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Abstract

We define framed curves (or frontals) on Euclidean 2-sphere, give a moving frame of the framed curve and
define a pair of smooth functions as the geodesic curvature of a regular curve. It is quite useful for analysing
curves with singular points. In general, we can not define evolutes at singular points of curves on Euclidean
2-sphere, but we can define evolutes of fronts under some conditions. Moreover, some properties of such
evolutes at singular points are given.
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1. Introduction

Singularity theory is a developing area which is related to nonlinear sciences. In particular, it has been
extensively applied in studying classifications of singularities associated with some objects in Euclidean and
semi-Euclidean spaces [14, 15]. In this paper, we focus on the evolutes of curves at singular points on
2-sphere.

The evolute of a plane curve is defined to be the locus of the center of its osculating circles. The evolute
of a spherical curve is defined to be the locus of the center of its osculating spheres [4, 11, 12]. In particular,
the evolute of a regular curve is a classical object from the view point of differential geometry. The evolute
of a regular curve without inflection points is given by not only the locus of all its centres of curvature, but
also the envelope of its normal lines [6, 7, 10]. The properties of evolutes can be discussed by Frenet-Serret
formulas, distance squared functions and the theories of Lagrangian and Legendre singularities [1, 2, 3, 13].

In general, there exist singular points along the evolute of a regular curve. And the singular points
correspond to vertices of the regular curve. There are at least four vertices for a simple closed curve. One
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can not define the evolutes of curves at singular points. However we can define evolutes of fronts under
conditions. In [8, 9], T. Fukunaga and M. Takahashi defined Legendre curves in Euclidean plane and studied
evolutes of Legendre curves. We also do some work associated with the evolutes of fronts in hyperbolic plane
[5]. In this paper, we define framed curves on Euclidean 2-sphere and research the evolutes of fronts.

In section 2 we define a framed curve, and give a moving frame of the framed curve (or, frontal) on the
Euclidean 2-sphere. Moreover, we define a pair of smooth functions of framed curves as a geodesic curvature
for a regular curve. It is quite useful for analysing framed curves. We define evolutes of fronts on Euclidean
2-sphere. The evolute of a front is a generalisation of the notion of a evolute of a regular curve. In section
3, we discuss some properties of evolutes without inflection points. By the representation, we give properties
for an evolute of the front. For example, the evolute of a front is also a front, see Theorem 3.3. Moreover, we
extend the notion of the vertex for a front and give a kind of four vertices theorem for a front, see Proposition
3.10. It follows that we can consider the repeated evolute, namely, the evolute of an evolute of a front, see
Theorem 4.1.

We shall assume throughout the whole paper that all manifolds and maps are C∞ unless the contrary
is explicitly stated.

2. Definitions and basis concepts

Let R3 be a 3-dimensional vector space. For any x = (x1, x2, x3), y = (y1, y2, y3) in R3, their scalar
product is defined by 〈x,y〉 = x1y1+x2y2+x3y3. Euclidean 2-sphere is denoted by S2 = {x ∈ R3|〈x,x〉 = 1}.

Let γ : I → S2 be a regular curve on S2 (i.e. γ̇(t) = dγ/dt 6= 0), where I is an open interval. The
norm of the vector x ∈ R3 is defined by ‖x‖ =

√
〈x,x〉. We can take s as the arc-length parameter of

γ satisfying ‖γ ′(s)‖ = 1, and take t as the general parameter of γ. Then we have the tangent vector t(s) =
γ ′(s), obviously ‖t(s)‖ = 1, e(s) = γ(s) ∧ t(s). Then we have an orthonormal frame {γ(s), t(s), e(s)} of S2

along γ. By directly calculating, the following Frenet-Serret formula is displayed
γ ′(s) = t(s)
t′(s) = −γ(s) + κg(s)e(s)
e′(s) = −κg(s)t(s).

(2.1)

Here κg(s) is a geodesic curvature of γ on S2, which is given by κg(s) = det (γ(s), t(s), t′(s)).
Even if t is not the arc-length parameter, we have the unit tangent vector t(t) = γ̇(t)/‖γ̇(t)‖, the unit

normal vector e(t) = γ(t) ∧ t(t) and the Frenet formula
γ̇(t) = ‖γ̇(t)‖t(t)

ṫ(t) = ‖γ̇(t)‖(−γ(t) + κg(t)e(t))
ė(t) = −‖γ̇(t)‖κg(t)t(t).

