On the Ulam stability of the Cauchy-Jensen equation and the additive-quadratic equation

Jae-Hyeong Bae ${ }^{\text {a }}$, Won-Gil Park ${ }^{\text {b,* }}$
${ }^{a}$ Humanitas College, Kyung Hee University, Yongin 446-701, Republic of Korea.
${ }^{b}$ Department of Mathematics Education, College of Education, Mokwon University, Daejeon 302-729, Republic of Korea.

Abstract

In this paper, we investigate the Ulam stability of the functional equations $$
2 f\left(x+y, \frac{z+w}{2}\right)=f(x, z)+f(x, w)+f(y, z)+f(y, w)
$$

and

$$
f(x+y, z+w)+f(x+y, z-w)=2 f(x, z)+2 f(x, w)+2 f(y, z)+2 f(y, w)
$$

in paranormed spaces. ©(C2015 All rights reserved.
Keywords: Cauchy-Jensen mapping, additive-quadratic mapping, paranormed space.
2010 MSC: 39B52, 39B82.

1. Introduction

In 1940, S. M. Ulam proposed the stability problem (see [10]):
Let G_{1} be a group and let G_{2} be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon>0$, does there exist a $\delta>0$ such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality $d(h(x y), h(x) h(y))<\delta$ for all $x, y \in G_{1}$ then there is a homomorphism $H: G_{1} \rightarrow G_{2}$ with $d(h(x), H(x))<\varepsilon$ for all $x \in G_{1}$?

In 1941, this problem was solved by D. H. Hyers [3] in the case of Banach space. Thereafter, we call that type the Hyers-Ulam stability. In 1978, Th. M. Rassias [9] extended the Hyers-Ulam stability by considering variables. It also has been generalized to the function case by P. Găvruta [2]. For more details on this topic, we also refer to [1, 4, 6] and references therein.

We recall some basic facts concerning Fréchet spaces (see [11]).

[^0]Definition 1.1. Let X be a vector space. A paranorm on X is a function $P: X \rightarrow \mathbb{R}$ such that for all $x, y \in X$
(i) $P(0)=0$;
(ii) $P(-x)=P(x)$;
(iii) $P(x+y) \leq P(x)+P(y)$ (triangle inequality);
(iv) If $\left\{t_{n}\right\}$ is a sequence of scalars with $t_{n} \rightarrow t$ and $\left\{x_{n}\right\} \subset X$ with $P\left(x_{n}-x\right) \rightarrow 0$, then $P\left(t_{n} x_{n}-t x\right) \rightarrow 0$ (continuity of scalar multiplication).

The pair (X, P) is called a paranormed space if P is a paranorm on X. Note that

$$
P(n x) \leq n P(x)
$$

for all $n \in \mathbb{N}$ and all $x \in(X, P)$. The paranorm P on X is called total if, in addition, P satisfies $(\mathrm{v}) P(x)=0$ implies $x=0$. A Fréchet space is a total and complete paranormed space. Note that each seminorm P on X is a paranorm, but the converse need not be true. In recent, C. Park [5] obtained some stability results in paranormed spaces.

Let X and Y be vector spaces. A mapping $f: X \times X \rightarrow Y$ is called a Cauchy-Jensen mapping (respectively, additive-quadratic mapping) if it satisfies the system of equations

$$
f(x+y, z)=f(x, z)+f(y, z), 2 f\left(x, \frac{y+z}{2}\right)=f(x, y)+f(x, z)
$$

(respectively, $f(x+y, z)=f(x, z)+f(y, z), f(x, y+z)+f(x, y-z)=2 f(x, y)+2 f(x, z))$.
The authors [7, 8] considered the following functional equations:

$$
\begin{equation*}
2 f\left(x+y, \frac{z+w}{2}\right)=f(x, z)+f(x, w)+f(y, z)+f(y, w) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x+y, z+w)+f(x+y, z-w)=2 f(x, z)+2 f(x, w)+2 f(y, z)+2 f(y, w) \tag{1.2}
\end{equation*}
$$

It is easy to show that the functions $f(x, y)=a x^{2}+b x$ and $f(x, y)=a x y^{2}$ satisfy the functional equations (1.1) and (1.2), respectively. Also, they solved the solutions of (1.1) and (1.2).

From now on, assume that (X, P) is a Fréchet space and $(Y,\|\cdot\|)$ is a Banach space.
 spaces.

