Fixed point results for various contractions in parametric and fuzzy b-metric spaces

Nawab Hussain ${ }^{\text {a }}$, Peyman Salimi ${ }^{\text {b }}$, Vahid Parvaneh ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Mathematics, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia
${ }^{b}$ Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran
${ }^{\text {c D Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran. }}$

Abstract

The notion of parametric metric spaces being a natural generalization of metric spaces was recently introduced and studied by Hussain et al. [A new approach to fixed point results in triangular intuitionistic fuzzy metric spaces, Abstract and Applied Analysis, Vol. 2014, Article ID 690139, 16 pp]. In this paper we introduce the concept of parametric b-metric space and investigate the existence of fixed points under various contractive conditions in such spaces. As applications, we derive some new fixed point results in triangular partially ordered fuzzy b-metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. © 2015 All rights reserved.

Keywords: Fixed point theorem, fuzzy b-metric spaces, contractions. 2010 MSC: 54H25, 54A40, 54E50.

1. Introduction and preliminaries

Fixed point theory has attracted many researchers since 1922 with the admired Banach fixed point theorem. This theorem supplies a method for solving a variety of applied problems in mathematical sciences and engineering. A huge literature on this subject exist and this is a very active area of research at present.

The concept of metric spaces has been generalized in many directions. The notion of a b-metric space was studied by Czerwik in [7, [8] and a lot of fixed point results for single and multivalued mappings by many authors have been obtained in (ordered) b-metric spaces (see, e.g., [2]-[17]). Khmasi and Hussain [21] and Hussain and Shah [19] discussed KKM mappings and related results in b-metric and cone b-metric spaces.

[^0]In this paper, we introduce a new type of generalized metric space, which we call parametric b-metric space, as a generalization of both metric and b-metric spaces. Then, we prove some fixed point theorems under various contractive conditions in parametric b-metric spaces. These contractions include Geraghtytype conditions, conditions using comparison functions and almost generalized weakly contractive conditions. As applications, we derive some new fixed point results in triangular fuzzy b-metric spaces. We illustrate these results by appropriate examples. The notion of a b-metric space was studied by Czerwik in [7, 8].

Definition 1.1 ([7]). Let X be a (nonempty) set and $s \geq 1$ be a given real number. A function $d: X \times X \rightarrow \mathbb{R}^{+}$ is a b-metric on X if, for all $x, y, z \in X$, the following conditions hold:
$\left(\mathrm{b}_{1}\right) d(x, y)=0$ if and only if $x=y$,
$\left(\mathrm{b}_{2}\right) d(x, y)=d(y, x)$,
$\left(\mathrm{b}_{3}\right) d(x, z) \leq s[d(x, y)+d(y, z)]$.
In this case, the pair (X, d) is called a b-metric space.
Note that a b-metric is not always a continuous function of its variables (see, e.g., [17, Example 2]), whereas an ordinary metric is.

Hussain et al. [16] defined and studied the concept of parametric metric space.
Definition 1.2. Let X be a nonempty set and $\mathcal{P}: X \times X \times(0, \infty) \rightarrow[0, \infty)$ be a function. We say \mathcal{P} is a parametric metric on X if,
(i) $\mathcal{P}(x, y, t)=0$ for all $t>0$ if and only if $x=y$;
(ii) $\mathcal{P}(x, y, t)=\mathcal{P}(y, x, t)$ for all $t>0$;
(iii) $\mathcal{P}(x, y, t) \leq \mathcal{P}(x, z, t)+\mathcal{P}(z, y, t)$ for all $x, y, z \in X$ and all $t>0$.
and we say the pair (X, \mathcal{P}) is a parametric metric space.
Now, we introduce parametric b-metric space, as a generalization of parametric metric space.
Definition 1.3. Let X be a non-empty set, $s \geq 1$ be a real number and let $\mathcal{P}: X^{2} \times(0, \infty) \rightarrow(0, \infty)$ be a map satisfying the following conditions:
$\left(\mathcal{P}_{b} 1\right) \mathcal{P}(x, y, t)=0$ for all $t>0$ if and only if $x=y$,
$\left(\mathcal{P}_{b} 2\right) \quad \mathcal{P}(x, y, t)=\mathcal{P}(y, x, t)$ for all $t>0$,
$\left(\mathcal{P}_{b} 3\right) \mathcal{P}(x, z, t) \leq s[\mathcal{P}(x, y, t)+\mathcal{P}(y, z, t)]$ for all $t>0$ where $s \geq 1$.
Then \mathcal{P} is called a parametric b-metric on X and (X, \mathcal{P}) is called a parametric b-metric space with parameter s.

Obviously, for $s=1$, parametric b-metric reduces to parametric metric.
Definition 1.4. Let $\left\{x_{n}\right\}$ be a sequence in a parametric b-metric space (X, \mathcal{P}).

1. $\left\{x_{n}\right\}$ is said to be convergent to $x \in X$, written as $\lim _{n \rightarrow \infty} x_{n}=x$, if for all $t>0, \lim _{n \rightarrow \infty} \mathcal{P}\left(x_{n}, x, t\right)=0$.
2. $\left\{x_{n}\right\}$ is said to be a Cauchy sequence in X if for all $t>0, \lim _{n \rightarrow \infty} \mathcal{P}\left(x_{n}, x_{m}, t\right)=0$.
3. (X, \mathcal{P}) is said to be complete if every Cauchy sequence is a convergent sequence.

The following are some easy examples of parametric b-metric spaces.
Example 1.5. Let $X=[0,+\infty)$ and $\mathcal{P}(x, y, t)=t(x-y)^{p}$. Then \mathcal{P} is a parametric b-metric with constant $s=2^{p}$.

Definition 1.6. Let (X, \mathcal{P}, b) be a parametric b-metric space and $T: X \rightarrow X$ be a mapping. We say T is a continuous mapping at x in X, if for any sequence $\left\{x_{n}\right\}$ in X such that, $x_{n} \rightarrow x$ as $n \rightarrow \infty$ then, $T x_{n} \rightarrow T x$ as $n \rightarrow \infty$.

In general, a parametric b-metric function for $s>1$ is not jointly continuous in all its variables. Now, we present an example of a discontinuous parametric b-metric.

Example 1.7. Let $X=\mathbb{N} \cup\{\infty\}$ and let $\mathcal{P}: X^{2} \times(0, \infty) \rightarrow \mathbb{R}$ be defined by,

$$
\mathcal{P}(m, n, t)=\left\{\begin{array}{cc}
0, & \text { if } m=n, \\
t\left|\frac{1}{m}-\frac{1}{n}\right|, & \text { if } m, n \text { are even or } m n=\infty, \\
5 t, & \text { if } m \text { and } n \text { are odd and } m \neq n, \\
2 t, & \text { otherwise. }
\end{array}\right.
$$

Then it is easy to see that for all $m, n, p \in X$, we have

$$
\mathcal{P}(m, p, t) \leq \frac{5}{2}(\mathcal{P}(m, n, t)+\mathcal{P}(n, p, t)) .
$$

Thus, (X, \mathcal{P}) is a parametric b-metric space with $s=\frac{5}{2}$.
Now, we show that \mathcal{P} is not a continuous function. Take $x_{n}=2 n$ and $y_{n}=1$, then we have, $x_{n} \rightarrow \infty$, $y_{n} \rightarrow 1$. Also,

$$
\mathcal{P}(2 n, \infty, t)=\frac{t}{2 n} \rightarrow 0,
$$

and

$$
\mathcal{P}\left(y_{n}, 1, t\right)=0 \rightarrow 0 .
$$

On the other hand,

$$
\mathcal{P}\left(x_{n}, y_{n}, t\right)=\mathcal{P}\left(x_{n}, 1, t\right)=2 t,
$$

and

$$
\mathcal{P}(\infty, 1, t)=1 .
$$

Hence, $\lim _{n \rightarrow \infty} \mathcal{P}\left(x_{n}, y_{n}, t\right) \neq \mathcal{P}(x, y, t)$.
So, from the above discussion we need the following simple lemma about the convergent sequences in the proof of our main result.

