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Abstract

A global optimization algorithm is proposed to solve the crude oil schedule problem. We first developed
a lower and upper bounding model by using a multiparametric disaggregation method. Secondly, the
lower and the upper bounding models combined with finite state method (FSM) are incorporated to solve
the bilinear programing problem jointly. The advantage of using FSM is that we can generate promising
substructure and partial solution. Furthermore, the FSM can guarantee that the entire solution space is
uniformly covered. Therefore, the algorithm has better global performance than some existing algorithms.
Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The
experimental results validate that the proposed method outperforms commercial solvers. c⃝2015 All rights
reserved.
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1. Introduction

Planning and scheduling of the flow of crude oil is a very important problem in petroleum refineries due to
the potential realization of large cost savings and improved feeds. Detailed scheduling models often require

∗Corresponding author
Email addresses: dqq1019@sjtu.edu.cn (Qianqian Duan), sjtu1019@163.com (Genke Yang), glxu@outlook.com

(Guanglin Xu), 328236505@qq.com (Xueyan Duan)

Received 2015-3-15



Q. Duan, G. Yang, G. Xu, X. Duan, J. Nonlinear Sci. Appl. 8 (2015), 695–709 696

a continuous time representation that usually includes nonlinear equations, as well as binary variables to
model discrete decisions, which gives rise to mixed-integer nonlinear programming (MINLP) models.

The MINLP corresponding to the scheduling problem is no-convex due to the presence of bilinear terms
in some of the mass balance constraints, and hence the standard methods for solving MINLPs [5] may fail to
converge to a solution or may lead to sub-optimal solutions. The global optimization of general no-convex
bilinear programs has received significant attention in the literature [9, 17, 10, 16, 1, 6, 18, 13, 3]. The
convex McCormick envelopes [2] coupled with spatial branch and bound search frameworks have been the
basis for many of these global optimization techniques, with piecewise McCormick envelopes being a more
recent development. Variations of this approach have been suggested, generalizing the convex envelopes to
piecewise over- and under-estimators [2, 22] . Some researchers have proposed techniques to linearize these
bilinear constraints. Sherali and Alameddine [17] proposed a new reformulation-linearization technique
(RLT) and imbedded it within a provably convergent branch-and-bound algorithm. This RLT process
yields a LP problem whose optimal value provides a tight lower bound on the optimal value of the bilinear
programming problem. Pan [15] set up an MINLP formulation for the crude oil scheduling problem and
proposed some heuristic rules collected form expert experience to linearize bilinear terms and fix some binary
variables in the MINLP model, resulting into an MIP model with fewer binary variables.

As discussed above, bilinear term is the most important feature in optimizing crude oil scheduling. With
this issue, scheduling problems have to be described as MINLP models with both discrete and continuous
time representations, thus making a difficult procedure of finding feasible solution. The existing approaches
used lots of continuous variables and constraints to linearize bilinear terms. However, when time horizon
became longer, they needed to solve more complex models, which increased overall computational time and
affected final objective values.

A global optimization algorithm is proposed in this paper. Firstly, we describe the multiparametric
disaggregation method for the nonlinear term, which gives the lower bounding and upper bounding problem,
then a global optimization algorithm combing the FSM is described to solve the problem. The algorithm
based FSM builds the initial points complying with sequencing rules and operation condition. Thus, the
search space of the algorithm is substantially reduced as only legal initial condition is explored.

This paper is organized as follows. Section 2 presents the upper and lower bounding formulations of the
crude scheduling problem, while Section 3 provides the deterministic finite automation (DFA) model of the
schedule using the FSM . A discussion of the algorithm is given in Section 4. Section 5 presents the different
examples on which the algorithm was applied, and finally, Section 6 summarizes some conclusions.

2. Mathematic Model

In this section, we present the derivation of the multiparametric disaggregation technique (MDT) by
Teles [20] for solving no-convex bilinear programs. Both upper and lower bounding formulations ,which
corresponding to the refinery crude oil scheduling problem described in Appendix A, are derived using
disjunctive programming and exact linearization.

