{n\to\infty} d(T(\omega,\xi_n(\omega)),\xi_n(\omega)) = 0$ for each $\omega \in \Omega$ and $n \in \mathbb{N}$, there exists a subsequence $\{\xi_{n_j}\}$ of $\{\xi_n\}$ which converges pointwise to ξ , where $\xi: \Omega \to K$ is a measurable mapping.

Remark 1.3. It is easy to see that if T is an asymptotically nonexpansive random mapping and $F(T) \neq \emptyset$, then T is an asymptotically quasi-nonexpansive random mapping.

Definition 1.4 ([19]). A convex structure in a metric space (X, d) is a mapping $W : X \times X \times [0, 1] \to X$ satisfying, for each $x, y, u \in X$ and each $\lambda \in [0, 1]$

$$d(u, W(x, y; \lambda)) \le \lambda d(u, x) + (1 - \lambda)d(u, y).$$

A metric space together with a convex structure is called a convex metric space.

A nonempty subset K of X is said to be convex if $W(x, y; \lambda) \in K$ for all $(x, y; \lambda) \in K \times K \times [0, 1]$. The mapping $W : K \times K \times [0, 1] \to K$ is said to be a measurable convex structure if for any two measurable mappings $\xi, \eta : \Omega \to K$ and each fixed $\lambda \in [0, 1]$, the mapping $W(\xi(\cdot), \eta(\cdot); \lambda) : \Omega \to K$ is measurable.

In Banach spaces, Khan et al. [9] introduced the following iteration process for common fixed points of asymptotically quasi-nonexpansive mappings $\{T_i : i \in J = \{1, 2, \dots, k\}\}$: any initial point $x_1 \in K$,

$$\begin{cases} x_{n+1} = (1 - \alpha_{kn})x_n + \alpha_{kn}T_k^n y_{(k-1)n}, \\ y_{(k-1)n} = (1 - \alpha_{(k-1)n})x_n + \alpha_{(k-1)n}T_{(k-1)}^n y_{(k-2)n}, \\ y_{(k-2)n} = (1 - \alpha_{(k-2)n})x_n + \alpha_{(k-2)n}T_{(k-2)}^n y_{(k-3)n}, \\ \vdots \\ y_{1n} = (1 - \alpha_{1n})x_n + \alpha_{1n}T_1^n y_{0n}, \end{cases}$$
(1.1)

where $y_{0n} = x_n$ and $\{\alpha_{in}\}$ are real sequences in [0,1] for all $n \in \mathbb{N}$. And then, Khan and Ahmed [10] considered the iteration process (1.1) in convex metric spaces as follows:

$$\begin{cases} x_{n+1} = W(T_k^n y_{(k-1)n}, x_n; \alpha_{kn}), \\ y_{(k-1)n} = W(T_{k-1}^n y_{(k-2)n}, x_n; \alpha_{(k-1)n}), \\ y_{(k-2)n} = W(T_{k-2}^n y_{(k-3)n}, x_n; \alpha_{(k-2)n}), \\ \vdots \\ y_{1n} = W(T_1^n y_{0n}, x_n; \alpha_{1n}), \end{cases}$$
(1.2)

where $y_{0n} = x_n$ and $\{\alpha_{in}\}$ are real sequences in [0,1] for all $n \in \mathbb{N}$.

From (1.1) and (1.2), we investigate the following random iteration process in convex metric space.

Definition 1.5. Let $\{T_i : i \in J\}$ be a finite familiy of asymptotically quasi-nonexpansive random mappings from $\Omega \times K$ to K, where K is a nonempty closed convex subset of a separable convex metric space (X, d). Let $\xi_1 : \Omega \to K$ be a measurable mapping, for each $\omega \in \Omega$, the sequence $\{\xi_n(\omega)\}$ is defined as follows:

$$\begin{cases} \xi_{n+1}(\omega) = W(T_k^n(\omega, \eta_{(k-1)n}(\omega)), \xi_n(\omega); \alpha_{kn}), \\ \eta_{(k-1)n}(\omega) = W(T_{k-1}^n(\omega, \eta_{(k-2)n}(\omega)), \xi_n(\omega); \alpha_{(k-1)n}), \\ \eta_{(k-2)n}(\omega) = W(T_{k-2}^n(\omega, \eta_{(k-3)n}(\omega)), \xi_n(\omega); \alpha_{(k-2)n}), \\ \vdots \\ \eta_{1n}(\omega) = W(T_1^n(\omega, \eta_{0n}(\omega)), \xi_n(\omega); \alpha_{1n}), \end{cases}$$
(1.3)

where $\eta_{0n}(\omega) = \xi_n(\omega)$ and $\{\alpha_{in}\}$ are real sequences in [0, 1] for all $n \in \mathbb{N}$.