Lemma 1.8. Let (X, \mathcal{P}, s) be a parametric b-metric space and suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are convergent to x and y, respectively. Then we have

$$
\frac{1}{s^{2}} \mathcal{P}(x, y, t) \leq \liminf _{n \rightarrow \infty} \mathcal{P}\left(x_{n}, y_{n}, t\right) \leq \underset{n \rightarrow \infty}{\limsup } \mathcal{P}\left(x_{n}, y_{n}, t\right) \leq s^{2} \mathcal{P}(x, y, t)
$$

for all $t \in(0, \infty)$. In particular, if $y_{n}=y$ is constant, then

$$
\frac{1}{s} \mathcal{P}(x, y, t) \leq \liminf _{n \rightarrow \infty} \mathcal{P}\left(x_{n}, y, t\right) \leq \underset{n \rightarrow \infty}{\limsup } \mathcal{P}\left(x_{n}, y, t\right) \leq s \mathcal{P}(x, y, t)
$$

for all $t \in(0, \infty)$.
Proof. Using $\left(\mathcal{P}_{b} 3\right)$ of Definition 1.3 in the given parametric b-metric space, it is easy to see that

$$
\begin{aligned}
\mathcal{P}(x, y, t) & \leq s \mathcal{P}\left(x, x_{n}, t\right)+s \mathcal{P}\left(x_{n}, y, t\right) \\
& \leq s \mathcal{P}\left(x, x_{n}, t\right)+s^{2} \mathcal{P}\left(x_{n}, y_{n}, t\right)+s^{2} \mathcal{P}\left(y_{n}, y, t\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{P}\left(x_{n}, y_{n}, t\right) & \leq s \mathcal{P}\left(x_{n}, x, t\right)+s \mathcal{P}\left(x, y_{n}, t\right) \\
& \leq s \mathcal{P}\left(x_{n}, x, t\right)+s^{2} \mathcal{P}(x, y, t)+s^{2} \mathcal{P}\left(y, y_{n}, t\right)
\end{aligned}
$$

for all $t>0$. Taking the lower limit as $n \rightarrow \infty$ in the first inequality and the upper limit as $n \rightarrow \infty$ in the second inequality we obtain the desired result.

If $y_{n}=y$, then

$$
\mathcal{P}(x, y, t) \leq s \mathcal{P}\left(x, x_{n}, t\right)+s \mathcal{P}\left(x_{n}, y, t\right)
$$

and

$$
\mathcal{P}\left(x_{n}, y, t\right) \leq s \mathcal{P}\left(x_{n}, x, t\right)+s \mathcal{P}(x, y, t)
$$

for all $t>0$.

2. Main results

2.1. Results under Geraghty-type conditions

Fixed point theorems for monotone operators in ordered metric spaces are widely investigated and have found various applications in differential and integral equations (see [1, 15, 20, 24] and references therein). In 1973, M. Geraghty [12] proved a fixed point result, generalizing Banach contraction principle. Several authors proved later various results using Geraghty-type conditions. Fixed point results of this kind in b-metric spaces were obtained by Đukić et al. in [10].

Following [10], for a real number $s \geq 1$, let \mathcal{F}_{s} denote the class of all functions $\beta:[0, \infty) \rightarrow\left[0, \frac{1}{s}\right)$ satisfying the following condition:

$$
\beta\left(t_{n}\right) \rightarrow \frac{1}{s} \text { as } n \rightarrow \infty \text { implies } t_{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Theorem 2.1. Let (X, \preceq) be a partially ordered set and suppose that there exists a parametric b-metric \mathcal{P} on X such that (X, \mathcal{P}) is a complete parametric b-metric space. Let $f: X \rightarrow X$ be an increasing mapping with respect to \preceq such that there exists an element $x_{0} \in X$ with $x_{0} \preceq f x_{0}$. Suppose that

$$
\begin{equation*}
s \mathcal{P}(f x, f y, t) \leq \beta(\mathcal{P}(x, y, t)) M(x, y, t) \tag{1}
\end{equation*}
$$

for all $t>0$ and for all comparable elements $x, y \in X$, where

$$
M(x, y, t)=\max \left\{\mathcal{P}(x, y, t), \frac{\mathcal{P}(x, f x, t) \mathcal{P}(y, f y, t)}{1+\mathcal{P}(f x, f y, t)}, \frac{\mathcal{P}(x, f x, t) \mathcal{P}(y, f y, t)}{1+\mathcal{P}(x, y, t)}\right\}
$$

If f is continuous, then f has a fixed point.
Proof. Starting with the given x_{0}, put $x_{n}=f^{n} x_{0}$. Since $x_{0} \preceq f x_{0}$ and f is an increasing function we obtain by induction that

$$
x_{0} \preceq f x_{0} \preceq f^{2} x_{0} \preceq \cdots \preceq f^{n} x_{0} \preceq f^{n+1} x_{0} \preceq \cdots .
$$

Step I: We will show that $\lim _{n \rightarrow \infty} \mathcal{P}\left(x_{n}, x_{n+1}, t\right)=0$. Since $x_{n} \preceq x_{n+1}$ for each $n \in \mathbb{N}$, then by (1) we have

$$
\begin{align*}
s \mathcal{P}\left(x_{n}, x_{n+1}, t\right) & =s \mathcal{P}\left(f x_{n-1}, f x_{n}, t\right) \leq \beta\left(\mathcal{P}\left(x_{n-1}, x_{n}, t\right)\right) M\left(x_{n-1}, x_{n}, t\right) \\
& <\frac{1}{s} \mathcal{P}\left(x_{n-1}, x_{n}, t\right) \leq \mathcal{P}\left(x_{n-1}, x_{n}, t\right) \tag{2}
\end{align*}
$$

because

$$
\begin{aligned}
& M\left(x_{n-1}, x_{n}, t\right) \\
& \quad=\max \left\{\mathcal{P}\left(x_{n-1}, x_{n}, t\right), \frac{\mathcal{P}\left(x_{n-1}, f x_{n-1}, t\right) \mathcal{P}\left(x_{n}, f x_{n}, t\right)}{1+\mathcal{P}\left(f x_{n-1}, f x_{n}, t\right)}, \frac{\mathcal{P}\left(x_{n-1}, f x_{n-1}, t\right) \mathcal{P}\left(x_{n}, f x_{n}, t\right)}{1+\mathcal{P}\left(x_{n-1}, x_{n}, t\right)}\right\} \\
& \quad=\max \left\{\mathcal{P}\left(x_{n-1}, x_{n}, t\right), \frac{\mathcal{P}\left(x_{n-1}, x_{n}, t\right) \mathcal{P}\left(x_{n}, x_{n+1}, t\right)}{1+\mathcal{P}\left(x_{n}, x_{n+1}, t\right)}, \frac{\mathcal{P}\left(x_{n-1}, x_{n}, t\right) \mathcal{P}\left(x_{n}, x_{n+1}, t\right)}{1+\mathcal{P}\left(x_{n-1}, x_{n}, t\right)}\right\} \\
& \quad \leq \max \left\{\mathcal{P}\left(x_{n-1}, x_{n}, t\right), \mathcal{P}\left(x_{n}, x_{n+1}, t\right)\right\}
\end{aligned}
$$