2.1. Radix-Based Discretization

We start with reformulating the bilinear terms Lirc = fc · Lir and Virc = fc · Viv. For simplicity, we will
denote the bilinear term y = f ·x. The technique known as radix-based discretization described by Kolodziej
[14] and Castro [25] is used to discretize the bilinear term. The product y = f ·x can be represented exactly
with the following constraints and disjunction:

y = f · x (2.1)

f =
∑
l∈Z

λℓ (2.2)

∨9
k=0 [λℓ = 10ℓ · k]. (2.3)
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where f is discretized through the disjunction in (2.3) that selects one digit k for each power l ∈. Considering
the convex hull reformulation of the disjunction[18] in (2.3) by introducing the disaggregated variables, leads
to the following equations where K = {k|k = 0, 1, . . . 9}:

λℓ =
9∑

k=0

λ̂kℓ (2.4)

λ̂kℓ = 10ℓ · k · zkℓ (2.5)

9∑
k=0

zkℓ = 1, (2.6)

zkℓ ∈ {0, 1}. (2.7)

Substituting equations (2.5) into equation (2.4) and substituting equation (2.4) into equation (2.2) leads to
the fully discretized of f :

f =
∑
ℓ∈Z

9∑
k=0

10ℓ · k · zkℓ. (2.8)

Considering the product y = f · x by substituting equation (2.8) into equation (2.1) leads to:

y = x · [
∑
ℓ∈Z

9∑
k=0

10ℓ · k · zkℓ] =
∑
ℓ∈Z

9∑
k=0

10ℓ · k · x · zkℓ,

Which involves the nonlinear term x · zkℓ. A new continuous variable, x̂kℓ = x · zkℓ is performed an exact
linearization [14]:

y =
∑
ℓ∈Z

9∑
k=0

10ℓ · k · x̂kℓ. (2.9)

Finally, multiplying equation (2.6) by x ,and results in (2.10).

9∑
k=0

x̂kℓ = x. (2.10)

2.2. Lower bound model

The variable f is presented to a finite level of precision f
′
, which leading to approximate representation

of the bilinear term y
′
. The constraints in (2.8) (2.9) are modified in (2.11) (2.12) to allow for a maximum

power of 10(P ) and a minimum power of 10(p). For the remaining constraints, it suffices to replace l ∈ Z
with l ∈ {p, p+1, , P}. These sets of constraints correspond to the bilinear terms proposed by Teles et.al.[20]:

f
′
=

P∑
ℓ=p

9∑
k=0

10ℓ · k · zkℓ, (2.11)

y
′
=

P∑
ℓ=p

9∑
k=0

10ℓ · k · x̂kℓ. (2.12)

This problem (P) in Appendix A can be reformulated by discretizing the bilinear terms Lirc = fc · Lir and
Virc = fc · Viv .We can then obtain the following MILP approximation:
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P
′

max G
′
=

∑
i∈T

∑
r∈RD

∑
v∈Ir

∑
c∈IC

Gc · Vivc



Lirc =
∑P

ℓ=p

∑9
k=0 10

ℓ · k · L̂irckℓ

Virc =
∑P

ℓ=p

∑9
k=0 10

ℓ · k · V̂ivckℓ

fc =
∑P

ℓ=p

∑9
k=0 10

ℓ · k · zckℓ
Lir =

∑9
k=0 L̂irckℓ

Vir =
∑9

k=0 V̂ivckℓ∑9
k=0 zckℓ = 1

zckℓ ∈ {0, 1}
(A2−A18)

Because the problem (P
′
) is a maximization problem, problem (P

′
) yields a lower bound for the original

problem (P ).Because the current feasible region is the approximated one of the original problem. By analogy,
we can derive problem (PR), which yields a relaxation (and thus an upper bound) of the original problem.

2.3. Upper bound model

By adding a slack term △f to the above discretized variable f
′
,the continuous representation fR is

derived by Kolodziej [20]:

fR = f
′
+△f (2.13)

fR =
P∑

ℓ=P

9∑
k=0

10ℓ · k · zkℓ +△f (2.14)

0 ≤ △f ≤ 10p. (2.15)

For the continuous representation of the bilinear term yR, note that:

yR = fR · x = (f
′
+△f) · x = y

′
+△y. (2.16)

The bilinear term △y can be relaxed using the McCormick envelop, which coincides with the RLT bound
factor products xL ≤ x ≤ xU and 0 ≤ △f ≤ 10p :

xL · △f ≤ △y ≤ xU · △f (2.17)

△ y ≥ (x− xU ) · 10p + xU · △f (2.18)

△ y ≤ (x− xL) · 10p + xL · △f (2.19)