We need the following two results for proving our main results.

Lemma 1.6 ([20]). Let X be a separable metric space and Y be a metric space. If $f : \Omega \times X \to Y$ is measurable in $\omega \in \Omega$ and continuous in $x \in X$, and if $x : \Omega \to X$ is measurable, then $f(\cdot, x(\cdot)) : \Omega \to Y$ is measurable.

Lemma 1.7 ([15]). Let $\{\beta_n\}$ and $\{\gamma_n\}$ be sequences of nonnegative real numbers satisfying the following conditions:

$$\beta_{n+1} \le (1+\gamma_n)\beta_n, \qquad \sum_{n=1}^{\infty} \gamma_n < \infty$$

We have (i) $\lim_{n \to \infty} \beta_n$ exists;

(*ii*) if $\liminf_{n \to \infty} \beta_n = 0$, then $\lim_{n \to \infty} \beta_n = 0$.

2. Main results

In this section, we give some conditions for the convergence of the random iteration process (1.3) to a common random fixed point of a finite family asymptotically quasi-nonexpansive random mappings $\{T_i, i \in J\}$. We first prove the following lemma.

Lemma 2.1. Let K be a nonempty closed convex subset of a separable complete convex metric space (X, d). Let $\{T_i : i \in J\} : \Omega \times K \to K$ be a finite family of asymptotically quasi-nonexpansive random mappings with $r_{in}(\omega) : \Omega \to [0, \infty)$ for each $\omega \in \Omega$. Suppose that the sequence $\{\xi_n(\omega)\}$ is defined as (1.3) and $\sum_{n=1}^{\infty} \alpha_{kn} < \infty$. If $F = \bigcap_{i=1}^{k} F(T_i) \neq \emptyset$, then

(i) there exists a constant $M_0 > 0$ such that

$$d(\xi_{n+1}(\omega),\xi(\omega)) \le (1+\alpha_{kn}M_0)d(\xi_n(\omega),\xi(\omega))$$

for all $\xi(\omega) \in F$ and $n \in \mathbb{N}$;

(ii) there exists a constant $M_1 > 0$ such that

$$d(\xi_{n+m}(\omega),\xi(\omega)) \le M_1 d(\xi_n(\omega),\xi(\omega))$$

for all $\xi(\omega) \in F$ and $n, m \in \mathbb{N}$.

Proof. (i) Since $\{T_i : i \in J\} : \Omega \times K \to K$ be a finite family of asymptotically quasi-nonexpansive random mappings with $r_{in} : \Omega \to [0,\infty)$ for each $\omega \in \Omega$, there exists a measurable mapping $r_n(\omega) = max\{r_{1n}(\omega), r_{2n}(\omega), \dots, r_{kn}(\omega)\}$ for each $\omega \in \Omega$ with $\lim_{n \to \infty} r_n(\omega) = 0$, such that

$$d(T_i^n(\omega,\eta(\omega)),\xi(\omega)) \le (1+r_n(\omega))d(\eta(\omega),\xi(\omega))$$

where $i \in J$ and $\eta : \Omega \to K$ is any measurable mapping. By (1.3), we have

$$d(\eta_{1n}(\omega),\xi(\omega)) = d(W(T_1^n(\omega,\eta_{0n}(\omega)),\xi_n(\omega);\alpha_{1n}),\xi(\omega))$$

$$\leq \alpha_{1n}d(T_1^n(\omega,\eta_{0n}(\omega)),\xi(\omega)) + (1-\alpha_{1n})d(\xi_n(\omega),\xi(\omega))$$

$$\leq \alpha_{1n}(1+r_n(\omega))d(\xi_n(\omega),\xi(\omega)) + (1-\alpha_{1n})d(\xi_n(\omega),\xi(\omega))$$

$$\leq (1+\alpha_{1n}(1+r_n(\omega)))d(\xi_n(\omega),\xi(\omega)).$$

Since $r_n(\omega): \Omega \to [0,\infty)$ and $\lim_{n \to \infty} r_n(\omega) = 0$, there exists a constant L > 0 such that