If $\max \left\{\mathcal{P}\left(x_{n-1}, x_{n}, t\right), \mathcal{P}\left(x_{n}, x_{n+1}, t\right)\right\}=\mathcal{P}\left(x_{n}, x_{n+1}, t\right)$, then from (2) we have,

$$
\begin{align*}
\mathcal{P}\left(x_{n}, x_{n+1}, t\right) & \leq \beta\left(\mathcal{P}\left(x_{n-1}, x_{n}, t\right)\right) \mathcal{P}\left(x_{n}, x_{n+1}, t\right) \\
& <\frac{1}{s} \mathcal{P}\left(x_{n}, x_{n+1}, t\right) \tag{3}\\
& \leq \mathcal{P}\left(x_{n}, x_{n+1}, t\right)
\end{align*}
$$

which is a contradiction.
Hence, $\max \left\{\mathcal{P}\left(x_{n-1}, x_{n}, t\right), \mathcal{P}\left(x_{n}, x_{n+1}, t\right)\right\}=\mathcal{P}\left(x_{n-1}, x_{n}, t\right)$, so from (3),

$$
\begin{equation*}
\mathcal{P}\left(x_{n}, x_{n+1}, t\right) \leq \beta\left(\mathcal{P}\left(x_{n-1}, x_{n}, t\right)\right) \mathcal{P}\left(x_{n-1}, x_{n}, t\right) \leq \mathcal{P}\left(x_{n-1}, x_{n}, t\right) \tag{4}
\end{equation*}
$$

Therefore, the sequence $\left\{\mathcal{P}\left(x_{n}, x_{n+1}, t\right)\right\}$ is decreasing, so there exists $r \geq 0$ such that $\lim _{n \rightarrow \infty} \mathcal{P}\left(x_{n}, x_{n+1}, t\right)=r$. Suppose that $r>0$. Now, letting $n \rightarrow \infty$, from (4) we have

$$
\frac{1}{s} r \leq r \leq \lim _{n \rightarrow \infty} \beta\left(\mathcal{P}\left(x_{n-1}, x_{n}, t\right)\right) r \leq r
$$

So, we have $\lim _{n \rightarrow \infty} \beta\left(\mathcal{P}\left(x_{n-1}, x_{n}, t\right)\right) \geq \frac{1}{s}$ and since $\beta \in \mathcal{F}_{s}$ we deduce that $\lim _{n \rightarrow \infty} \mathcal{P}\left(x_{n-1}, x_{n}, t\right)=0$ which is a contradiction. Hence, $r=0$, that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{P}\left(x_{n}, x_{n+1}, t\right)=0 \tag{5}
\end{equation*}
$$

Step II: Now, we prove that the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence. Using the triangle inequality and by (1) we have

$$
\begin{aligned}
\mathcal{P}\left(x_{n}, x_{m}, t\right) & \leq s \mathcal{P}\left(x_{n}, x_{n+1}, t\right)+s^{2} \mathcal{P}\left(x_{n+1}, x_{m+1}, t\right)+s^{2} \mathcal{P}\left(x_{m+1}, x_{m}, t\right) \\
& \leq s \mathcal{P}\left(x_{n}, x_{n+1}, t\right)+s^{2} \mathcal{P}\left(x_{m}, x_{m+1}, t\right)+s \beta\left(\mathcal{P}\left(x_{n}, x_{m}, t\right)\right) M\left(x_{n}, x_{m}, t\right)
\end{aligned}
$$

Letting $m, n \rightarrow \infty$ in the above inequality and applying (5) we have

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} \mathcal{P}\left(x_{n}, x_{m}, t\right) \leq s \lim _{m, n \rightarrow \infty} \beta\left(\mathcal{P}\left(x_{n}, x_{m}, t\right)\right) \lim _{m, n \rightarrow \infty} M\left(x_{n}, x_{m}, t\right) \tag{6}
\end{equation*}
$$

Here,

$$
\begin{aligned}
\mathcal{P}\left(x_{n}, x_{m}, t\right) & \leq M\left(x_{n}, x_{m}, t\right) \\
& =\max \left\{\mathcal{P}\left(x_{n}, x_{m}, t\right), \frac{\mathcal{P}\left(x_{n}, f x_{n}, t\right) \mathcal{P}\left(x_{m}, f x_{m}, t\right)}{1+\mathcal{P}\left(f x_{n}, f x_{m}, t\right)}, \frac{\mathcal{P}\left(x_{n}, f x_{n}, t\right) \mathcal{P}\left(x_{m}, f x_{m}, t\right)}{1+\mathcal{P}\left(x_{n}, x_{m}, t\right)}\right\} \\
& =\max \left\{\mathcal{P}\left(x_{n}, x_{m}, t\right), \frac{\mathcal{P}\left(x_{n}, x_{n+1}, t\right) \mathcal{P}\left(x_{m}, x_{m+1}, t\right)}{1+\mathcal{P}\left(x_{n+1}, x_{m+1}, t\right)}, \frac{\mathcal{P}\left(x_{n}, x_{n+1}, t\right) \mathcal{P}\left(x_{m}, x_{m+1}, t\right)}{1+\mathcal{P}\left(x_{n}, x_{m}, t\right)}\right\}
\end{aligned}
$$

Letting $m, n \rightarrow \infty$ in the above inequality we get

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} M\left(x_{n}, x_{m}, t\right)=\lim _{m, n \rightarrow \infty} \mathcal{P}\left(x_{n}, x_{m}, t\right) \tag{7}
\end{equation*}
$$

From (6) and (7), we obtain

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} \mathcal{P}\left(x_{n}, x_{m}, t\right) \leq s \lim _{m, n \rightarrow \infty} \beta\left(\mathcal{P}\left(x_{n}, x_{m}, t\right)\right) \lim _{m, n \rightarrow \infty} \mathcal{P}\left(x_{n}, x_{m}, t\right) \tag{8}
\end{equation*}
$$

Now we claim that, $\lim _{m, n \rightarrow \infty} \mathcal{P}\left(x_{n}, x_{m}, t\right)=0$. On the contrary, if $\lim _{m, n \rightarrow \infty} \mathcal{P}\left(x_{n}, x_{m}, t\right) \neq 0$, then we get

$$
\frac{1}{s} \leq \lim _{m, n \rightarrow \infty} \beta\left(\mathcal{P}\left(x_{n}, x_{m}, t\right)\right)
$$

Since $\beta \in \mathcal{F}_{s}$ we deduce that

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} \mathcal{P}\left(x_{n}, x_{m}, t\right)=0 \tag{9}
\end{equation*}
$$

which is a contradiction. Consequently, $\left\{x_{n}\right\}$ is a b-parametric Cauchy sequence in X. Since (X, \mathcal{P}) is complete, the sequence $\left\{x_{n}\right\}$ converges to some $z \in X$, that is, $\lim _{n \rightarrow \infty} \mathcal{P}\left(x_{n}, z, t\right)=0$.

Step III: Now, we show that z is a fixed point of f.
Using the triangle inequality, we get

$$
\mathcal{P}(f z, z, t) \leq s \mathcal{P}\left(f z, f x_{n}, t\right)+s \mathcal{P}\left(f x_{n}, z, t\right)
$$

Letting $n \rightarrow \infty$ and using the continuity of f, we have $f z=z$. Thus, z is a fixed point of f.
Example 2.2. Let $X=[0, \infty)$ be endowed with the parametric b-metric

$$
\mathcal{P}(x, y, t)= \begin{cases}t(x+y)^{2}, & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

for all $x, y \in X$ and all $t>0$. Define $T: X \rightarrow X$ by

$$
T x= \begin{cases}\frac{1}{8} x^{2}, & \text { if } x \in[0,1) \\ \frac{1}{8} x, & \text { if } x \in[1,2) \\ \frac{1}{4} & \text { if } x \in[2, \infty)\end{cases}
$$

Also, define, $\beta:[0, \infty) \rightarrow\left[0, \frac{1}{2}\right)$ by $\beta(t)=\frac{1}{4}$. Clearly, $(X, \mathcal{P}, 2)$ is a complete parametric b-metric space, T is a continuous mapping and $\beta \in \mathcal{F}_{2}$. Now we consider the following cases:

- Let $x, y \in[0,1)$ with $x \leq y$, then,

$$
\begin{aligned}
2 \mathcal{P}(T x, T y, t) & =2 t\left(\frac{1}{8} x^{2}+\frac{1}{8} y^{2}\right)^{2}=\frac{1}{32} t\left(x^{2}+y^{2}\right)^{2} \\
& \leq \frac{1}{4} t(x+y)^{2}=\frac{1}{4} \mathcal{P}(x, y, t) \\
& \leq \frac{1}{4} M(x, y, t)=\beta(\mathcal{P}(x, y, t)) M(x, y, t)
\end{aligned}
$$