Introducing these constraints into problem (P ) in Appendix A, we can derive a relaxation of the original
problem (P ) that is also an MILP problem (PR):

PR max GR =
∑
i∈T

∑
r∈RD

∑
v∈Ir

∑
c∈IC

Gc · Vivc



LR
irc =

∑P
ℓ=p

∑9
k=0 10

ℓ · k · L̂irckℓ +△Lirc

V R
irc =

∑P
ℓ=p

∑9
k=0 10

ℓ · k · V̂ivckℓ +△Virc

LL
ir · △fc ≤ △Lirc ≤ LU

ir · △fc

△Lirc ≥ (Lir − LU
ir) · 10p + LU

ir · △fc

△Lirc ≤ (Lir − LL
ir) · 10p + LL

ir · △fc
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V L
iv · △fc ≤ △Vivc ≤ V U

iv · △fc

△Vivc ≥ (Viv − V U
iv ) · 10p + V U

iv · △fc

△Viv ≤ (Viv − V L
iv ) · 10p + V L

iv · △fc

Lir =
∑9

k=0 L̂irckℓ

Vir =
∑9

k=0 V̂ivckℓ∑9
k=0 zckℓ = 1

0 ≤ △fc ≤ 10p

zckℓ ∈ {0, 1}
(A2−A18)

This problem (PR) is a relaxation of problem (P ) because it includes at least (and in most cases more
than) the entire feasible region of problem (P ).

3. Model of the schedule

In the MINLP model [12], it has an obvious and direct correspondence between binary solution and
schedule. So it is important to construct a model which builds legal schedules complying with sequencing
rules and operation condition. Using the finite state method, the model of the legal schedule constitutes a
reasonable framework, capturing all possible schedules and removing many redundant sequences of opera-
tions.

3.1. Schedule of Operations

In the SOS representation [12], at most one operation can be assigned to each priority. It is therefore
possible to represent the scheduling solution by a schedule. We used an example in Figure 1 to show how
binary solution can be mapped to a schedule. The schedule S = [7683513762] where 7 stands for the specific
operation 7 to assign to position 1 corresponding to the binary decisions Z17 = 1.

Figure 1: An example to indicate the relationship between variable and schedule
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3.2. The rule of the schedule

A feasible schedule S should comply with a number of rules. The rules in this problem [12] usually fall
into the following classes:

–Sequencing rules:
Specify the allowed and forbidden sequences of operations.
–Valid Length rule:
The total number of operations executed in the schedule is postulated a prior.

3.2.1. The Sequencing Rule

Here, we still use the instance with 8 operations from Mouret et al. [12] to describe an efficient sequencing
rule by using a regular expression. A feasible schedule S can be described by the following:

sequenceLa = (ε+ L7)(L8 · L7)
∗(ε+ L8)

L7 = 7(ε+ 4)(ε+ 6)(ε+ 1 + 14)(ε+ 2 + 26)

L8 = 8(ε+ 3)(ε+ 5)(ε+ 1 + 13)(ε+ 2 + 25),

Where 1− 8 ∈ W , W is the set of all operations.
The automation M1 = (Q1,

∑
, σ1, q

1
0, F1) in Figure 2 3 on the basis of this regular expression sequence

La , captures all possible schedule and removes many redundant schedules. For example, in Figure 4,
schedule (a) is accepted by the automation M1 while the other schedule is rejected and thus not explored
during the search. However, as to correctness, this automation M1 suffers from a serious problem of over
generation. For example: the short length of the sequence may lead to infeasibility, while the long length
of the sequence may result in an unsolvable model. It is an interesting challenge for finite state syntactic
description to specify a sublanguage that contains all and only the sequences of valid length.

Figure 2: The automation M1 on the basis of this regular expression sequence La

Figure 3: The automation DFA7 on the basis of this regular expression sequence L7
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Figure 4: The example of schedule according the automation M1

3.2.2. The Valid Length rule

One particular benefit of this model [12] is that the only parameter that needs to be postulated a prior
is the length of the schedule. In order to satisfy the condition which the length of the schedule has to be
postulated a priori, The valid length rule is defined to constraint the schedule S:

V alidLengthLb = [1 + 2 + 3 + 4 + 5 + 6 + 7 + 8]T ,

Where 1− 8 ∈ W , W is the set of all operations.
The automation M2 = (Q2,

∑
, σ2, q

2
0, F2) in Figure 5 on the basis of this regular expression Lb , accepts

only schedule sequences of length T but excludes all others. Then, the number of executions of operations
is fixed and known in advanced, guaranteeing global optimality of the solution obtained. For example, in
Figure 6, given the length 10, schedule (a) is accepted by the automation M2 while the other schedule is
rejected and thus not explored during the search.