2. Ulam stability of the Cauchy-Jensen functional equation (1.1)

Theorem 2.1. Let r, θ be positive real numbers with $r>\log _{2} 6$, and let $f: Y \times Y \rightarrow X$ be a mapping satisfying $f(x, 0)=0$ for all $x \in Y$ such that

$$
\begin{equation*}
P\left(2 f\left(x+y, \frac{z+w}{2}\right)-f(x, z)-f(x, w)-f(y, z)-f(y, w)\right) \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}+\|w\|^{r}\right) \tag{2.1}
\end{equation*}
$$

for all $x, y, z, w \in Y$. Then there exists a unique mapping $F: Y \times Y \rightarrow X$ satisfying (1.1) such that

$$
\begin{equation*}
P(2 f(x, y)-F(x, y)) \leq 2 \theta\left(\frac{15}{2^{r}-6}\|x\|^{r}+\frac{13+2 \cdot 3^{r}}{3^{r}-6}\|y\|^{r}\right) \tag{2.2}
\end{equation*}
$$

for all $x, y \in Y$.

Proof. Letting $y=x$ in 2.1, we gain

$$
\begin{equation*}
P\left(2 f\left(2 x, \frac{z+w}{2}\right)-2 f(x, z)-2 f(x, w)\right) \leq \theta\left(2\|x\|^{r}+\|z\|^{r}+\|w\|^{r}\right) \tag{2.3}
\end{equation*}
$$

for all $x, z, w \in Y$. Letting $w=-z$ in (2.3), we get

$$
\begin{equation*}
P(2 f(x, z)+2 f(x,-z)) \leq 2 \theta\left(\|x\|^{r}+\|z\|^{r}\right) \tag{2.4}
\end{equation*}
$$

for all $x, z \in Y$. Replacing z by $-z$ and w by $-z$ in (2.3), we have

$$
\begin{equation*}
P(2 f(2 x,-z)-4 f(x,-z)) \leq 2 \theta\left(\|x\|^{r}+\|z\|^{r}\right) \tag{2.5}
\end{equation*}
$$

for all $x, z \in Y$. By (2.4) and (2.5), we obtain

$$
\begin{aligned}
P(4 f(x, z)+2 f(2 x,-z)) & \leq 2 P(2 f(x, z)+2 f(x,-z))+P(2 f(2 x,-z)-4 f(x,-z)) \\
& \leq 6 \theta\left(\|x\|^{r}+\|z\|^{r}\right)
\end{aligned}
$$

for all $x, z \in Y$. Putting $w=-3 z$ in (2.3), we gain

$$
P(2 f(2 x,-z)-2 f(x, z)-2 f(x,-3 z)) \leq \theta\left[2\|x\|^{r}+\left(1+3^{r}\right)\|z\|^{r}\right]
$$

for all $x, z \in Y$. By the above two inequalities, we see that

$$
\begin{equation*}
P(6 f(x, z)+2 f(x,-3 z)) \leq \theta\left[8\|x\|^{r}+\left(7+3^{r}\right)\|z\|^{r}\right] \tag{2.6}
\end{equation*}
$$

for all $x, z \in Y$. Replacing z by $3 z$ in (2.5), we gain

$$
P(2 f(2 x,-3 z)-4 f(x,-3 z)) \leq 2 \theta\left(\|x\|^{r}+3^{r}\|z\|^{r}\right)
$$

for all $x, z \in Y$. By (2.6) and the above inequality, we get

$$
\begin{aligned}
P(12 f(x, z)+2 f(2 x,-3 z)) & \leq 2 P(6 f(x, z)+2 f(x,-3 z))+P(2 f(2 x,-3 z)-4 f(x,-3 z)) \\
& \leq 2 \theta\left[9\|x\|^{r}+\left(7+2 \cdot 3^{r}\right)\|z\|^{r}\right]
\end{aligned}
$$

for all $x, z \in Y$. Replacing z by $-z$ in the above inequality, we have

$$
\begin{aligned}
P(12 f(x,-z)+2 f(2 x, 3 z)) & \leq 2 P(6 f(x,-z)+2 f(x, 3 z))+P(2 f(2 x, 3 z)-4 f(x, 3 z)) \\
& \leq 2 \theta\left[9\|x\|^{r}+\left(7+2 \cdot 3^{r}\right)\|z\|^{r}\right]
\end{aligned}
$$

for all $x, z \in Y$. By (2.4) and the above inequality, we obtain

$$
\begin{aligned}
P(12 f(x, z)-2 f(2 x, 3 z)) & \leq 6 P(2 f(x, z)+2 f(x,-z))+P(-12 f(x,-z)-2 f(2 x, 3 z)) \\
& \leq 2 \theta\left[15\|x\|^{r}+\left(13+2 \cdot 3^{r}\right)\|z\|^{r}\right]
\end{aligned}
$$

for all $x, z \in Y$. Replacing x by $\frac{x}{2^{j+1}}$ and z by $\frac{z}{3^{j+1}}$ in the above inequality, we see that

$$
P\left(12 f\left(\frac{x}{2^{j+1}}, \frac{z}{3^{j+1}}\right)-2 f\left(\frac{x}{2^{j}}, \frac{z}{3^{j}}\right)\right) \leq 2 \theta\left[\frac{15}{2^{(j+1) r}}\|x\|^{r}+\frac{13+2 \cdot 3^{r}}{3^{(j+1) r}}\|z\|^{r}\right]
$$