(2.2)

Here γ̇(t) = dγ/dt(t), ‖γ̇(t)‖ =
√
〈γ̇(t), γ̇(t)〉 and κg(t) =det(γ(t), t(t), ṫ(t))/‖γ̇(t)‖3. Note that κg(t) is

independent on the choice of a parametrisation.

Definition 2.1. We say that (γ,ν) :I → S2×S2 is a framed curve on S2, if 〈γ̇(t),ν(t)〉=0and〈γ(t),ν(t)〉=0
for all t ∈ I. Moreover, if (γ,ν) is an immersion, namely, (γ̇(t), ν̇(t)) 6= (0, 0), we call (γ,ν) a framed
immersion.

Definition 2.2. We say that γ : I → S2 is a frontal if there exists a smooth mapping ν : I → S2 such that
(γ,ν) ia a framed curve. We also say that γ : I → S2 is a front or a wave front if there exists a smooth
mapping ν : I → S2 such that (γ,ν) is a framed immersion.

We put on µ(t) = ν(t) ∧ γ(t). We call the pair {γ(t),µ(t),ν(t)} is a moving frame of a frontal γ. Then
we have the Frenet formula of a frontal γ as follows

γ̇(t) = β(t)µ(t)
µ̇(t) = −β(t)γ(t)− l(t)ν(t)
ν̇(t) = l(t)µ(t),

(2.3)
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where l(t) = 〈ν̇(t),µ(t)〉. If (γ,ν) is a framed immersion, we have l(t), β(t) 6= (0, 0) for each t ∈ I. The
pair (l(t), β(t)) is an important pair of functions of framed curves like the geodesic curvature of a regular
curve. We call the pair (l(t), β(t)) the geodesic curvature of the framed curve.

Example 2.3. Let γ : I → S2 be a regular curve,

γ(t) = (cos(t2)cos(t3), sin(t2)cos(t3), sin(t3)). (2.4)

We get

γ̇(t) = (−2sin(t2)cos(t3)t− 3cos(t2)sin(t3)t2, 2cos(t2)cos(t3)t− 3sin(t2)sin(t3)t2, 3cos(t3)t2). (2.5)

So γ is singular at t = 0. Take ν = (ν1, ν2, ν3), where

ν1(t) = P (2tsin(t3)cos(t2)cos(t3)− 3t2sin(t2)),

ν2(t) = P (3t2cos(t2) + 2tsin(t2)sin(t3)cos(t3)),

ν3(t) = P (−2cos2(t3)).

(2.6)

Here, P = 1/
√

(2tsin(t3)cos(t2)cos(t3)− 3t2sin(t2))2 + (3t2cos(t2) + 2tsin(t2)sin(t3)cos(t3))2 + 4cos4(t3).

It satisfies 〈γ(t),ν(t)〉 = 〈γ̇(t),ν(t)〉 = 0 and 〈ν(t),ν(t)〉 = 1. Hence, (γ,ν) is a framed curve. See Fig.1.

Fig. 1: framed curve

In this paper, we consider evolutes of curves on S2. Let Eγ(t) : I → S2 be given by

Eγ(t) =
1√

1 + κ2g(t)
(κg(t)γ(t) + e(t)). (2.7)

Example 2.4. Let γ : I → S2 be a regular curve, γ(t) = (cos2(t), cos(t)sin(t), sin(t)), since γ̇(t) 6= 0.
We get κg(t) = sin(t)(cos2(t) + 2)/

√
(1 + cos2(t))3. Take Eγ = (E1, E2, E3), we have

E1(t) =
1√

(T (cos2(t) + 2)/P 2) + 1
(
T

P
cos2(t) +

1

P 1/3
sin3(t)),

E2(t) =
1√

(T (cos2(t) + 2)/P 2) + 1
(
T

P
cos(t)sin(t)− 1

P 1/3
cos(t)(1 + sin2(t)),

E3(t) =
1√

(T (cos2(t) + 2)/P 2) + 1
(
T

P
sin(t) +

1

P 1/3
cos2(t)).