Figure 5: The automation M2 on the basis of this regular expression sequence Lb
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Figure 6: The example of schedule according the automation M2

3.3. Model of the legal schedule

The substructure of this problem is to build legal schedule complying with a number of ordering or
cardinality rules. The sequencing rules and length rules should be satisfied simultaneously. One may
envisage sometimes to the intersection operation of regular language, with an automata, in order to model
all sequencing and length rules.

The desired effect (model/ legal sequence) can be obtained by intersecting M1 describing the sequencing
rule with the M2 describing the valid length rule.The intersection of the two models which satisfying the
sequencing and length rules simultaneously:

leglalscheduleS = SequenceM1 ∩ V alidLengthM2.

We could design a DFA M = (Q,
∑

, σ, q0, F ) , that recognizes the leglal schedule S. The steps are as
following:

Step1: Given the DFA M1 = (Q1,
∑

, σ1, q
1
0, F1) ,which recognize the regular expression sequence La .

Step2: Given the DFA M2 = (Q2,
∑

, σ2, q
2
0, F2) ,which recognize the regular expression sequence Lb .

Step3: Design a DFA M = (Q,
∑

, σ, q0, F ) ,which obtained by intersecting M1 with M2.The DFA M accepts
strings if both M1 and M2 accepts.

We have now completed the task of describing the language of valid sequences from the set of possible
sequence expressions. It is also able to create an automation, and then generate all possible schedules S
accepted by the automaton. The processes are implemented using FSA Utilities [21] that is a package for
implementing and manipulating DFA.
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4. Global Algorithm

Large-scale MINLPs such as problem [12] require specialized solution algorithm. We propose a specialized
global algorithm for solving the no-convex model to global optimality within a specified tolerance. In the
proposed technique, the upper and lower bounding schemes described in Section 2 can be combined into a
global optimization algorithm. First, the following property can be established:

4.1. Property

As p approaches −∞ ,G
′
approaches GR.

Proof : As p approaches −∞ in (PR)
limp→−∞ △ f = limp→−∞10p = 0
limp→−∞ △ y = xU · limp→−∞ △ f = (x− xL) · limp→−∞10p + xL · limp→−∞ △ f = 0

Thus, since the variables △f and △y are eliminated,this yields G
′
approaches GR.

From Property [7], we can establish that as precision is increased (i.e. p approaches −∞ ), both P
′
and

PR converge to the same value. Assuming P is large enough such that 10p ≥ fU ,we can further state that
P

′
and PR converge such that G

′
= GR = G.

4.2. Global Algorithm

From property, it is noted that the relaxation problems derived from multiparametric disaggregation,
convergence to the global optimal solution of the original problem can only be guaranteed for an infinite
number of discretization points .Thus, the DFA model in section 3 which guarantee that the entire solution
space is uniformly covered is combined to solve the MINLP, The flowchart for the algorithm is given in
Figure 7, and the steps for our algorithm are given as follows:

 

Figure 7: Flowchart for the global algorithm

Step1: Initialization.

Choose p = P = ⌊log10fU⌋.

Step2: Obtain the lower bound.

Solve (PR) to obtain the lower bound GR.
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Step3: Obtain the upper bound.

It is implemented in a two-level optimization framework. In outer level, a population of candidate
binary solutions is generated by randomly selecting from the population of the all possible binary
decisions (see Optimization Algorithm). In inner level, since the binary variables are fixed, the
problem (P

′
) becomes a no convex NLP. This is solved by using any local or global NLP solver. At

last, we update the candidate binary solutions, until the best solution is found in the outer level.

Step4: Update.

If (G
′ −GR)/GR ≤ ε,STOP,the solution is globally optimal.Otherwise,set p = p−1,and return to step

1.

4.3. Optimization Algorithm

In the global algorithm, optimization in the space of binary variables is described in this section. Finite
state method is used to generate the feasible binary variable for the inner NLP. Each candidate or individual
then is sent to an inner loop for optimization, which is very important in the two-level optimization. It is
a combinatorial optimization problem, since their computation time increases exponentially with problem
size.