for all nonnegative integers j and all $x, z \in Y$. For given integers $l, m(0 \leq l<m)$, we obtain that

$$
\begin{align*}
P\left(2 \cdot 6^{m} f\left(\frac{x}{2^{m}}, \frac{z}{3^{m}}\right)-2 \cdot 6^{l} f\left(\frac{x}{2^{l}}, \frac{z}{3^{l}}\right)\right) & \leq \sum_{j=l}^{m-1} P\left(2 \cdot 6^{j+1} f\left(\frac{x}{2^{j+1}}, \frac{z}{3^{j+1}}\right)-2 \cdot 6^{j} f\left(\frac{x}{2^{j}}, \frac{z}{3^{j}}\right)\right) \\
& \leq 2 \theta \sum_{j=l}^{m-1} 6^{j}\left[\frac{15}{2^{(j+1) r}}\|x\|^{r}+\frac{13+2 \cdot 3^{r}}{3^{(j+1) r}}\|z\|^{r}\right] \tag{2.7}
\end{align*}
$$

for all $x, z \in Y$. By (2.7), the sequence $\left\{2 \cdot 6^{j} f\left(\frac{x}{2^{j}}, \frac{z}{3^{j}}\right)\right\}$ is a Cauchy sequence in X for all $x, z \in Y$. Since X is complete, the sequence $\left\{2 \cdot 6^{j} f\left(\frac{x}{2^{j}}, \frac{z}{3^{j}}\right)\right\}$ converges for all $x, z \in Y$. Define $F: Y \times Y \rightarrow X$ by $F(x, z):=\lim _{j \rightarrow \infty} 2 \cdot 6^{j} f\left(\frac{x}{2^{j}}, \frac{z}{3^{j}}\right)$ for all $x, z \in Y$. By 2.1), we see that

$$
\begin{aligned}
& P\left(2 F\left(x+y, \frac{z+w}{2}\right)-F(x, z)-F(x, w)-F(y, z)-F(y, w)\right) \\
& \quad=\lim _{j \rightarrow \infty} P\left(6^{j}\left[4 f\left(\frac{x+y}{2^{j}}, \frac{z+w}{3^{j}}\right)-2 f\left(\frac{x}{2^{j}}, \frac{z}{3^{j}}\right)-2 f\left(\frac{x}{2^{j}}, \frac{w}{3^{j}}\right)-2 f\left(\frac{y}{2^{j}}, \frac{z}{3^{j}}\right)-2 f\left(\frac{y}{2^{j}}, \frac{w}{3^{j}}\right)\right]\right) \\
& \quad \leq \lim _{j \rightarrow \infty} 2 \cdot 6^{j} P\left(2 f\left(\frac{x+y}{2^{j}}, \frac{z+w}{3^{j}}\right)-f\left(\frac{x}{2^{j}}, \frac{z}{3^{j}}\right)-f\left(\frac{x}{2^{j}}, \frac{w}{3^{j}}\right)-f\left(\frac{y}{2^{j}}, \frac{z}{3^{j}}\right)-f\left(\frac{y}{2^{j}}, \frac{w}{3^{j}}\right)\right) \\
& \quad \leq 2 \theta \lim _{j \rightarrow \infty} 6^{j}\left(\frac{\|x\|^{r}+\|y\|^{r}}{2^{j r}}+\frac{\|z\|^{r}+\|w\|^{r}}{3^{j r}}\right)=0
\end{aligned}
$$

for all $x, y, z, w \in Y$. Since X is total, F satisfies (1.1). Setting $l=0$ and taking $m \rightarrow \infty$ in (2.7), one can obtain the inequality (2.2).

Let $F^{\prime}: Y \times Y \rightarrow X$ be another mapping satisfying (1.1) and 2.2). By [7], there exist bi-additive mappings $B, B^{\prime}: Y \times Y \rightarrow X$ and additive mappings $A, A^{\prime}: Y \rightarrow X$ such that $F(x, y)=B(x, y)+A(x)$ and $F^{\prime}(x, y)=B^{\prime}(x, y)+A^{\prime}(x)$ for all $x, y \in Y$. Since $r>\log _{2} 6$, we obtain that

$$
\begin{aligned}
P\left(F(x, y)-F^{\prime}(x, y)\right) & =P\left(6^{n}\left[B\left(\frac{x}{2^{n}}, \frac{y}{3^{n}}\right)+A\left(\frac{x}{2^{n}}\right)-B^{\prime}\left(\frac{x}{2^{n}}, \frac{y}{3^{n}}\right)-A^{\prime}\left(\frac{x}{2^{n}}\right)\right]\right) \\
& \leq 6^{n}\left[P\left(F\left(\frac{x}{2^{n}}, \frac{y}{3^{n}}\right)-2 f\left(\frac{x}{2^{n}}, \frac{y}{3^{n}}\right)\right)+P\left(2 f\left(\frac{x}{2^{n}}, \frac{y}{3^{n}}\right)-F^{\prime}\left(\frac{x}{2^{n}}, \frac{y}{3^{n}}\right)\right)\right] \\
& \leq 4 \cdot 6^{n} \theta\left(\frac{15}{\left(2^{r}-6\right) 2^{n r}}\|x\|^{r}+\frac{13+2 \cdot 3^{r}}{\left(3^{r}-6\right) 3^{n r}}\|y\|^{r}\right) \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x, y \in Y$. Hence F is a unique mapping satisfying (1.1) and 2.2), as desired.