(2.8)

Here T = sin(t)(cos2(t) + 2), P =
√

(1 + cos2(t))3. See Fig.2. The blue part is γ, and the red part is
Eγ .
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Fig. 2: regular curve and its evolute

If γ is not a regular curve, then we can not define the evolute as above, since the geodesic curvature may
be divergence at a singular point. However, we can define an evolute of a front on S2, see Definition 2.8 and
Theorem 3.3. It is a generalisation of the evolute of a regular curve on S2.

Now, we give the definition of the evolute of a front. First, we introduce the notion of parallel curve of
γ.

Let (γ,ν) : I → S2 × S2 be a framed immersion. We define a parallel curve γλ : I → S2 of γ by

γλ(t) =
γ(t) + λν(t)√

1 + λ2
(2.9)

for each λ ∈ R. Then we have following results.

Proposition 2.5. For a framed immersion (γ,ν) : I → S2 × S2, the parallel curve γλ : I → S2 is a front
for each λ ∈ R.

Proof . We take νλ : I → S2 by

νλ(t) =
−λγ(t) + ν(t)√

1 + λ2
. (2.10)

Since

γλ(t) =
γ(t) + λν(t)√

1 + λ2
, γ̇λ(t) =

γ̇(t) + λν̇(t)√
1 + λ2

. (2.11)

If γ̇λ(t0) = 0 at a point t0 ∈ I, then we have

γ̇(t0) + λν̇(t0) = 0. (2.12)

If ν̇(t0) = 0, then γ̇(t0) = 0. It is contradict from the fact that (γ,ν) is a framed immersion and hence
(γλ,νλ) is a framed immersion. By ‖ν(t)‖ = 1, we have 〈ν(t), ν̇(t)〉 = 0. Then

〈γ̇λ(t),νλ(t)〉 =
1

1 + λ2
〈γ̇(t) + λν̇(t),−λγ(t) + ν(t)〉 = 0. (2.13)

It follows that (γλ,νλ) is a framed immersion and hence γλ is a front.
We denote the geodesic curvature of the parallel curve γλ by κgλ, when γλ is a regular curve.

Proposition 2.6. Let (γ,ν) be a framed immersion. If γ is a regular curve and λ 6= 1/κg(t), then the
parallel curve γλ is a also regular curve and Eγλ(t) is consistent with Eγ(t).
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Proof . Since

γλ(t) =
γ(t) + λe(t)√

1 + λ2
, γ̇λ(t) =

|γ̇(t)|(1− λκg(t))t(t)√
1 + λ2

. (2.14)

By the assumption λ 6= 1/κg(t), γλ is a regular curve. By a direct calculation, we have

κgλ(t) =
λ+ κg(t)

|1− λκg(t)|
, eλ(t) =

1− λκg(t)
|1− λκg(t)|

e(t)− λγ(t)√
1 + λ2

. (2.15)

Hence

Eγλ(t) =
κgλ(t)γλ(t) + eλ(t)√

1 + κgλ(t)2

=
1√

1 + (
λ+κg
|1−λκg |)

2
(
λ+ κg(t)

|1− λκg(t)|
γ(t) + λe(t)√

1 + λ2
+

1− λκg(t)
|1− λκg(t)|

e(t)− λγ(t)√
1 + λ2

)

=
1√

(1 + κg(t)2)(1 + λ2)
(

1 + λ2√
1 + λ2

κg(t)γ(t) +
1 + λ2√
1 + λ2

e(t))

=
κgγ(t) + e(t)√

1 + κg(t)2

= Eγ(t).

(2.16)

Remark 2.7. Let(γ,ν) be a framed immersion. If t0 is a singular point of the front γ, then lim
t→t0
|κg(t)| =∞.

By the equality κgλ(t) = λ− κg(t)/|1− λκg(t)|, we have limt→t0 κgλ(t) 6= 0.
We now define an evolute of a front on the S2.

Definition 2.8. Let (γ,ν) : I → S2 × S2 be a framed immersion. We define an evolute Eγ(t) : I → S2 of
the front γ as follows. If t is a regular point,

Eγ(t) =
κgγ(t) + e(t)√

1 + κg(t)2
, (2.17)

if t ∈ (t0 − δ, t0 + δ), t0 is a singular point of γ,

Eγ(t) =
κgλ(t)γλ(t) + eλ(t)√

1 + κgλ(t)2
, (2.18)

where δ is a sufficiently small positive real number and λ 6= 1/κg(t).