$$L = \sup_{n \ge 1} \{1 + r_n(\omega)\} < \infty$$

Therefore,

$$d(\eta_{1n}(\omega),\xi(\omega)) \le (1+L)d(\xi_n(\omega),\xi(\omega)).$$

Assume that

$$d(\eta_{in}(\omega),\xi(\omega)) \le (1+L)^i d(\xi_n(\omega),\xi(\omega))$$

holds for some $1 \le i \le k - 1$. Then

$$\begin{aligned} d(\eta_{(i+1)n}(\omega),\xi(\omega)) =& d(W(T_{i+1}^{n}(\omega,\eta_{in}(\omega)),\xi_{n}(\omega);\alpha_{(i+1)n}),\xi(\omega)) \\ &\leq & \alpha_{(i+1)n}d(T_{i+1}^{n}(\omega,\eta_{in}(\omega)),\xi(\omega)) + (1-\alpha_{(i+1)n})d(\xi_{n}(\omega),\xi(\omega)) \\ &\leq & \alpha_{(i+1)n}(1+r_{n}(\omega))d(\eta_{in}(\omega),\xi(\omega)) + (1-\alpha_{(i+1)n})d(\xi_{n}(\omega),\xi(\omega)) \\ &\leq & (1-\alpha_{(i+1)n}+\alpha_{(i+1)n}L(1+L)^{i})d(\xi_{n}(\omega),\xi(\omega)) \\ &\leq & (1+L(1+L)^{i})d(\xi_{n}(\omega),\xi(\omega)) \\ &\leq & (1+L)^{i+1}d(\xi_{n}(\omega),\xi(\omega)) \end{aligned}$$

So, by induction, we obtain

$$d(\eta_{in}(\omega),\xi(\omega)) \le (1+L)^i d(\xi_n(\omega),\xi(\omega))$$

for all $1 \le i \le k$. Now, by (1.3) and the above inequality, we get

$$d(\xi_{n+1}(\omega),\xi(\omega)) = d(W(T_k^n(\omega,\eta_{(k-1)n}(\omega)),\xi_n(\omega);\alpha_{kn}),\xi(\omega))$$

$$\leq \alpha_{kn}d(T_k^n(\omega,\eta_{(k-1)n}(\omega)),\xi(\omega)) + (1-\alpha_{kn})d(\xi_n(\omega),\xi(\omega))$$

$$\leq \alpha_{kn}(1+r_n(\omega))d(\eta_{(k-1)n}(\omega),\xi(\omega)) + (1-\alpha_{kn})d(\xi_n(\omega),\xi(\omega))$$

$$\leq (1-\alpha_{kn}+\alpha_{kn}L(1+L)^k)d(\xi_n(\omega),\xi(\omega))$$

$$\leq (1+\alpha_{kn}M_0)d(\xi_n(\omega),\xi(\omega))$$

where $M_0 = (1+L)^k > 0$.

(ii)Notice that $1 + x \le e^x$ for all $x \ge 0$. Using this and $\sum_{n=1}^{\infty} \alpha_{kn} < \infty$, we have

$$d(\xi_{n+m}(\omega),\xi(\omega)) \leq (1 + \alpha_{k(n+m-1)}M_0)d(\xi_{n+m-1}(\omega),\xi(\omega)) \\\leq e^{\alpha_{k(n+m-1)}M_0}(1 + \alpha_{k(n+m-2)}M_0)d(\xi_{n+m-2}(\omega),\xi(\omega)) \\\leq e^{[\alpha_{k(n+m-1)}+\alpha_{k(n+m-2)}]M_0}d(\xi_{n+m-2}(\omega),\xi(\omega)) \\\dots \\\leq e^{M_0\sum_{j=1}^{\infty}\alpha_{kj}}d(\xi_n(\omega),\xi(\omega)) \\\leq M_1d(\xi_n(\omega),\xi(\omega)),$$

where $M_1 = e^{M_0 \sum_{j=1}^{\infty} \alpha_{kj}} > 0$.

Theorem 2.2. Let K be a nonempty closed convex subset of a separable complete convex metric space (X, d) with a measurable convex structure W. Let $\{T_i : i \in J\} : \Omega \times K \to K$ be a finite family of continuous asymptotically quasi-nonexpansive random mappings with $r_{in}(\omega) : \Omega \to [0, \infty)$ for each $\omega \in \Omega$. Suppose that the sequence $\{\xi_n(\omega)\}$ is defined as (1.3) and $\sum_{n=1}^{\infty} \alpha_{kn} < \infty$. If $F = \bigcap_{i=1}^{k} F(T_i) \neq \emptyset$, then $\{\xi_n(\omega)\}$ converges to a common fixed point of $\{T_i : i \in J\}$ if and only if $\liminf_{n\to\infty} d(\xi_n(\omega), F) = 0$, where $d(\xi_n(\omega), F) = \inf\{d(\xi_n(\omega), \eta(\omega)) : \forall \eta(\omega) \in F\}$ for each $\omega \in \Omega$.