Theorem 2.2. Let r be a positive real number with $r<\log _{3} 6$, and let $f: X \times X \rightarrow Y$ be a mapping satisfying $f(x, 0)=0$ for all $x \in X$ such that

$$
\begin{equation*}
\left\|2 f\left(x+y, \frac{z+w}{2}\right)-f(x, z)-f(x, w)-f(y, z)-f(y, w)\right\| \leq P(x)^{r}+P(y)^{r}+P(z)^{r}+P(w)^{r} \tag{2.8}
\end{equation*}
$$

for all $x, y, z, w \in X$. Then there exists a unique mapping $F: X \times X \rightarrow Y$ satisfying (1.1) such that

$$
\begin{equation*}
\|f(x, y)-F(x, y)\| \leq \frac{18}{6-2^{r}} P(x)^{r}+\frac{15+3^{r+1}}{6-3^{r}} P(y)^{r} \tag{2.9}
\end{equation*}
$$

for all $x, y \in X$.

Proof. Letting $y=x$ in 2.8, we gain

$$
\begin{equation*}
\left\|2 f\left(2 x, \frac{z+w}{2}\right)-2 f(x, z)-2 f(x, w)\right\| \leq 2 P(x)^{r}+P(z)^{r}+P(w)^{r} \tag{2.10}
\end{equation*}
$$

for all $x, z, w \in X$. Putting $w=-z$ in 2.10, we get

$$
\begin{equation*}
\|2 f(x, z)+2 f(x,-z)\| \leq 2\left[P(x)^{r}+P(z)^{r}\right] \tag{2.11}
\end{equation*}
$$

for all $x, z \in X$. Replacing z by $-z$ and w by $-z$ in 2.10, we have

$$
\begin{equation*}
\|f(2 x,-z)-2 f(x,-z)\| \leq 2\left[P(x)^{r}+P(z)^{r}\right] \tag{2.12}
\end{equation*}
$$

for all $x, z \in X$. By (2.11) and (2.12), we obtain

$$
\begin{equation*}
\|f(2 x,-z)+2 f(x, z)\| \leq 4\left[P(x)^{r}+P(z)^{r}\right] \tag{2.13}
\end{equation*}
$$

for all $x, z \in X$. Setting $w=-3 z$ in 2.10 , we gain

$$
\|2 f(2 x,-z)-2 f(x, z)-2 f(x,-3 z)\| \leq 2 P(x)^{r}+\left(1+3^{r}\right) P(z)^{r}
$$

for all $x, z \in X$. By (2.13) and the above inequality, we get

$$
\begin{equation*}
\|6 f(x, z)+2 f(x,-3 z)\| \leq 10 P(x)^{r}+\left(9+3^{r}\right) P(z)^{r} \tag{2.14}
\end{equation*}
$$

for all $x, z \in X$. Replacing z by $3 z$ in (2.12), we have

$$
\|f(2 x,-3 z)-2 f(x,-3 z)\| \leq 2\left[P(x)^{r}+3^{r} P(z)^{r}\right]
$$

for all $x, z \in X$. By (2.14) and the above inequality, we gain

$$
\|6 f(x, z)+f(2 x,-3 z)\| \leq 12 P(x)^{r}+\left(9+3^{r+1}\right) P(z)^{r}
$$

for all $x, z \in X$. Replacing z by $-z$ in the above inequality, we get

$$
\|6 f(x,-z)+f(2 x, 3 z)\| \leq 12 P(x)^{r}+\left(9+3^{r+1}\right) P(z)^{r}
$$

for all $x, z \in X$. By (2.11) and the above inequality, we have

$$
\|6 f(x, z)-f(2 x, 3 z)\| \leq 18 P(x)^{r}+\left(15+3^{r+1}\right) P(z)^{r}
$$

for all $x, z \in X$. Replacing x by $2^{j} x$ and z by $3^{j} z$ in the above inequality and dividing 6^{j+1}, we see that

$$
\left\|\frac{1}{6^{j}} f\left(2^{j} x, 3^{j} z\right)-\frac{1}{6^{j+1}} f\left(2^{j+1} x, 3^{j+1} z\right)\right\| \leq \frac{1}{6^{j+1}}\left[18 \cdot 2^{j r} P(x)^{r}+\left(15+3^{r+1}\right) 3^{j r} P(z)^{r}\right]
$$