By the assumption of the finiteness of singularities of a front, there exists λ ∈ R with the condition
λ 6= 1/κg(t). Moreover, by Proposition 2.6, we can glue on the regular interval of γ and γλ. Then the evolute
of a front is well-defined. Furthermore, by definition, the evolute of a front Eγ is a C∞ mapping.

3. Properties of evolutes of fronts

In this section, we consider properties of the evolute of fronts. Let (γ,ν) : I → S2 × S2 be a framed
immersion with the geodesic curvature (l, β).

First we give a relationship between the geodesic curvature (l(t), β(t)) of the framed immersion and the
geodesic curvature κg(t), if γ is a regular curve.

Lemma 3.1. 1. If γ is a regular curve, then l(t) = |β(t)|κg(t).
2. If γλ is a regular curve, then λβ(t)− l(t) = |β(t) + λl(t)|κgλ(t).
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Proof . (1) By a direct calculation, γ̇(t) = β(t)µ(t), γ̈(t) = β̇(t)µ(t)− β(t)2γ(t)− β(t)l(t)ν(t), and

κg(t) =
1

‖γ̇(t)‖3
(γ(t), γ̇(t), γ̈(t)) =

l(t)

|β(t)|
. (3.1)

(2) We can also prove by the same calculation of (1).

Remark 3.2. Since (l(t), β(t)) 6= (0, 0), if t0 is a singular point of γ, then γλ is a regular curve. By Lemma
3.1, −l(t0) = |λl(t0)|κgλ(t0). It follows from λl(t0) 6= 0 that κgλ(t0) 6= 0.

We give another representation of the evolute of a front by using the moving frame (γ(t),µ(t),ν(t)) and
the geodesic curvature (l(t), β(t)).

Theorem 3.3. Under the above notations, the evolute of a front Eγ(t) is represented by

Eγ(t) =
1√

l(t)2 + β(t)2
(−l(t)γ(t) + β(t)ν(t)) (3.2)

and Eγ(t) is a front.

Proof . First suppose that γ is a regular curve. Since γ̇(t) = β(t)µ(t), we have |β(t)| 6= 0 and

t(t) =
β(t)

|β(t)|
µ(t), e(t) = − β(t)

|β(t)|
ν(t). (3.3)

By Lemma 3.1 (1), κg(t) = l(t)/|β(t)| . Then

Eγ(t) =
κg(t)γ(t) + e(t)√

1 + κg(t)2
=

1√
l(t)2 + β(t)2

(−l(t)γ(t) + β(t)ν(t)). (3.4)

Second suppose that t0 is a singular point of γ, and γλ is a regular curve with λ 6= 1/κg(t).
Since γ̇λ(t) = (β(t) + λl(t))µ(t)/

√
1 + λ2, we have |β(t) + λl(t)| 6= 0 and

tλ =
β(t) + λl(t)

|β(t) + λl(t)|
µ(t),

eλ = γλ(t) ∧ tλ(t) =
β(t) + λl(t)

|β(t) + λl(t)|
ν(t)− λγ(t)√

1 + λ2
.

(3.5)

By Lemma 3.1 (2), κgλ(t) = λβ(t)− l(t)/|β(t) + λl(t)| and l(t) 6= 0. Then

Eγλ(t) =
κgλ(t)γλ(t) + eλ(t)√

1 + κgλ(t)2

=
|β(t) + λl(t)|√

(−l(t)2 + λβ(t))2 + (β(t) + λl(t))2
(
λβ(t)− l(t)
|β(t) + λl(t)|

γ(t) + λν(t)√
1 + λ2

+
β(t) + λl(t)

|β(t) + λl(t)|
ν(t)− λγ(t)√

1 + λ2
)

=
1√

(1 + λ2)(l2(t) + β2(t))

1√
1 + λ2

(−l(t)(1 + λ2)γ(t) + β(t)(1 + λ2)ν(t))

=
−l(t)γ(t) + β(t)ν(t)√

l2(t) + β2(t)

= Eγ(t).