Proof. The necessity is obvious. Thus, we only need prove the sufficiency. From Lemma 2.1 (i), we have

 $d(\xi_{n+1}(\omega), F) \le (1 + \alpha_{kn} M_0) d(\xi_n(\omega), F).$

By Lemma 1.7 and $\sum_{n=1}^{\infty} \alpha_{kn} < \infty$, we know that

$$\lim_{n \to \infty} d(\xi_n(\omega), F)$$

exists. Since $\liminf_{n\to\infty} d(\xi_n(\omega), F) = 0$, we obtain

$$\lim_{n \to \infty} d(\xi_n(\omega), F) = 0$$

for each $\omega \in \Omega$.

Next, We show that $\{\xi_n(\omega)\}$ is a Cauchy sequence. Indeed, for any $\varepsilon > 0$, there exists a constant N_0 such that for all $n \ge N_0$, we have

$$d(\xi_n(\omega), F) \le \frac{\varepsilon}{2M_1}$$

In particular, there exist a $p_1(\omega) \in F$ and a constant $N_1 > N_0$ such that

$$d(\xi_{N_1}(\omega), p_1(\omega)) \le \frac{\varepsilon}{2M_1}.$$

It follows from Lemma 2.1 (ii) that for $n > N_1$, we have

$$d(\xi_{n+m}(\omega),\xi_n(\omega)) \leq d(\xi_{n+m}(\omega),p_1(\omega)) + d(p_1(\omega),\xi_n(\omega))$$

$$\leq M_1 d(\xi_{N_1}(\omega),p_1(\omega)) + M_1 d(\xi_{N_1}(\omega),p_1(\omega))$$

$$\leq 2M_1 \frac{\varepsilon}{2M_1} = \varepsilon.$$

This implies that $\{\xi_n\}$ is a Cauchy sequence in closed convex subset of a complete convex metric space. Therefore, $\{\xi_n(\omega)\}$ converges to a point in K.

Suppose $\lim_{n\to\infty} \xi_n(\omega) = p(\omega)$ for each $\omega \in \Omega$. Since T_i are continuous, by Lemma 1.6, we know that for any measurable mapping $f: \Omega \to K$, $T_i^n(\omega, f(\omega)) : \Omega \to K$ are measurable mappings. Thus, $\{\xi_n(\omega)\}$ is a sequence of measurable mappings. Hence, $p(\omega) : \Omega \to K$ is also measurable. Notice that

$$d(p(\omega), F) \le d(\xi_n(\omega), p(\omega)) + d(\xi_n(\omega), F)$$

together with $\lim_{n\to\infty} d(\xi_n(\omega), F) = 0$ and $\lim_{n\to\infty} d(\xi_n(\omega), p(\omega)) = 0$, we can conclude that $d(p(\omega), F) = 0$. Therefore, $p(\omega) \in F$.

Remark 2.3. (i) Theorem 2.2 extends the corresponding results in [1, 2, 5, 6, 8, 11, 12, 13, 14, 17, 16] to the convex metric space, which is a more general space;

- (ii) Theorem 2.2 extends the corresponding results in [4, 9, 10, 20, 21, 22] to a finite family of asymptotically quasi-nonexpansive random mappings, which are stochastic generalizations of asymptotically quasi-nonexpansive mappings;
- (iii) In Theorem 2.2, we remove the condition: " $\sum_{n=1}^{\infty} r_{in} < \infty, i \in J$ ", which is required in many other papers (see, e.g., [1, 2, 4, 9, 10, 16, 20, 22]). And the condition " $\sum_{n=1}^{\infty} \alpha_{in} < \infty, i \in J$ " is replaced with " $\sum_{n=1}^{\infty} \alpha_{kn} < \infty$ ".