for all nonnegative integers j and all $x, z \in X$. For given integers $l, m(0 \leq l<m)$, we obtain that

$$
\begin{equation*}
\left\|\frac{1}{6^{l}} f\left(2^{l} x, 3^{l} z\right)-\frac{1}{6^{m}} f\left(2^{m} x, 3^{m} z\right)\right\| \leq \sum_{j=l}^{m-1} \frac{1}{6^{j+1}}\left[18 \cdot 2^{j r} P(x)^{r}+\left(15+3^{r+1}\right) 3^{j r} P(z)^{r}\right] \tag{2.15}
\end{equation*}
$$

for all $x, z \in X$. By 2.15), the sequence $\left\{\frac{1}{6^{j}} f\left(2^{j} x, 3^{j} y\right)\right\}$ is a Cauchy sequence for all $x, y \in X$. Since Y is complete, the sequence $\left\{\frac{1}{6^{j}} f\left(2^{j} x, 3^{j} y\right)\right\}$ converges for all $x, y \in X$. Define $F: X \times X \rightarrow Y$ by $F(x, y):=\lim _{j \rightarrow \infty} \frac{1}{6^{j}} f\left(2^{j} x, 3^{j} y\right)$ for all $x, y \in X$.

By (2.8), we see that

$$
\begin{aligned}
& \frac{1}{6^{j}}\left\|2 f\left(2^{j}(x+y), \frac{3^{j}(z+w)}{2}\right)-f\left(2^{j} x, 3^{j} z\right)-f\left(2^{j} x, 3^{j} w\right)-f\left(2^{j} y, 3^{j} z\right)-f\left(2^{j} y, 3^{j} w\right)\right\| \\
& \quad \leq \frac{1}{6^{j}}\left[P\left(2^{j} x\right)^{r}+P\left(2^{j} y\right)^{r}+P\left(3^{j} z\right)^{r}+P\left(3^{j} w\right)^{r}\right] \\
& \quad \leq \frac{1}{6^{j}}\left(2^{r j}\left[P(x)^{r}+P(y)^{r}\right]+3^{r j}\left[P(z)^{r}+P(w)^{r}\right]\right)
\end{aligned}
$$

for all $x, y, z, w \in X$. Letting $j \rightarrow \infty, F$ satisfies (1.1). By Theorem 4 in [7, F is a Cauchy-Jensen mapping. Setting $l=0$ and taking $m \rightarrow \infty$ in (2.15), one can obtain the inequality (2.9). Let $G: X \times X \rightarrow Y$ be another Cauchy-Jensen mapping satisfying (2.9). Since $0<r<\log _{3} 6$, we obtain that

$$
\begin{aligned}
\|F(x, y)-G(x, y)\|= & \frac{1}{2^{n}}\left\|F\left(2^{n} x, y\right)-F\left(2^{n} x, 0\right)+G\left(2^{n} x, 0\right)-G\left(2^{n} x, y\right)\right\| \\
= & \frac{1}{6^{n}}\left\|F\left(2^{n} x, 3^{n} y\right)-F\left(2^{n} x, 0\right)+G\left(2^{n} x, 0\right)-G\left(2^{n} x, 3^{n} y\right)\right\| \\
\leq & \frac{1}{6^{n}}\left\|F\left(2^{n} x, 3^{n} y\right)-F\left(2^{n} x, 0\right)-f\left(2^{n} x, 3^{n} y\right)+f\left(2^{n} x, 0\right)\right\| \\
& +\frac{1}{6^{n}}\left\|-f\left(2^{n} x, 0\right)+f\left(2^{n} x, 3^{n} y\right)+G\left(2^{n} x, 0\right)-G\left(2^{n} x, 3^{n} y\right)\right\| \\
\leq & \frac{1}{6^{n}}\left(\left\|F\left(2^{n} x, 3^{n} y\right)-f\left(2^{n} x, 3^{n} y\right)\right\|+\left\|-F\left(2^{n} x, 0\right)+f\left(2^{n} x, 0\right)\right\|\right) \\
& +\frac{1}{6^{n}}\left(\left\|-f\left(2^{n} x, 0\right)+G\left(2^{n} x, 0\right)\right\|+\left\|f\left(2^{n} x, 3^{n} y\right)-G\left(2^{n} x, 3^{n} y\right)\right\|\right) \\
\leq & \frac{2}{6^{n}}\left[\frac{36 \cdot 2^{n r}}{6-2^{r}} P(x)^{r}+\frac{3^{n r}\left(15+3^{r+1}\right)}{6-3^{r}} P(y)^{r}\right] \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x, y \in X$. Hence F is a unique Cauchy-Jensen mapping, as desired.