- Let $x, y \in[1,2)$ with $x \leq y$, then,

$$
\begin{aligned}
2 \mathcal{P}(T x, T y, t) & =2 t\left(\frac{1}{8} x+\frac{1}{8} y\right)^{2}=\frac{1}{32} t(x+y)^{2} \\
& \leq \frac{1}{4} t(x+y)^{2}=\frac{1}{4} \mathcal{P}(x, y, t) \\
& \leq \frac{1}{4} M(x, y, t)=\beta(\mathcal{P}(x, y, t)) M(x, y, t)
\end{aligned}
$$

- Let $x, y \in[2, \infty)$ with $x \leq y$, then,

$$
\begin{aligned}
2 \mathcal{P}(T x, T y, t) & =2 t\left(\frac{1}{4}+\frac{1}{4}\right)^{2}=\frac{1}{2} t \leq t=\frac{1}{4} t(1+1)^{2} \\
& \leq \frac{1}{4} t(x+y)^{2}=\frac{1}{4} \mathcal{P}(x, y, t) \\
& \leq \frac{1}{4} M(x, y, t)=\beta(\mathcal{P}(x, y, t)) M(x, y, t)
\end{aligned}
$$

- Let $x \in[0,1)$ and $y \in[1,2)$ (clearly with $x \leq y$), then,

$$
\begin{aligned}
2 \mathcal{P}(T x, T y, t) & =2 t\left(\frac{1}{8} x^{2}+\frac{1}{8} y\right)^{2} \leq 2 t\left(\frac{1}{8} x+\frac{1}{8} y\right)^{2}=\frac{1}{32} t\left(x^{2}+y^{2}\right)^{2} \\
& \leq \frac{1}{4} t(x+y)^{2}=\frac{1}{4} \mathcal{P}(x, y, t) \\
& \left.\leq \frac{1}{4} M(x, y, t)=\beta(\mathcal{P}(x, y, t)) M(x, y, t)\right\}
\end{aligned}
$$

- Let $x \in[0,1)$ and $y \in[2, \infty)$ (clearly with $x \leq y$), then,

$$
\begin{aligned}
2 \mathcal{P}(T x, T y, t) & =2 t\left(\frac{1}{8} x^{2}+\frac{1}{4}\right)^{2} \leq 2 t\left(\frac{1}{8} x+\frac{1}{8} y\right)^{2}=\frac{1}{32} t(x+y)^{2} \\
& \leq \frac{1}{4} t(x+y)^{2}=\frac{1}{4} \mathcal{P}(x, y, t) \\
& \left.\leq \frac{1}{4} M(x, y, t)=\beta(\mathcal{P}(x, y, t)) M(x, y, t)\right\}
\end{aligned}
$$

- Let $x \in[1,2)$ and $y \in[2, \infty)$ (clearly with $x \leq y$), then,

$$
\begin{aligned}
2 \mathcal{P}(T x, T y, t) & =2 t\left(\frac{1}{8} x+\frac{1}{4}\right)^{2} \leq 2 t\left(\frac{1}{8} x+\frac{1}{8} y\right)^{2}=\frac{1}{32} t(x+y)^{2} \\
& \leq \frac{1}{4} t(x+y)^{2}=\frac{1}{4} \mathcal{P}(x, y, t) \\
& \left.\leq \frac{1}{4} M(x, y, t)=\beta(\mathcal{P}(x, y, t)) M(x, y, t)\right\}
\end{aligned}
$$

Therefore,

$$
2 \mathcal{P}(T x, T y, t) \leq \beta(\mathcal{P}(x, y, t)) M(x, y, t)
$$

for all $x, y \in X$ with $x \leq y$ and all $t>0$. Hence, all conditions of Theorem 2.1 holds and T has a unique fixed point.

Note that the continuity of f in Theorem 2.1 is not necessary and can be dropped.

Theorem 2.3. Under the hypotheses of Theorem 2.1, without the continuity assumption on f, assume that whenever $\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow u$, one has $x_{n} \preceq u$ for all $n \in \mathbb{N}$. Then f has a fixed point.

Proof. Repeating the proof of Theorem 2.1, we construct an increasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow z \in X$. Using the assumption on X we have $x_{n} \preceq z$. Now, we show that $z=f z$. By (1) and Lemma 1.8 .

$$
\begin{aligned}
s\left[\frac{1}{s} \mathcal{P}(z, f z, t)\right] & \leq s \limsup _{n \rightarrow \infty} \mathcal{P}\left(x_{n+1}, f z, t\right) \\
& \leq \limsup _{n \rightarrow \infty} \beta\left(\mathcal{P}\left(x_{n}, z, t\right)\right) \limsup _{n \rightarrow \infty} M\left(x_{n}, z, t\right)
\end{aligned}
$$

where,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & M\left(x_{n}, z, t\right) \\
& =\lim _{n} \max \left\{\mathcal{P}\left(x_{n}, z, t\right), \frac{\mathcal{P}\left(x_{n}, f x_{n}, t\right) \mathcal{P}(z, f z, t)}{1+\mathcal{P}\left(f x_{n}, f z, t\right)}, \frac{\mathcal{P}\left(x_{n}, f x_{n}, t\right) \mathcal{P}(z, f z, t)}{1+\mathcal{P}\left(x_{n}, z, t\right)}\right\} \\
& =\lim _{n} \max \left\{\mathcal{P}\left(x_{n}, z, t\right), \frac{\mathcal{P}\left(x_{n}, x_{n+1}, t\right) \mathcal{P}(z, f z, t)}{1+\mathcal{P}\left(x_{n+1}, f z, t\right)}, \frac{\mathcal{P}\left(x_{n}, x_{n+1}, t\right) \mathcal{P}(z, f z, t)}{1+\mathcal{P}\left(x_{n}, z, t\right)}\right\}=0
\end{aligned}
$$

Therefore, we deduce that $\mathcal{P}(z, f z, t) \leq 0$. As t is arbitrary, hence, we have $z=f z$.
If in the above theorems we take $\beta(t)=r$, where $0 \leq r<\frac{1}{s}$, then we have the following corollary.
Corollary 2.4. Let (X, \preceq) be a partially ordered set and suppose that there exists a parametric b-metric \mathcal{P} on X such that (X, \mathcal{P}) is a complete parametric b-metric space. Let $f: X \rightarrow X$ be an increasing mapping with respect to \preceq such that there exists an element $x_{0} \in X$ with $x_{0} \preceq f x_{0}$. Suppose that for some r, with $0 \leq r<\frac{1}{s}$,

$$
s \mathcal{P}(f x, f y, t) \leq r M(x, y, t)
$$

holds for each $t>0$ and all comparable elements $x, y \in X$, where

$$
M(x, y, t)=\max \left\{\mathcal{P}(x, y, t), \frac{\mathcal{P}(x, f x, t) \mathcal{P}(y, f y, t)}{1+\mathcal{P}(f x, f y, t)}, \frac{\mathcal{P}(x, f x, t) \mathcal{P}(y, f y, t)}{1+\mathcal{P}(x, y, t)}\right\}
$$

If f is continuous, or, for any nondecreasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow u \in X$ one has $x_{n} \preceq u$ for all $n \in \mathbb{N}$, then f has a fixed point.
Corollary 2.5. Let (X, \preceq) be a partially ordered set and suppose that there exists a parametric b-metric \mathcal{P} on X such that (X, \mathcal{P}) is a complete parametric b-metric space. Let $f: X \rightarrow X$ be an increasing mapping with respect to \preceq such that there exists an element $x_{0} \in X$ with $x_{0} \preceq f x_{0}$. Suppose that

$$
\mathcal{P}(f x, f y, t) \leq \alpha \mathcal{P}(x, y, t)+\beta \frac{\mathcal{P}(x, f x, t) \mathcal{P}(y, f y, t)}{1+\mathcal{P}(f x, f y, t)}+\gamma \frac{\mathcal{P}(x, f x, t) \mathcal{P}(y, f y, t)}{1+\mathcal{P}(x, y, t)}
$$

for each $t>0$ and all comparable elements $x, y \in X$, where $\alpha, \beta, \gamma \geq 0$ and $\alpha+\beta+\gamma \leq \frac{1}{s}$.
If f is continuous, or, for any nondecreasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow u \in X$ one has $x_{n} \preceq u$ for all $n \in \mathbb{N}$, then f has a fixed point.