(3.6)

If we take ν̃(t) = µ(t), then (Eγλ(t), ν̃(t)) is a framed immersion. In fact,

Ėγ(t) =
β̇(t)l(t)− β(t)l̇(t)

(l2(t) + β2(t))3/2
(l(t)ν(t)− β(t)γ(t))

=
d(β(t)/l(t))

dt

l2(t)

(l2(t) + β2(t))3/2
(l(t)ν(t)− β(t)γ(t)),

(3.7)
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we have 〈Eγ(t), ν̃(t)〉 = 〈Ėγ(t), ν̃(t)〉 = 0. And (γ,ν) is a framed immersion satisfying (l(t), β(t)) 6= (0, 0). We

get ˙̃ν(t) = −l(t)ν(t) − β(t)γ(t) 6= 0. It follows that Eγ(t) is a front. This completes the proof of the
Theorem.

Remark 3.4. By the representation (3.2), we may define the evolute of a front even if γ have non-isolated
singularities, under the condition l(t) 6= 0.

By Lemma 3.1 and Remark 3.4 for a framed immersion (γ,ν) with the geodesic curvature (l, β), we say
that t0 is an inflection point of the front γ (or, the framed immersion (γ,ν)) if l(t0) = 0. Since β(t0) 6= 0
and Proposition 3.1, l(t0) = 0 is equivalent to the condition κg(t0) = 0.

Remark 3.5. Let (γ,ν) be a framed immersion, so does (γ,−ν). However, Eγ(t) does not change. It follows
that we can define an evolute of a non-orientable front, by taking double covering of γ.

Remark 3.6. By Definition 2.8, the evolute of a front is independent on the parametrisation of (γ, ν). The
geodesic curvature (l, β) depends on the parametrisation of (γ,ν). If s = s(t) is a parameter changing on
I to I, then l(t) = l(s(t))ṡ(t) and β(t) = β(s(t))ṡ(t). It also follows from the representation (1) that the
evolute of a front is independent on the parametrisation of (γ,ν).

If t0 is a singular point of γ, then β(t0) = 0. As a corollary of Theorem 3.3, we have following.

Corollary 3.7. If t0 is a singular point of γ, then Eγ(t0) = γ(t0).

Proposition 3.8. Suppose that t0 is a singular point of γ.
(1) t0 is a regular point of Eγ(t) if and only if γ is diffeomorphic to the 3/2 cusp.
(2) t0 is a singular point of Eγ(t) if and only if γ̈(t0) = 0.

Proof . (1) Let t0 is a regular point of Eγ(t). Since β(t0)=0 and l(t0) 6= 0, β̇(t0) 6= 0. By the differentiate
of γ̇(t) = β(t)µ(t), we have

γ̈(t) = β̇(t)µ(t)− l(t)β(t)ν(t), (3.8)
...
γ (t) = (β̈(t)− β(t)l(t)2)µ(t)− (2β̇(t)l(t) + β(t)l̇(t))ν(t). (3.9)

It follows that
γ̇(t0) = 0, γ̈(t0) = β̇(t0)µ(t0), (3.10)

...
γ (t0) = β̈(t0)µ(t0)− 2β̇(t0)l(t0)ν(t0), (3.11)

‖γ̈(t0) ∧
...
γ (t0)‖ = 2β̇(t0)

2l(t0). (3.12)

(2) By the proof of (1), β̇(t0) = 0 if and only if γ̈(t0) = 0.
As a well-known result, a singular point of Eγ(t) of a regular plane curve γ is corresponding to a vertex

of γ, namely κ̇g(t) = 0.
We extend the notion of vertex. For a framed immersion (γ,ν) with the geodesic curvature (l, β), t0 is a

vertex of the front γ (or a framed immersion (γ,ν)) if d
dt(β/l)(t0) = 0, namely, d

dtEγ(t0) = 0. Note that if t0 is
a regular point of γ, the definition of the vertex coincides with usual vertex for regular curves. Therefore, this
is a generalisation of the notion of the vertex of a regular plane curve.