3. Ulam stability of the additive-quadratic functional equation (1.2)

Theorem 3.1. Let r, θ be positive real numbers with $r>\log _{2} 8=3$, and let $f: Y \times Y \rightarrow X$ be a mapping satisfying $f(x, 0)=0$ for all $x \in Y$ such that

$$
\begin{align*}
& P(f(x+y, z+w)+f(x+y, z-w)-2 f(x, z)-2 f(x, w)-2 f(y, z)-2 f(y, w)) \\
& \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}+\|w\|^{r}\right) \tag{3.1}
\end{align*}
$$

for all $x, y, z, w \in Y$. Then there exists a unique mapping $F: Y \times Y \rightarrow X$ satisfying (1.2) such that

$$
\begin{equation*}
P(f(x, y)-F(x, y)) \leq \frac{2 \theta}{2^{r}-8}\left(\|x\|^{r}+\|y\|^{r}\right) \tag{3.2}
\end{equation*}
$$

for all $x, y \in Y$.

Proof. Letting $y=x$ and $w=z$ in (3.1), we gain

$$
P(f(2 x, 2 z)-8 f(x, z)) \leq 2 \theta\left(\|x\|^{r}+\|z\|^{r}\right)
$$

for all $x, z \in Y$. Replacing x by $\frac{x}{2^{j+1}}$ and z by $\frac{z}{2^{j+1}}$ in the above inequality, we see that

$$
P\left(f\left(\frac{x}{2^{j}}, \frac{z}{2^{j}}\right)-8 f\left(\frac{x}{2^{j+1}}, \frac{z}{2^{j+1}}\right)\right) \leq \frac{2 \theta}{2^{(j+1) r}}\left(\|x\|^{r}+\|z\|^{r}\right)
$$

for all nonnegative integers j and all $x, z \in Y$. Thus we obtain that

$$
\begin{aligned}
& P\left(8^{j} f\left(\frac{x}{2^{j}}, \frac{z}{2^{j}}\right)-8^{j+1} f\left(\frac{x}{2^{j+1}}, \frac{z}{2^{j+1}}\right)\right) \\
& \leq 8^{j} P\left(f\left(\frac{x}{2^{j}}, \frac{z}{2^{j}}\right)-8 f\left(\frac{x}{2^{j+1}}, \frac{z}{2^{j+1}}\right)\right) \leq \frac{2}{2^{r}}\left(\frac{8}{2^{r}}\right)^{j} \theta\left(\|x\|^{r}+\|z\|^{r}\right)
\end{aligned}
$$

for all nonnegative integers j and all $x, z \in Y$. For given integers $l, m(0 \leq l<m)$, we have

$$
\begin{equation*}
P\left(8^{l} f\left(\frac{x}{2^{l}}, \frac{z}{2^{l}}\right)-8^{m} f\left(\frac{x}{2^{m}}, \frac{z}{2^{m}}\right)\right) \leq \sum_{j=l}^{m-1} \frac{2}{2^{r}}\left(\frac{8}{2^{r}}\right)^{j} \theta\left(\|x\|^{r}+\|z\|^{r}\right) \tag{3.3}
\end{equation*}
$$

for all $x, z \in Y$. By (3.3), the sequence $\left\{8^{j} f\left(\frac{x}{2^{j}}, \frac{z}{2^{j}}\right)\right\}$ is a Cauchy sequence in X for all $x, z \in Y$. Since X is complete, the sequence $\left\{8^{j} f\left(\frac{x}{2^{j}}, \frac{z}{2^{j}}\right)\right\}$ converges for all $x, z \in Y$. Define $F: Y \times Y \rightarrow X$ by $F(x, z):=\lim _{j \rightarrow \infty} 8^{j} f\left(\frac{x}{2^{j}}, \frac{z}{2^{j}}\right)$ for all $x, z \in Y$. By (3.1), we see that

$$
\begin{aligned}
& P(F(x+y, z+w)+F(x+y, z-w)-2 F(x, z)-2 F(x, w)-2 F(y, z)-2 F(y, w)) \\
&= \lim _{j \rightarrow \infty} P\left(8 ^ { j } \left[f\left(\frac{x+y}{2^{j}}, \frac{z+w}{2^{j}}\right)+f\left(\frac{x+y}{2^{j}}, \frac{z-w}{2^{j}}\right)\right.\right. \\
&\left.\left.\quad-2 f\left(\frac{x}{2^{j}}, \frac{z}{2^{j}}\right)-2 f\left(\frac{x}{2^{j}}, \frac{w}{2^{j}}\right)-2 f\left(\frac{y}{2^{j}}, \frac{z}{2^{j}}\right)-2 f\left(\frac{y}{2^{j}}, \frac{w}{2^{j}}\right)\right]\right) \\
& \leq \lim _{j \rightarrow \infty} 8^{j} P\left(f\left(\frac{x+y}{2^{j}}, \frac{z+w}{2^{j}}\right)+f\left(\frac{x+y}{2^{j}}, \frac{z-w}{2^{j}}\right)\right. \\
&\left.\quad-2 f\left(\frac{x}{2^{j}}, \frac{z}{2^{j}}\right)-2 f\left(\frac{x}{2^{j}}, \frac{w}{2^{j}}\right)-2 f\left(\frac{y}{2^{j}}, \frac{z}{2^{j}}\right)-2 f\left(\frac{y}{2^{j}}, \frac{w}{2^{j}}\right)\right) \\
& \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}+\|w\|^{r}\right) \lim _{j \rightarrow \infty}\left(\frac{8}{2^{r}}\right)^{j}=0
\end{aligned}
$$