2.2. Results using comparison functions

Let Ψ denote the family of all nondecreasing functions $\psi:[0, \infty) \rightarrow[0, \infty)$ such that $\lim _{n} \psi^{n}(t)=0$ for all $t>0$, where ψ^{n} denotes the n-th iterate of ψ. It is easy to show that, for each $\psi \in \Psi$, the following is satisfied:
(a) $\psi(t)<t$ for all $t>0$;
(b) $\psi(0)=0$.

Theorem 2.6. Let (X, \preceq) be a partially ordered set and suppose that there exists a parametric b-metric \mathcal{P} on X such that (X, \mathcal{P}) is a complete parametric b-metric space. Let $f: X \rightarrow X$ be an increasing mapping with respect to \preceq such that there exists an element $x_{0} \in X$ with $x_{0} \preceq f x_{0}$. Suppose that

$$
\begin{equation*}
s \mathcal{P}(f x, f y, t) \leq \psi(N(x, y, t)) \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
N(x, y, t)=\max \{\mathcal{P}(x, y, t) & \frac{\mathcal{P}(x, f x, t) d(x, f y, t)+\mathcal{P}(y, f y, t) \mathcal{P}(y, f x, t)}{1+s[\mathcal{P}(x, f x, t)+\mathcal{P}(y, f y, t)]} \\
& \left.\frac{\mathcal{P}(x, f x, t) \mathcal{P}(x, f y, t)+\mathcal{P}(y, f y, t) \mathcal{P}(y, f x, t)}{1+\mathcal{P}(x, f y, t)+\mathcal{P}(y, f x, t)}\right\}
\end{aligned}
$$

for some $\psi \in \Psi$ and for all comparable elements $x, y \in X$ and all $t>0$. If f is continuous, then f has a fixed point.

Proof. Since $x_{0} \preceq f x_{0}$ and f is an increasing function, we obtain by induction that

$$
x_{0} \preceq f x_{0} \preceq f^{2} x_{0} \preceq \cdots \preceq f^{n} x_{0} \preceq f^{n+1} x_{0} \preceq \cdots .
$$

Putting $x_{n}=f^{n} x_{0}$, we have

$$
x_{0} \preceq x_{1} \preceq x_{2} \preceq \cdots \preceq x_{n} \preceq x_{n+1} \preceq \cdots .
$$

If there exists $n_{0} \in \mathbb{N}$ such that $x_{n_{0}}=x_{n_{0}+1}$, then $x_{n_{0}}=f x_{n_{0}}$ and so we have nothing for prove. Hence, we assume that $x_{n} \neq x_{n+1}$ for all $n \in \mathbb{N}$.

Step I. We will prove that $\lim _{n \rightarrow \infty} \mathcal{P}\left(x_{n}, x_{n+1}, t\right)=0$. Using condition (39), we obtain

$$
\mathcal{P}\left(x_{n}, x_{n+1}, t\right) \leq s \mathcal{P}\left(x_{n}, x_{n+1}, t\right)=s \mathcal{P}\left(f x_{n-1}, f x_{n}, t\right) \leq \psi\left(N\left(x_{n-1}, x_{n}, t\right)\right)
$$

Here,

$$
\begin{aligned}
& N\left(x_{n-1}, x_{n}, t\right)=\max \left\{\mathcal{P}\left(x_{n-1}, x_{n}, t\right), \frac{\mathcal{P}\left(x_{n-1}, f x_{n-1}, t\right) \mathcal{P}\left(x_{n-1}, f x_{n}, t\right)+\mathcal{P}\left(x_{n}, f x_{n}, t\right) \mathcal{P}\left(x_{n}, f x_{n-1}, t\right)}{1+s\left[\mathcal{P}\left(x_{n-1}, f x_{n-1}, t\right)+\mathcal{P}\left(x_{n}, f x_{n}, t\right)\right]}\right. \\
& \\
& \frac{\left.\frac{\mathcal{P}\left(x_{n-1}, f x_{n-1}, t\right) \mathcal{P}\left(x_{n-1}, f x_{n}, t\right)+\mathcal{P}\left(x_{n}, f x_{n}, t\right) \mathcal{P}\left(x_{n}, f x_{n-1}, t\right)}{1+\mathcal{P}\left(x_{n-1}, f x_{n}, t\right)+\mathcal{P}\left(x_{n}, f x_{n-1}, t\right)}\right\}}{} \\
& =\max \left\{\mathcal{P}\left(x_{n-1}, x_{n}, t\right), \frac{\mathcal{P}\left(x_{n-1}, x_{n}, t\right) \mathcal{P}\left(x_{n-1}, x_{n+1}, t\right)+\mathcal{P}\left(x_{n}, x_{n+1}, t\right) \mathcal{P}\left(x_{n}, x_{n}, t\right)}{1+s\left[\mathcal{P}\left(x_{n-1}, x_{n}, t\right)+\mathcal{P}\left(x_{n}, x_{n+1}, t\right)\right]}\right. \\
& \left.\quad \frac{\mathcal{P}\left(x_{n-1}, x_{n}, t\right) \mathcal{P}\left(x_{n-1}, x_{n+1}, t\right)+\mathcal{P}\left(x_{n}, x_{n+1}, t\right) \mathcal{P}\left(x_{n}, x_{n}, t\right)}{1+\mathcal{P}\left(x_{n-1}, x_{n+1}, t\right)+\mathcal{P}\left(x_{n}, x_{n}, t\right)}\right\} \\
& =\mathcal{P}\left(x_{n-1}, x_{n}, t\right) .
\end{aligned}
$$

Hence,

$$
\mathcal{P}\left(x_{n}, x_{n+1}, t\right) \leq s \mathcal{P}\left(x_{n}, x_{n+1}, t\right) \leq \psi\left(\mathcal{P}\left(x_{n-1}, x_{n}, t\right)\right)
$$

By induction, we get that

$$
\mathcal{P}\left(x_{n}, x_{n+1}, t\right) \leq \psi\left(\mathcal{P}\left(x_{n-1}, x_{n}, t\right)\right) \leq \psi^{2}\left(\mathcal{P}\left(x_{n-2}, x_{n-1}, t\right)\right) \leq \cdots \leq \psi^{n}\left(\mathcal{P}\left(x_{0}, x_{1}, t\right)\right)
$$

As $\psi \in \Psi$, we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{P}\left(x_{n}, x_{n+1}, t\right)=0 \tag{11}
\end{equation*}
$$

Step II. We will prove that $\left\{x_{n}\right\}$ is a parametric Cauchy sequence. Suppose the contrary. Then there exist $t>0$ and $\varepsilon>0$ for them we can find two subsequences $\left\{x_{m_{i}}\right\}$ and $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that n_{i} is the smallest index for which

$$
\begin{equation*}
n_{i}>m_{i}>i \text { and } \mathcal{P}\left(x_{m_{i}}, x_{n_{i}}, t\right) \geq \varepsilon \tag{12}
\end{equation*}
$$

This means that

$$
\begin{equation*}
\mathcal{P}\left(x_{m_{i}}, x_{n_{i}-1}, t\right)<\varepsilon \tag{13}
\end{equation*}
$$

From $\sqrt{12}$) and using the triangle inequality, we get

$$
\varepsilon \leq \mathcal{P}\left(x_{m_{i}}, x_{n_{i}}, t\right) \leq s \mathcal{P}\left(x_{m_{i}}, x_{m_{i}+1}, t\right)+s \mathcal{P}\left(x_{m_{i}+1}, x_{n_{i}}, t\right)
$$