Remark 3.9. Let (γ,ν) be a framed immersion. If t0 is a singular point of γ which degenerate more than
3/2 cusp, then t0 is a vertex of a front γ. In fact,

β(t0) = β̇(t0) = 0,
d

dt
(
β(t)

l(t)
)(t0) =

˙β(t)l(t)− β(t)l̇(t)

l(t)2
= 0. (3.13)

Proposition 3.10. Let (γ,ν) : [0, 2π)→ S2 × S2 be a closed framed immersion without inflection points.
(1) γ has at least two singular points which generate more than 3/2 cusp, then γ has at least four vertices.
(2) If γ at least four singular points, then γ has at least four vertices.
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Proof . (1) Let ti be a singular point of γ for each i = 1, 2, ..., n. Suppose that at least two of them
are degenerate more than 3/2 cusp. By Remark 3.9, there singularities are vertices of γ, therefore it is
sufficient to show that these is at least one vertex between two adjacent singular points. Since γ has no
inflection points, the sign of the geodesic curvature of γ on regular points is constant. Therefore, either
limt→ti κg(t) = ∞ for all i = 1, 2, ..., n or limt→ti κg(t) = −∞ for all i = 1, 2, ..., n. This concludes there
exists t ∈ (ti, ti+1) such that κ̇g(t) = 0 for all i = 1, 2, ..., n. Moreover, since γ is closed, there exists a point
t ∈ [0, t1) ∪ (tn, 2π) such that κ̇g(t) = 0. Therefore, γ has at least four vertices.

(2) We can also prove by the same method of (1).

4. Evolutes of the evolutes of fronts

By Theorem 3.3, the evolute of a front is also a front. We consider a repeated evolute of an evolute of a
front and give its properties at singular points.

Theorem 4.1. Let (γ,ν) be a framed immersion with the geodesic curvature (l, β). The evolute of an evolute
of a front is given by

EEγ (t) =
−(l2(t) + β2(t))3/2Eγ(t) + (β̇(t)l(t)− β(t)l̇(t))µ(t)√

(l(t) + β(t))3 + (β̇(t)l(t)− β(t)l̇(t))2
. (4.1)

Proof . We denote γ̃(t) = Eγ(t). And (γ̃(t), ν̃(t)) = (Eγ(t),µ(t)) is a framed immersion. Since
µ̃(t) = µ(t) ∧ Eγ(t), we have

β̃(t) =
β̇(t)l(t)− β(t)l̇(t)√

l(t)2 + β(t)2
, (4.2)

where ˙̃γ(t) = β̃(t)µ̃(t). Moreover l̃(t) =
√
l(t)2 + β(t)2 by the Frenet formula of a front. It follows that

EEγ (t) = Eγ̃(t)

=
−l̃(t)Eγ(t) + β̃(t)ν̃(t)√

l̃(t)2 + β̃(t)2

=
−
√
l(t)2 + β(t)2Eγ(t) + β̇(t)l(t)−β(t)l̇(t)√

l(t)2+β(t)2
µ(t)√

l(t)2 + β(t)2 + (β(t)l̇(t)−β̇(t)l(t))2
l(t)2+β(t)2

=
−(l2(t) + β2(t))3/2Eγ(t) + (β̇(t)l(t)− β(t)l̇(t))µ(t)√

(l(t) + β(t))3 + (β̇(t)l(t)− β(t)l̇(t))2
.

(4.3)

Proposition 4.2. Suppose that t0 is singular point of both γ and Eγ .
(1) t0 is a regular point of EEγ if and only if γ is diffeomorphic to the 4/3 cusp at t0.
(2) t0 is a singular point of EEγ if and only if

...
γ (t0) = 0.

Proof . (1) Let t0 be a regular point of EEγ . By Proposition 3.8,

β(t0) = β̇(t0) = 0, l(t0) 6= 0. (4.4)

Then γ̇(t0) = γ̈(t0) = 0. Since
d

dt
EEγ (t0) = −β̈(t0)l(t0)

−2 6= 0 (4.5)



H. Yu, D. Pei, X. Cui, J. Nonlinear Sci. Appl. 8 (2015), 678–686 686

if and only if β̈(t0) 6= 0. By the differentiate γ̇(t) = β(t)µ(t), It follows that

...
γ (t0) = β̈(t0)µ(t0), γ4(t0) =

...
β (t0)µ(t0)− 3β̈(t0)l(t0)µ(t0). (4.6)

Hence
‖
...
γ (t0) ∧ γ(4)(t0)‖ = 3β̈(t0)

2l(t0) 6= 0. (4.7)

This condition follows that γ is diffeomorphic to the 4/3 cusp at t0.
(2) By the proof of (1), β̈(t0) = 0 if and only if

...
γ (t0) = 0.
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