for all $x, y, z, w \in Y$. Since X is total, F satisfies (1.2). Setting $l=0$ and taking $m \rightarrow \infty$ in (3.3), one can obtain the inequality (3.2).

Let $F^{\prime}: Y \times Y \rightarrow X$ be another mapping satisfying (1.2) and (3.2). By [8], there exist multi-additive mappings $M, M^{\prime}: Y \times Y \times Y \rightarrow X$ such that $F(x, y)=M(x, y, y), F^{\prime}(x, y)=M^{\prime}(x, y, y), M(x, y, z)=$ $M(x, z, y)$ and $M^{\prime}(x, y, z)=M^{\prime}(x, z, y)$ for all $x, y, z \in Y$. Since $r>3$, we obtain that

$$
\begin{aligned}
P\left(F(x, y)-F^{\prime}(x, y)\right) & =P\left(8^{n}\left[M\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{y}{2^{n}}\right)-M^{\prime}\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{y}{2^{n}}\right)\right]\right) \\
& \leq 8^{n} P\left(M\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{y}{2^{n}}\right)-M^{\prime}\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{y}{2^{n}}\right)\right) \\
& \leq 8^{n}\left[P\left(F\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)-f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)\right)+P\left(f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)-F^{\prime}\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)\right)\right] \\
& \leq\left(\frac{8}{2^{r}}\right)^{n} \frac{4 \theta}{2^{r}-8}\left(\|x\|^{r}+\|y\|^{r}\right) \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x, y \in Y$. Hence F is a unique mapping satisfying (1.2) and (3.2), as desired.

Theorem 3.2. Let r be a positive real number with $r<\log _{2} 8=3$, and let $f: X \times X \rightarrow Y$ be a mapping satisfying $f(x, 0)=0$ for all $x \in X$ such that

$$
\begin{align*}
\| f(x+y, z+w) & +f(x+y, z-w)-2 f(x, z)-2 f(x, w)-2 f(y, z)-2 f(y, w) \| \\
& \leq P(x)^{r}+P(y)^{r}+P(z)^{r}+P(w)^{r} \tag{3.4}
\end{align*}
$$

for all $x, y, z, w \in X$. Then there exists a unique mapping $F: X \times X \rightarrow Y$ satisfying (1.2) such that

$$
\begin{equation*}
\|f(x, y)-F(x, y)\| \leq \frac{2}{8-2^{r}}\left[P(x)^{r}+P(y)^{r}\right] \tag{3.5}
\end{equation*}
$$

for all $x, y \in X$.

Proof. Letting $y=x$ and $w=z$ in (3.4), we gain

$$
\|f(2 x, 2 z)-8 f(x, z)\| \leq 2\left[P(x)^{r}+P(z)^{r}\right]
$$

for all $x, z \in X$. Replacing x by $2^{j} x$ and z by $2^{j} z$ in the above inequality, we see that

$$
\left\|\frac{1}{8} f\left(2^{j+1} x, 2^{j+1} z\right)-f\left(2^{j} x, 2^{j} z\right)\right\| \leq \frac{2^{j r}}{4}\left[P(x)^{r}+P(z)^{r}\right]
$$

for all nonnegative integers j and all $x, z \in X$. Thus we obtain that

$$
\left\|\frac{1}{8^{j+1}} f\left(2^{j+1} x, 2^{j+1} z\right)-\frac{1}{8^{j}} f\left(2^{j} x, 2^{j} z\right)\right\| \leq \frac{1}{4}\left(\frac{2^{r}}{8}\right)^{j}\left[P(x)^{r}+P(z)^{r}\right]
$$

for all nonnegative integers j and all $x, z \in X$. For given integers $l, m(0 \leq l<m)$, we have

$$
\begin{align*}
\left\|\frac{1}{8^{l}} f\left(2^{l} x, 2^{l} z\right)-\frac{1}{8^{m}} f\left(2^{m} x, 2^{m} z\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|\frac{1}{8^{j}} f\left(2^{j} x, 2^{j} z\right)-\frac{1}{8^{j+1}} f\left(2^{j+1} x, 2^{j+1} z\right)\right\| \\
& \leq \sum_{j=l}^{m-1} \frac{1}{4}\left(\frac{2^{r}}{8}\right)^{j}\left[P(x)^{r}+P(z)^{r}\right] \tag{3.6}
\end{align*}
$$