Taking the upper limit as $i \rightarrow \infty$, we get

$$
\begin{equation*}
\frac{\varepsilon}{s} \leq \limsup _{i \rightarrow \infty} \mathcal{P}\left(x_{m_{i}+1}, x_{n_{i}}, t\right) \tag{14}
\end{equation*}
$$

From the definition of $M(x, y, t)$ we have

$$
\left.\begin{array}{l}
M\left(x_{m_{i}}, x_{n_{i}-1}, t\right) \\
=\max \left\{\mathcal{P}\left(x_{m_{i}}, x_{n_{i}-1}, t\right), \frac{\mathcal{P}\left(x_{m_{i}}, f x_{m_{i}}, t\right) \mathcal{P}\left(x_{m_{i}}, f x_{n_{i}-1}, t\right)+\mathcal{P}\left(x_{n_{i}-1}, f x_{n_{i}-1}, t\right) \mathcal{P}\left(x_{n_{i}-1}, f x_{m_{i}}, t\right)}{1+s\left[\mathcal{P}\left(x_{m_{i}}, f x_{m_{i}}, t\right)+\mathcal{P}\left(x_{n_{i}-1}, f x_{n_{i}-1}, t\right)\right]}\right. \\
\\
\left.\quad \frac{\mathcal{P}\left(x_{m_{i}}, f x_{m_{i}}, t\right) \mathcal{P}\left(x_{m_{i}}, f x_{n_{i}-1}, t\right)+\mathcal{P}\left(x_{n_{i}-1}, f x_{n_{i}-1}, t\right) \mathcal{P}\left(x_{n_{i}-1}, f x_{m_{i}}, t\right)}{1+\mathcal{P}\left(x_{m_{i}}, f x_{n_{i}-1}, t\right)+\mathcal{P}\left(x_{n_{i}-1}, f x_{m_{i}}, t\right)}\right\} \\
=\max \left\{\mathcal{P}\left(x_{m_{i}}, x_{n_{i}-1}, t\right)\right.
\end{array}, \frac{\mathcal{P}\left(x_{m_{i}}, x_{m_{i}+1}, t\right) \mathcal{P}\left(x_{m_{i}}, x_{n_{i}}, t\right)+\mathcal{P}\left(x_{n_{i}-1}, x_{n_{i}}, t\right) \mathcal{P}\left(x_{n_{i}-1}, x_{m_{i}+1}, t\right)}{1+s\left[\mathcal{P}\left(x_{m_{i}}, x_{m_{i}+1}, t\right)+\mathcal{P}\left(x_{n_{i}-1}, x_{n_{i}}, t\right)\right]}, \quad \frac{\mathcal{P}\left(x_{m_{i}}, x_{m_{i}+1}, t\right) \mathcal{P}\left(x_{m_{i}}, x_{n_{i}}, t\right)+\mathcal{P}\left(x_{n_{i}-1}, x_{n_{i}}, t\right) \mathcal{P}\left(x_{n_{i}-1}, x_{m_{i}+1}, t\right)}{1+\mathcal{P}\left(x_{m_{i}}, x_{n_{i}}, t\right)+\mathcal{P}\left(x_{n_{i}-1}, x_{m_{i}+1}, t\right)}\right\},
$$

and if $i \rightarrow \infty$, by (11) and (13) we have

$$
\limsup _{i \rightarrow \infty} M\left(x_{m_{i}}, x_{n_{i}-1}, t\right) \leq \varepsilon
$$

Now, from (39) we have

$$
s \mathcal{P}\left(x_{m_{i}+1}, x_{n_{i}}, t\right)=s \mathcal{P}\left(f x_{m_{i}}, f x_{n_{i}-1}, t\right) \leq \psi\left(M\left(x_{m_{i}}, x_{n_{i}-1}, t\right)\right)
$$

Again, if $i \rightarrow \infty$ by (14) we obtain

$$
\varepsilon=s \cdot \frac{\varepsilon}{s} \leq s \limsup _{i \rightarrow \infty} \mathcal{P}\left(x_{m_{i}+1}, x_{n_{i}}, a\right) \leq \psi(\varepsilon)<\varepsilon
$$

which is a contradiction. Consequently, $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Therefore, the sequence $\left\{x_{n}\right\}$ converges to some $z \in X$, that is, $\lim _{n} \mathcal{P}\left(x_{n}, z, t\right)=0$ for all $t>0$.

Step III. Now we show that z is a fixed point of f.
Using the triangle inequality, we get

$$
\mathcal{P}(z, f z, t) \leq s \mathcal{P}\left(z, f x_{n}, t\right)+s \mathcal{P}\left(f x_{n}, f z, t\right)
$$

Letting $n \rightarrow \infty$ and using the continuity of f, we get

$$
\mathcal{P}(z, f z, t) \leq 0
$$

Hence, we have $f z=z$. Thus, z is a fixed point of f.
Theorem 2.7. Under the hypotheses of Theorem 2.6, without the continuity assumption on f, assume that whenever $\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow u \in X$, one has $x_{n} \preceq u$ for all $n \in \mathbb{N}$. Then f has a fixed point.
Proof. Following the proof of Theorem 2.6, we construct an increasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow z \in X$. Using the given assumption on X we have $x_{n} \preceq z$. Now, we show that $z=f z$. By (39) we have

$$
\begin{equation*}
s \mathcal{P}\left(f z, x_{n}, t\right)=s \mathcal{P}\left(f z, f x_{n-1}, t\right) \leq \psi\left(M\left(z, x_{n-1}, t\right)\right) \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
M\left(z, x_{n-1}, t\right)= & \max \left\{\mathcal{P}\left(x_{n-1}, z, t\right),\right. \\
& \frac{\mathcal{P}\left(x_{n-1}, f x_{n-1}, t\right) \mathcal{P}\left(x_{n-1}, f z, t\right)+\mathcal{P}(z, f z, t) \mathcal{P}\left(z, f x_{n-1}, t\right)}{1+s\left[\mathcal{P}\left(x_{n-1}, f x_{n-1}, t\right)+\mathcal{P}(z, f z, t)\right]} \\
& \left.\frac{\mathcal{P}\left(x_{n-1}, f x_{n-1}, t\right) \mathcal{P}\left(x_{n-1}, f z, t\right)+\mathcal{P}(z, f z, t) \mathcal{P}\left(z, f x_{n-1}, t\right)}{1+\mathcal{P}\left(x_{n-1}, f z, t\right)+\mathcal{P}\left(z, f x_{n-1}, t\right)}\right\} \\
\max \left\{\mathcal{P}\left(x_{n-1}, z, t\right),\right. & \frac{\mathcal{P}\left(x_{n-1}, x_{n}, t\right) \mathcal{P}\left(x_{n-1}, f z, t\right)+\mathcal{P}(z, f z, t) \mathcal{P}\left(z, x_{n}, t\right)}{1+s\left[\mathcal{P}\left(x_{n-1}, x_{n}, t\right)+\mathcal{P}(z, f z, t)\right]} \\
& \left.\frac{\mathcal{P}\left(x_{n-1}, x_{n}, t\right) \mathcal{P}\left(x_{n-1}, f z, t\right)+\mathcal{P}(z, f z, t) \mathcal{P}\left(z, x_{n}, t\right)}{1+\mathcal{P}\left(x_{n-1}, f z, t\right)+\mathcal{P}\left(z, x_{n}, t\right)}\right\}
\end{aligned}
$$

Letting $n \rightarrow \infty$ in the above relation, we get

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} M\left(z, x_{n-1}, a\right)=0 \tag{16}
\end{equation*}
$$

Again, taking the upper limit as $n \rightarrow \infty$ in 15 and using Lemma 1.8 and (16) we get

$$
\begin{aligned}
s\left[\frac{1}{s} \mathcal{P}(z, f z, t)\right] & \leq s \limsup _{n \rightarrow \infty} \mathcal{P}\left(x_{n}, f z, t\right) \\
& \leq \limsup _{n \rightarrow \infty} \psi\left(M\left(z, x_{n-1}, t\right)\right)=0
\end{aligned}
$$