Step1: Determines the model of structure.

Using the method in Section 3, the automation of valid schedules is created.

Step2: Generate all possible schedules.

Based on the automation, and it is possible to generate all possible schedules accepted by the automa-
ton. The processes are implemented using FSA Utilities [21] that is a package for implementing and
manipulating DFA.

Step3: Determine the binary variable.

When all possible schedules accepted by the automaton are generated, the according possible binary
decisions are generated.

The method is based on a reasonable structure, capturing all possible schedules and removing many
redundant sequences of operations. Initial values of binary variables satisfy the equality constraints and
operation conditions, and therefore represent a feasible operating point.

5. Experimental study

To illustrate the performance of the proposed global algorithm, we consider 13 examples, in which three
examples are taken from the Mouret et al. [12] and the other ten examples are extension of the former
three examples. Tables 15 provide the complete data of these examples. Two state of the art global solvers
GloMIQO [11] and BARON [19] have also been used for comparison. For the global optimization algorithm,
the relative tolerance was set to ε = 10−4 and the maximal runtime is set to CPUMAX = 3600CPUs. The
hardware consisted on an Intel Core i5-4300(1.9 GHz) processor, with 8 GB of RAM running, Windows 8
Professional.

For interpretation of the results ,we use one of the standard metrics given in Dolan and More [4] that can
be used to generate performance profiles, a widely used tool for benchmarking and comparing optimization
software
tp,s ≡ Performance metric for problem p by solver s ∈ S

rp,s ≡
tp,s

min{tp,s′ :s′∈S}

ρs(τ) =
1

np
size{p ∈ P : log2(rp,s) ≤ τ}
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The performance profile for total computational time is given in Figure 8. The results for τ = 0 indicate
that the proposed algorithm has the most wins with a probability of 53.8% that is the fastest solver on given
problems. For τ ̸= 0 ,GloMIQO and BARON are always beaten by the proposed algorithm.
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Figure 8: Performance profile for computational time

The success of the proposed algorithm lies in a comprehensive analysis of the region of the search space
and its capacity to focus the search on the regions with the partial solution. One of the good merits of the
hybrid algorithm is that each candidate solution guaranteed to be feasible by using the DFMmethod, while in
existing algorithms the procedure to generate feasible solution under complex process constraints is very time
costive. The deterministic finite automata (DFA) can easily represent this kind of structure. Furthermore,
the complex process constraints can be very difficult to express with mixed integer programming.

6. Conclusion

This paper has proposed global optimization algorithm for the refinery scheduling problem. The real
advantage of algorithm is based on the DFA model to ensure the satisfaction of individual constraints and
termination in the optimization process, which is translated into an ability to reach considerably lower
optimality gaps and a clearly better computational performance. When compared to commercial solvers,
the results on a set of example problems from the literature have shown that the algorithm exhibited a
considerably better computational performance.

Appendix A

In this section, the MINLP model[12] of refinery scheduling problem is discussed .This problem has been
widely studied from the optimization viewpoint since the work of Lee [8].

Objective Function
The objective is to maximize the gross margins of the distilled crude blends. Let Gcbe the individual gross
margin of crude c.
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MaxG =
∑
i∈T

∑
r∈RD

∑
v∈Ir

∑
c∈C

Gc · Vivc ( A1)

General Constraints ∑
v∈W

Ziv = 1 ( A2)

Siv +Div ≤ H · Ziv ( A3)

V t
iv ≤ V t

v · Ziv ( A4)

V t
iv ≥ V t

v · Ziv ( A5)

∑
c∈C

Vivc = V t
iv ( A6)

Lt
ir = Lt

0r +
∑

j∈T,j<i

∑
v∈Ir

V t
iv −

∑
j∈T,j<i

∑
v∈Or

V t
iv ( A7)

Lirc = L0rc +
∑

j∈T,j<i

∑
v∈Ir

Vivc −
∑

j∈T,j<i

∑
v∈Or

Vivc ( A8)

ND ≤
∑
i∈T

∑
v∈WD

≤ ND ( A9)

Siv +Div ≤ Sjv +H · (1− Zjv) ( A10)

∑
i∈T

∑
v∈Ir

Div = H ( A11)

Siv ≥ Sr · Ziv ( A12)

FRv ·Div ≤ V t
iv ≤ FRv ·Div ( A13)

yvk · V t
iv ≤

∑
c∈C

yckVivc ≤ yvk · V t
iv ( A14)