for all $x, z \in X$. By (3.6), the sequence $\left\{\frac{1}{8^{j}} f\left(2^{j} x, 2^{j} z\right)\right\}$ is a Cauchy sequence in Y for all $x, z \in X$. Since Y is complete, the sequence $\left\{\frac{1}{8^{j}} f\left(2^{j} x, 2^{j} z\right)\right\}$ converges for all $x, z \in X$. Define $F: X \times X \rightarrow Y$ by $F(x, z):=\lim _{j \rightarrow \infty} \frac{1}{8^{j}} f\left(2^{j} x, 2^{j} z\right)$ for all $x, z \in X$. By (3.4), we see that

$$
\begin{aligned}
& \| F(x+y, z+w)+ F(x+y, z-w)-2 F(x, z)-2 F(x, w)-2 F(y, z)-2 F(y, w) \| \\
&= \lim _{j \rightarrow \infty} \| \frac{1}{8^{j}}\left[f\left(2^{j}(x+y), 2^{j}(z+w)\right)+f\left(2^{j}(x+y), 2^{j}(z-w)\right)\right. \\
&\left.\quad-2 f\left(2^{j} x, 2^{j} z\right)-2 f\left(2^{j} x, 2^{j} w\right)-2 f\left(2^{j} y, 2^{j} z\right)-2 f\left(2^{j} y, 2^{j} w\right)\right] \| \\
&= \lim _{j \rightarrow \infty} \frac{1}{8^{j}} \| f\left(2^{j}(x+y), 2^{j}(z+w)\right)+f\left(2^{j}(x+y), 2^{j}(z-w)\right) \\
& \quad-2 f\left(2^{j} x, 2^{j} z\right)-2 f\left(2^{j} x, 2^{j} w\right)-2 f\left(2^{j} y, 2^{j} z\right)-2 f\left(2^{j} y, 2^{j} w\right) \| \\
& \leq\left[P(x)^{r}+P(y)^{r}+P(z)^{r}+P(w)^{r}\right] \lim _{j \rightarrow \infty}\left(\frac{2^{r}}{8}\right)^{j}=0
\end{aligned}
$$

for all $x, y, z, w \in X$. Thus F is a mapping satisfying (1.2). Setting $l=0$ and taking $m \rightarrow \infty$ in (3.6), one can obtain the inequality (3.5).

Let $G: X \times X \rightarrow Y$ be another additive-quadratic mapping satisfying (3.5). Since $0<r<3$, we have

$$
\begin{aligned}
\|F(x, y)-G(x, y)\| & =\frac{1}{8^{n}}\left\|F\left(2^{n} x, 2^{n} y\right)-G\left(2^{n} x, 2^{n} y\right)\right\| \\
& \leq \frac{1}{8^{n}}\left\|F\left(2^{n} x, 2^{n} y\right)-f\left(2^{n} x, 2^{n} y\right)\right\|+\frac{1}{8^{n}}\left\|f\left(2^{n} x, 2^{n} y\right)-G\left(2^{n} x, 2^{n} y\right)\right\| \\
& \leq\left(\frac{2^{r}}{8}\right)^{n} \frac{4}{8-2^{r}}\left[P(x)^{r}+P(y)^{r}\right] \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x, y \in X$. Hence F is a unique additive-quadratic mapping, as desired.

Acknowledgements:

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (grant number 2014014135).

References

[1] Y. J. Cho, C. Park, Y. O. Yang, Stability of derivations in fuzzy normed algebras, J. Nonlinear Sci. Appl., 8 (2015), 1-7. 1
[2] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. 1
[3] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222-224. 1
[4] C. Park, Additive ρ-functional inequalities, J. Nonlinear Sci. Appl., 7 (2014), 296-310. 1
[5] C. Park, J. R. Lee, Functional equations and inequalities in paranormed spaces, J. Inequal. Appl., 2013 (2013), 23 pages. 1
[6] C. Park, J. R. Lee, Approximate ternary quadratic derivation on ternary Banach algebras and C^{*}-ternary rings: revisited, J. Nonlinear Sci. Appl., 8 (2015), 218-223. 1
[7] W. G. Park, J. H. Bae, On a Cauchy-Jensen functional equation and its stability, J. Math. Anal. Appl., 323 (2006), 634-643.1. 2. 2
[8] W. G. Park, J. H. Bae, B. H. Chung, On an additive-quadratic functional equation and its stability, J. Appl. Math. \& Computing, 18 (2005), 563-572.1.| 3
[9] T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. 1
[10] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, (1960). 1
[11] A. Wilansky, Modern Methods in Topological Vector Space, McGraw-Hill International Book Co., New York, (1978). 1

[^0]: *Corresponding author
 Email addresses: jhbae@khu.ac.kr (Jae-Hyeong Bae), wgpark@mokwon.ac.kr (Won-Gil Park)