So we get $\mathcal{P}(z, f z, t)=0$, i.e., $f z=z$.
Corollary 2.8. Let (X, \preceq) be a partially ordered set and suppose that there exists a parametric b-metric \mathcal{P} on X such that (X, \mathcal{P}) is a complete parametric b-metric space. Let $f: X \rightarrow X$ be an increasing mapping with respect to \preceq such that there exists an element $x_{0} \in X$ with $x_{0} \preceq f x_{0}$. Suppose that

$$
s \mathcal{P}(f x, f y, t) \leq r M(x, y, t)
$$

where $0 \leq r<1$ and

$$
\begin{aligned}
N(x, y, t)=\max \{\mathcal{P}(x, y, t) & , \frac{\mathcal{P}(x, f x, t) d(x, f y, t)+\mathcal{P}(y, f y, t) \mathcal{P}(y, f x, t)}{1+s[\mathcal{P}(x, f x, t)+\mathcal{P}(y, f y, t)]} \\
& \left.\frac{\mathcal{P}(x, f x, t) \mathcal{P}(x, f y, t)+\mathcal{P}(y, f y, t) \mathcal{P}(y, f x, t)}{1+\mathcal{P}(x, f y, t)+\mathcal{P}(y, f x, t)}\right\}
\end{aligned}
$$

for all comparable elements $x, y \in X$ and all $t>0$. If f is continuous, or, whenever $\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow u \in X$, one has $x_{n} \preceq u$ for all $n \in \mathbb{N}$, then f has a fixed point.

2.3. Results for almost generalized weakly contractive mappings

Berinde in [5] studied the concept of almost contractions and obtained certain fixed point theorems. Results with similar conditions were obtained, e.g., in [4] and [25]. In this section, we define the notion of almost generalized $(\psi, \varphi)_{s, t}$-contractive mapping and prove our new results. In particular, we extend Theorems 2.1, 2.2 and 2.3 of Ćirić et al. in [6] to the setting of b-parametric metric spaces.

Recall that Khan et al. introduced in [22] the concept of an altering distance function as follows.
Definition 2.9. A function $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ is called an altering distance function, if the following properties hold:

1. φ is continuous and non-decreasing.
2. $\varphi(t)=0$ if and only if $t=0$.

Let (X, \mathcal{P}) be a parametric b-metric space and let $f: X \rightarrow X$ be a mapping. For $x, y \in X$ and for all $t>0$, set

$$
M_{t}(x, y)=\max \left\{\mathcal{P}(x, y, t), \mathcal{P}(x, f x, t), \mathcal{P}(y, f y, t), \frac{\mathcal{P}(x, f y, t)+\mathcal{P}(y, f x, t)}{2 s}\right\}
$$

and

$$
N_{t}(x, y)=\min \{\mathcal{P}(x, f x, t), \mathcal{P}(x, f y, t), \mathcal{P}(y, f x, t), \mathcal{P}(y, f y, t)\}
$$

Definition 2.10. Let (X, \mathcal{P}) be a parametric b-metric space. We say that a mapping $f: X \rightarrow X$ is an almost generalized $(\psi, \varphi)_{s, t}$-contractive mapping if there exist $L \geq 0$ and two altering distance functions ψ and φ such that

$$
\begin{equation*}
\psi(s \mathcal{P}(f x, f y, t)) \leq \psi\left(M_{t}(x, y)\right)-\varphi\left(M_{t}(x, y)\right)+L \psi\left(N_{t}(x, y)\right) \tag{17}
\end{equation*}
$$

for all $x, y \in X$ and for all $t>0$.

Now, let us prove our result.
Theorem 2.11. Let (X, \preceq) be a partially ordered set and suppose that there exists a parametric b-metric \mathcal{P} on X such that (X, \mathcal{P}) is a complete parametric metric space. Let $f: X \rightarrow X$ be a continuous non-decreasing mapping with respect to \preceq. Suppose that f satisfies condition (17), for all comparable elements $x, y \in X$. If there exists $x_{0} \in X$ such that $x_{0} \preceq f x_{0}$, then f has a fixed point.

Proof. Starting with the given x_{0}, define a sequence $\left\{x_{n}\right\}$ in X such that $x_{n+1}=f x_{n}$, for all $n \geq 0$. Since $x_{0} \preceq f x_{0}=x_{1}$ and f is non-decreasing, we have $x_{1}=f x_{0} \preceq x_{2}=f x_{1}$, and by induction

$$
x_{0} \preceq x_{1} \preceq \cdots \preceq x_{n} \preceq x_{n+1} \preceq \cdots
$$

If $x_{n}=x_{n+1}$, for some $n \in \mathbb{N}$, then $x_{n}=f x_{n}$ and hence x_{n} is a fixed point of f. So, we may assume that $x_{n} \neq x_{n+1}$, for all $n \in \mathbb{N}$. By (17), we have

$$
\begin{align*}
\psi\left(\mathcal{P}\left(x_{n}, x_{n+1}, t\right)\right) & \leq \psi\left(s \mathcal{P}\left(x_{n}, x_{n+1}, t\right)\right) \\
& =\psi\left(s \mathcal{P}\left(f x_{n-1}, f x_{n}, t\right)\right) \\
& \leq \psi\left(M_{t}\left(x_{n-1}, x_{n}\right)\right)-\varphi\left(M_{t}\left(x_{n-1}, x_{n}\right)\right)+L \psi\left(N_{t}\left(x_{n-1}, x_{n}\right)\right) \tag{18}
\end{align*}
$$

where

$$
\begin{align*}
M_{t}\left(x_{n-1}, x_{n}\right) & =\max \left\{\mathcal{P}\left(x_{n-1}, x_{n}, t\right), \mathcal{P}\left(x_{n-1}, f x_{n-1}, t\right), \mathcal{P}\left(x_{n}, f x_{n}, t\right), \frac{\mathcal{P}\left(x_{n-1}, f x_{n}, t\right)+\mathcal{P}\left(x_{n}, f x_{n-1}, t\right)}{2 s}\right\} \\
& =\max \left\{\mathcal{P}\left(x_{n-1}, x_{n}, t\right), \mathcal{P}\left(x_{n}, x_{n+1}, t\right), \frac{\mathcal{P}\left(x_{n-1}, x_{n+1}, t\right)}{2 s}\right\} \\
& \leq \max \left\{\mathcal{P}\left(x_{n-1}, x_{n}, t\right), \mathcal{P}\left(x_{n}, x_{n+1}, t\right), \frac{\mathcal{P}\left(x_{n-1}, x_{n}, t\right)+\mathcal{P}\left(x_{n}, x_{n+1}, t\right)}{2}\right\} \tag{19}
\end{align*}
$$

and

$$
\begin{align*}
N_{t}\left(x_{n-1}, x_{n}\right) & =\min \left\{\mathcal{P}\left(x_{n-1}, f x_{n-1}, t\right), \mathcal{P}\left(x_{n-1}, f x_{n}, t\right), \mathcal{P}\left(x_{n}, f x_{n-1}, t\right), \mathcal{P}\left(x_{n}, f x_{n}, t\right)\right\} \\
& =\min \left\{\mathcal{P}\left(x_{n-1}, x_{n}, t\right), \mathcal{P}\left(x_{n-1}, x_{n+1}, t\right), 0, \mathcal{P}\left(x_{n}, x_{n+1}, t\right)\right\}=0 \tag{20}
\end{align*}
$$

From (18)-20) and the properties of ψ and φ, we get

$$
\begin{align*}
\psi\left(\mathcal{P}\left(x_{n}, x_{n+1}, t\right)\right) \leq & \psi\left(\max \left\{\mathcal{P}\left(x_{n-1}, x_{n}, t\right), \mathcal{P}\left(x_{n}, x_{n+1}, t\right)\right\}\right) \\
& -\varphi\left(\max \left\{\mathcal{P}\left(x_{n-1}, x_{n}, t\right), \mathcal{P}\left(x_{n}, x_{n+1}, t\right), \frac{\mathcal{P}\left(x_{n-1}, x_{n+1}, t\right)}{2 s}\right\}\right) \tag{21}
\end{align*}
$$

If

$$
\max \left\{\mathcal{P}\left(x_{n-1}, x_{n}, t\right), \mathcal{P}\left(x_{n}, x_{n+1}, t\right)\right\}=\mathcal{P}\left(x_{n}, x_{n+1}, t\right)
$$

then by (21) we have

$$
\psi\left(\mathcal{P}\left(x_{n}, x_{n+1}, t\right)\right) \leq \psi\left(\mathcal{P}\left(x_{n}, x_{n+1}, t\right)\right)-\varphi\left(\max \left\{\mathcal{P}\left(x_{n-1}, x_{n}, t\right), \mathcal{P}\left(x_{n}, x_{n+1}, t\right), \frac{\mathcal{P}\left(x_{n-1}, x_{n+1}, t\right)}{2 s}\right\}\right)
$$

which gives that $x_{n}=x_{n+1}$, a contradiction.