0 ≤ Lirc ≤ Lt
r ( A15)

Lt
r ≤ Lt

0r +
∑
i∈T

∑
v∈Ir

V t
iv −

∑
i∈T

∑
v∈Or

V t
iv ≤ Lt

r ( A16)

Dr ≤
∑
i∈T

∑
v∈Or

V t
iv ≤ Dr ( A17)

Lt
r ≤ Lt

ir ≤ Lt
r ( A18)

Lirc = fc · Lir ( A19)

Vivc = fc · Viv ( A20)
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Table 1: Vessel Arrival Data for Examples 1-13
Arrival time composition Amount of crude

Vessel 1 Vessel 2 Vessel 3 Vessel 1 Vessel 2 Vessel 3 Vessel 1 Vessel 2 Vessel 3
E1 0 3 6 100%A 100%B 100%C 1000 1000 1000
E2 0 4 7 100%A 100%B 100%C 300 300 300
E3 0 4 8 100%A 100%B 100%C 500 500 500
E4 0 3 7 100%A 100%B 100%C 400 400 400
E5 0 4 7 100%A 100%B 100%C 300 300 300
E6 0 4 8 100%A 100%B 100%C 600 600 600
E7 0 3 6 100%A 100%B 100%C 450 450 450
E8 0 5 10 100%A 100%B 100%C 600 600 600
E9 0 5 9 100%A 100%B 100%C 500 500 500

E10 0 4 10 100%A 100%B 100%C 600 600 600
E11 0 5 9 100%A 100%B 100%C 550 550 550
E12 0 6 10 100%A 100%B 100%C 650 650 650
E13 0 6 11 100%A 100%B 100%C 700 700 700

Table 2: Scheduling horizon,flowrate limit,and number of distillations for Examples 1-13
Example Scheduling horizon Unloading flowrate Transfer flowrate Distillation flowrate Number of distillations

E1 10 [0,500] [0,500] [50,500] 5
E2 11 [0,500] [0,500] [50,500] 5
E3 12 [0,500] [0,500] [50,500] 5
E4 11 [0,500] [0,500] [50,500] 5
E5 11 [0,500] [0,500] [50,500] 5
E6 13 [0,500] [0,500] [20,500] 6
E7 12 [0,500] [0,500] [50,500] 5
E8 15 [0,500] [0,500] [20,500] 7
E9 13 [0,500] [0,500] [50,500] 5

E10 15 [0,500] [0,500] [20,500] 7
E11 14 [0,500] [0,500] [50,500] 5
E12 17 [0,500] [0,500] [10,500] 8
E13 19 [0,500] [0,500] [10,500] 9

Table 3: Storage tank capacity , and initial inventories for example 1-13
Capacity Initial composition Initial amount of crude

Storage Storage Storage Storage Storage Storage Storage Storage Storage
Tank 1 Tank 2 Tank 3 Tank 1 Tank 2 Tank 3 Tank 1 Tank 2 Tank 3

E1 [0,1000] [0,1000] [0,1000] 100%A 100%B 100%C 200 500 700
E2 [0,1000] [0,1000] [0,1000] 100%A 100%C 100%F 300 500 400
E3 [0,1000] [0,1000] [0,1000] 100%D 100%E 100%F 200 200 200
E4 [0,1000] [0,1000] [0,1000] 100%D 100%A 100%C 300 500 300
E5 [0,1000] [0,1000] [0,1000] 100%A 100%E 100%A 500 500 500
E6 [0,1000] [0,1000] [0,1000] 100%A 100%B 100%F 500 500 500
E7 [0,1000] [0,1000] [0,1000] 100%A 100%E 100%F 500 500 500
E8 [0,900] [0,1100] [0,1100] 100%D 100%A 100%B 600 100 500
E9 [0,1000] [0,1000] [0,1000] 100%C 100%A 100%E 400 500 600

E10 [0,1000] [0,1000] [0,1000] 100%A 100%B 100%C 500 300 500
E11 [0,900] [0,1000] [0,1000] 100%A 100%E 100%F 400 500 200
E12 [0,1000] [0,1000] [0,1000] 100%D 100%A 100%B 300 300 500
E13 [0,1000] [0,1100] [0,1100] 100%A 100%B 100%C 200 600 500

Table 4: Storage tank capacity , and initial inventories for example 8-13
Capacity Initial composition Initial amount of crude