By Remark 1.3, we can get the following result:

Corollary 2.4. Let K be a nonempty closed convex subset of a separable complete convex metric space (X, d)with a measurable convex structure W. Let $\{T_i : i \in J\} : \Omega \times K \to K$ be a finite family of asymptotically nonexpansive random mappings with $r_{in}(\omega) : \Omega \to [0, \infty)$ for each $\omega \in \Omega$. Suppose that the sequence $\{\xi_n(\omega)\}$ is defined as (1.3) and $\sum_{n=1}^{\infty} \alpha_{kn} < \infty$. If $F = \bigcap_{i=1}^{k} F(T_i) \neq \emptyset$, then $\{\xi_n(\omega)\}$ converges to a common fixed point of $\{T_i : i \in J\}$ if and only if $\liminf_{n \to \infty} d(\xi_n(\omega), F) = 0$, where $d(\xi_n(\omega), F) = \inf\{d(\xi_n(\omega), \eta(\omega)) : \forall \eta(\omega) \in F\}$ for each $\omega \in \Omega$.

Theorem 2.5. Let K be a nonempty closed convex subset of a separable complete convex metric space (X, d) with a measurable convex structure W. Let $\{T_i : i \in J\} : \Omega \times K \to K$ be a finite family of continuous asymptotically quasi-nonexpansive random mappings with $r_{in}(\omega) : \Omega \to [0, \infty)$ for each $\omega \in \Omega$. Suppose that the sequence $\{\xi_n(\omega)\}$ is defined as (1.3) , $\sum_{n=1}^{\infty} \alpha_{kn} < \infty$ and $F = \bigcap_{i=1}^{k} F(T_i) \neq \emptyset$. If for some given $1 \leq l \leq k$ and each $\omega \in \Omega$,

- (i) $\lim_{n \to \infty} d(T_l(\omega, \xi_n(\omega)), \xi_n(\omega)) = 0,$
- (ii) there exists a constant $M_2 > 0$ such that

 $d(T_l(\omega,\xi_n(\omega)),\xi_n(\omega)) \ge M_2 d(\xi_n(\omega),F).$

Then $\{\xi_n(\omega)\}$ converges to a common fixed point of $\{T_i : i \in J\}$.

Proof. From the conditions (i) and (ii), we have

$$\lim_{n \to \infty} d(\xi_n(\omega), F) = 0.$$

Therefore, from the proof of Theorem 2.2, we know that $\{\xi_n(\omega)\}$ converges to a common fixed point of $\{T_i : i \in J\}$

Theorem 2.6. Let K be a nonempty closed convex subset of a separable complete convex metric space (X, d) with a measurable convex structure W. Let $\{T_i : i \in J\} : \Omega \times K \to K$ be a finite family of continuous asymptotically quasi-nonexpansive random mappings with $r_{in}(\omega) : \Omega \to [0, \infty)$ for each $\omega \in \Omega$. Suppose that the sequence $\{\xi_n(\omega)\}$ is defined as $(1.3), \sum_{n=1}^{\infty} \alpha_{kn} < \infty$ and $F = \bigcap_{i=1}^{k} F(T_i) \neq \emptyset$. If

- (i) for all $1 \le i \le k$ and each $\omega \in \Omega$, $\lim_{n \to \infty} d(T_i(\omega, \xi_n(\omega)), \xi_n(\omega)) = 0$;
- (ii) for some $1 \le l' \le k$, $T_{l'}$ is semicompact.

Then $\{\xi_n(\omega)\}$ converges to a common fixed point of $\{T_i : i \in J\}$.

Proof. Since $T_{l'}$ is semicompact and $\lim_{n\to\infty} d(T_{l'}(\omega,\xi_n(\omega)),\xi_n(\omega)) = 0$, there exists a subsequence $\{\xi_{n_j}(\omega)\} \subset \{\xi_n(\omega)\}$ such that $\lim_{j\to\infty} \xi_{n_j}(\omega) = \xi'(\omega)$ for each $\omega \in \Omega$. Since T_i are continuous, it follows that $\{\xi_n\}$ is a sequence of measurable mappings. Therefore, $\xi'(\omega) : \Omega \to K$ is also measurable. Hence, it follows from

$$d(T_i(\omega,\xi'(\omega)),\xi'(\omega)) = \lim_{n \to \infty} d(T_i(\omega,\xi_{n_j}(\omega)),\xi_{n_j}(\omega)) = 0$$

that $\xi'(\omega) \in F$. By Lemma 2.1 (i), we have

$$d(\xi_{n+1}(\omega),\xi'(\omega)) \le (1+\alpha_{kn}M_0)d(\xi_n(\omega),\xi'(\omega)).$$

According to Lemma 1.7 and $\sum_{n=1}^{\infty} \alpha_{kn} < \infty$, there exists a constant $\delta \geq 0$ such that

$$\lim_{n \to \infty} d(\xi_n(\omega), \xi'(\omega)) = \delta.$$

Since $\lim_{j\to\infty} \xi_{n_j}(\omega) = \xi'(\omega)$, we have $\delta = 0$. Therefore, $\{\xi_n(\omega)\}$ converges to a common fixed point of $\{T_i: i \in J\}$.

Acknowledgements:

This work was partially supported by the NSF of China (No.11126290) and University Science Research Project of Jiangsu Province (No.13KJB110021).

References

- [1] I. Beg, Approximation of random fixed point in normed space, Nonlinear Anal., 51 (2002), 1363–1372.1, 1.1, 2.3
- [2] I. Beg, M. Abbas, Iterative procedures for solutions of random operator equations in Banach space, J. Math. Anal. Appl., 315 (2006), 180–201.1, 2.3
- [3] A. T. Bharucha-Reid, Random integral equation, Academic Press, New York (1972).1
- [4] B. L. Ciric, J. S. Ume, M. S. Khan, On the convergence of the Ishikawa iterates to a common fixed point of two mappings, Arch. Math., 39 (2003), 123–127.1, 2.3
- [5] B. S. Choudhury, Convergence of a random iteration scheme to random fixed point, J. Appl. Math. Stoch. Anal., 8 (1995), 139–142.1, 2.3
- [6] B. S. Choudhury, Random Mann iteration scheme, Appl. Math. Lett., 16 (2003), 93–96.1, 2.3
- [7] O. Hans, Random operator equations, University of California Press, Calif., (1961).1
- [8] S. Itoh, Random fixed point theorems with an application to random differential equations in Banach space, J. Math. Anal. Appl., 67 (1979), 261–273.1, 2.3

- [9] A. R. Khan, A. A. Domb, H. Fukhar-ud-din, Common fixed points Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach space, J. Math. Anal. Appl., 341 (2008), 1–11.1, 1, 2.3
- [10] A. R. Khan, M. A. Ahmed, Convergence of a general iterative scheme for a finite family of asymptotically quasinonexpansive mappings in convex metric spaces and applications, Comput. Math. Appl., 59 (2010), 2990–2995. 1, 1, 2.3
- P. Kumam, S. Plubtieng, Some random fixed point theorems for non-self nonexpansive random operators, Turkish J. Math., 30 (2006), 359–372.1, 2.3
- P. Kumam, S. Plubtieng, Random fixed point theorems for asymptotically regular random operators, Dem. Math., 40 (2009), 131–141.1, 2.3
- [13] P. Kumam, S. Plubtieng, The characteristic of noncompact convexity and random fixed point theorem for setvalued operators, Czechoslovak Math. J., 57 (2007), 269–279.1, 2.3
- [14] P. Kumam, W. Kumam, Random fixed points of multivalued random operators with property (D), Random Oper. Stoch. Equ., 15 (2007), 127–136.1, 2.3
- [15] Q. H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mapping with errors member, J. Math. Anal. Appl., 259 (2001), 18–24.1.7
- [16] S. Plubtieng, P. Kumam, R. Wangkeeree, Approximation of a common random fixed point for a finite family of random operators, Int. J. Math. Math. Sci., 2007 (2007), 12 pages 1, 2.3
- [17] P. L. Ramirez, Random fixed points of uniformly Lipschitzian mappings, Nonlinear Anal., 57 (2004), 23–34.1, 2.3
 [18] A. Spacek, Zufallige gleichungen, Czechoslovak Math. J., 5 (1955), 462–466.1
- [19] W. Takahashi, A convexity in metric space and nonexpansive mapping, I. Kodai Math. Sem. Rep., 22 (1970), 142–149.1, 1.4
- [20] K. K. Tan, X. Z. Yuan, Some random fixed point theorems, Fixed Point Theory Appl., (1991), 334-345.1, 1.6, 2.3
- [21] C. Wang, L. W. Liu, Convergence theorems for fixed points of uniformly quasi-Lipschitzian mappings in convex metric spaces, Nonlinear Anal, 70 (2009), 2067–2071.1, 2.3
- [22] I. Yildirim, S. H. Khan, Convergence theorems for common fixed points of asymptotically quasi-nonexpansive mappings in convex metric spaces, Appl. Math. Comput., 218 (2012), 4860–4866.1, 2.3