Storage Storage Storage Storage Storage Storage Storage Storage Storage
Tank 4 Tank 5 Tank 6 Tank 4 Tank 5 Tank 6 Tank 4 Tank 5 Tank 6

E8 [0,1100] [0,900] [0,900] 100%C 100%E 100%E 400 300 600
E9 [0,1000] [0,1000] [0,900] 100%E 100%F 100%C 500 400 400

E10 [0,1000] [0,900] [0,1000] 100%B 100%A 100%C 300 600 500
E11 [0,1000] [0,1000] [0,1000] 100%A 100%B 100%E 400 500 400
E12 [0,1000] [0,1100] [0,1000] 100%B 100%A 100%B 200 300 500
E13 [0,900] [0,1000] [0,1100] 100%A 100%E 100%F 500 500 400
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Table 5: Charging tank capacity, and initial inventories for example 1-13
Capacity Initial composition

Charging Charging Charging Charging Charging Charging Charging Charging
Tank 1 Tank 2 Tank 3 Tank 4 Tank 1 Tank 2 Tank 3 Tank 4

E1 [0,1000] [0,1000] [0,1000] – 100%D 100%E 100%F –
E2 [0,1000] [0,1000] [0,1000] – 100%D 100%E 100%G –
E3 [0,1000] [0,1000] [0,1000] – 100%G 100%E 100%F –
E4 [0,1000] [0,1000] [0,1000] – 100%E 100%D 100%F –
E5 [0,1000] [0,1000] [0,1000] – 100%F 100%G 100%H –
E6 [0,1000] [0,1000] [0,1000] – 100%F 100%D 100%E –
E7 [0,1000] [0,1000] [0,1000] – 100%F 100%E 100%G –
E8 [0,800] [0,800] [0,800] [0,800] 100%F 100%G 100%H 100%E
E9 [0,1000] [0,1000] [0,1000] [0,1000] 100%G 100%E 100%H 100%F

E10 [0,1000] [0,1000] [0,1000] [0,1000] 100%E 100%G 100%D 100%H
E11 [0,900] [0,900] [0,900] [0,900] 100%D 100%F 100%G 100%E
E12 [0,1000] [0,1000] [0,1000] [0,1000] 100%E 100%D 100%G 100%F
E13 [0,800] [0,800] [0,800] [0,800] 100%F 100%G 100%H 100%E

Table 6: Initial amount of crude for example 1-13
Initial amount of crude

E1 Charging Charging Charging Charging
Tank 1 Tank 2 Tank 3 Tank 4

E2 300 500 300 –
E3 500 300 500 –
E4 300 500 300 –
E5 200 500 500 –
E6 500 300 200 –
E7 300 200 200 –
E8 300 500 100 –
E9 50 300 300 500

E10 200 400 500 300
E11 200 300 500 300
E12 500 300 500 300
E13 400 300 200 500
E1 200 400 500 400

Table 7: Propertys and gross margin for crudes for Examples 1-13
Property 1 Property 2 Gross margin

Crude Crude Crude Crude Crude Crude Crude Crude Crude Crude Crude Crude
E F G H E F G H E F G H

E1 0.03 0.0433 – – 0.23 0.133 – – 3 4.33 – –
E2 0.05 0.08 0.03 – 0.3 0.23 0.186 – 3 3.8 2.9 –
E3 0.05 0.08 0.03 – – – – – 5 8 3 –
E4 0.03 0.0433 – – 0.25 0.155 – – 4 6 – –
E5 0.075 0.0317 0.0483 0.0633 0.31 0.1 0.15 0.133 6 5.8 4 5
E6 0.03 0.0433 – – – – – – 5.5 3.92 – –
E7 0.05 0.08 0.03 – 7 6 4.2 –
E8 0.075 0.0317 0.0483 0.0633 – – – – 7.5 3.17 4.83 6.33
E9 0.075 0.0317 0.0483 0.0633 0.19 0.098 0.21 0.12 6 5.14 2.5 4.9

E10 0.075 0.0317 0.0483 0.0633 – – – – 4.1 4.8 3 4
E11 0.05 0.08 0.03 – – – – – 8 5 3.6 –
E12 0.05 0.08 0.03 – 0.22 0.15 – – 5.5 5.5 4 –
E13 0.075 0.0317 0.0483 0.0633 – – – – 7 3 5 3
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