Thus, $\left\{\mathcal{P}\left(x_{n}, x_{n+1}, t\right): n \in \mathbb{N} \cup\{0\}\right\}$ is a non-increasing sequence of positive numbers. Hence, there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \mathcal{P}\left(x_{n}, x_{n+1}, t\right)=r
$$

Letting $n \rightarrow \infty$ in (21), we get

$$
\psi(r) \leq \psi(r)-\varphi\left(\max \left\{r, r, \lim _{n} \frac{\mathcal{P}\left(x_{n-1}, x_{n+1}, t\right)}{2 s}\right\}\right) \leq \psi(r)
$$

Therefore,

$$
\varphi\left(\max \left\{r, r, \lim _{n \rightarrow \infty} \frac{\mathcal{P}\left(x_{n-1}, x_{n+1}, t\right)}{2 s}\right\}\right)=0
$$

and hence $r=0$. Thus, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{P}\left(x_{n}, x_{n+1}, t\right)=0 \tag{22}
\end{equation*}
$$

for each $t>0$.
Next, we show that $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
Suppose the contrary, that is, $\left\{x_{n}\right\}$ is not a Cauchy sequence. Then there exist $t>0$ and $\varepsilon>0$ for them we can find two subsequences $\left\{x_{m_{i}}\right\}$ and $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that n_{i} is the smallest index for which

$$
\begin{equation*}
n_{i}>m_{i}>i, \text { and } \mathcal{P}\left(x_{m_{i}}, x_{n_{i}}, t\right) \geq \varepsilon . \tag{23}
\end{equation*}
$$

This means that

$$
\begin{equation*}
\mathcal{P}\left(x_{m_{i}}, x_{n_{i}-1}, t\right)<\varepsilon \tag{24}
\end{equation*}
$$

Using (22) and taking the upper limit as $i \rightarrow \infty$, we get

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \mathcal{P}\left(x_{m_{i}}, x_{n_{i}-1}, t\right) \leq \varepsilon \tag{25}
\end{equation*}
$$

On the other hand, we have

$$
\mathcal{P}\left(x_{m_{i}}, x_{n_{i}}, t\right) \leq s \mathcal{P}\left(x_{m_{i}}, x_{m_{i}+1}, t\right)+s \mathcal{P}\left(x_{m_{i}+1}, x_{n_{i}}, t\right)
$$

Using (22), (24) and taking the upper limit as $i \rightarrow \infty$, we get

$$
\frac{\varepsilon}{s} \leq \limsup _{i \rightarrow \infty} \mathcal{P}\left(x_{m_{i}+1}, x_{n_{i}}, t\right)
$$

Again, using the triangular inequality, we have

$$
\mathcal{P}\left(x_{m_{i}+1}, x_{n_{i}-1}, t\right) \leq s \mathcal{P}\left(x_{m_{i}+1}, x_{m_{i}}, t\right)+s \mathcal{P}\left(x_{m_{i}}, x_{n_{i}-1}, t\right)
$$

and

$$
\mathcal{P}\left(x_{m_{i}}, x_{n_{i}}, t\right) \leq s \mathcal{P}\left(x_{m_{i}}, x_{n_{i}-1}, t\right)+s \mathcal{P}\left(x_{n_{i}-1}, x_{n_{i}}, t\right)
$$

Taking the upper limit as $i \rightarrow \infty$ in the first inequality above, and using (22) and (25) we get

$$
\begin{equation*}
\limsup _{i 10 \rightarrow \infty} \mathcal{P}\left(x_{m_{i}+1}, x_{n_{i}-1}, t\right) \leq \varepsilon s \tag{26}
\end{equation*}
$$

Similarly, taking the upper limit as $i \rightarrow \infty$ in the second inequality above, and using (22) and 24), we get

$$
\begin{equation*}
\limsup _{i \rightarrow \infty} \mathcal{P}\left(x_{m_{i}}, x_{n_{i}}, t\right) \leq \varepsilon s \tag{27}
\end{equation*}
$$

From (17), we have

$$
\begin{align*}
\psi\left(s \mathcal{P}\left(x_{m_{i}+1}, x_{n_{i}}, t\right)\right) & =\psi\left(s \mathcal{P}\left(f x_{m_{i}}, f x_{n_{i}-1}, t\right)\right) \\
& \leq \psi\left(M_{t}\left(x_{m_{i}}, x_{n_{i}-1}\right)\right)-\varphi\left(M_{t}\left(x_{m_{i}}, x_{n_{i}-1}\right)\right)+L \psi\left(N_{t}\left(x_{m_{i}}, x_{n_{i}-1}\right)\right) \tag{28}
\end{align*}
$$

where

$$
\begin{align*}
& M_{t}\left(x_{m_{i}}, x_{n_{i}-1}\right) \\
& =\max \left\{\mathcal{P}\left(x_{m_{i}}, x_{n_{i}-1}, t\right), \mathcal{P}\left(x_{m_{i}}, f x_{m_{i}}, t\right), \mathcal{P}\left(x_{n_{i}-1}, f x_{n_{i}-1}, t\right), \frac{\mathcal{P}\left(x_{m_{i}}, f x_{n_{i}-1}, t\right)+\mathcal{P}\left(f x_{m_{i}}, x_{n_{i}-1}, t\right)}{2 s}\right\} \\
& =\max \left\{\mathcal{P}\left(x_{m_{i}}, x_{n_{i}-1}, t\right), \mathcal{P}\left(x_{m_{i}}, x_{m_{i}+1}, t\right), \mathcal{P}\left(x_{n_{i}-1}, x_{n_{i}}, t\right), \frac{\mathcal{P}\left(x_{m_{i}}, x_{n_{i}}, t\right)+\mathcal{P}\left(x_{m_{i}+1}, x_{n_{i}-1}, t\right)}{2 s}\right\} \tag{29}
\end{align*}
$$

and

$$
\begin{align*}
N_{t}\left(x_{m_{i}}, x_{n_{i}-1}\right) & =\min \left\{\mathcal{P}\left(x_{m_{i}}, f x_{m_{i}}, t\right), \mathcal{P}\left(x_{m_{i}}, f x_{n_{i}-1}, t\right), \mathcal{P}\left(x_{n_{i}-1}, f x_{m_{i}}, t\right), \mathcal{P}\left(x_{n_{i}-1}, f x_{n_{i}-1}, t\right)\right\} \\
& =\min \left\{\mathcal{P}\left(x_{m_{i}}, x_{m_{i}+1}, t\right), \mathcal{P}\left(x_{m_{i}}, x_{n_{i}}, t\right), \mathcal{P}\left(x_{n_{i}-1}, x_{m_{i}+1}, t\right), \mathcal{P}\left(x_{n_{i}-1}, x_{n_{i}}, t\right)\right\} \tag{30}
\end{align*}
$$

Taking the upper limit as $i \rightarrow \infty$ in (29) and (30) and using (22), (25), (26) and (27), we get

$$
\left.\begin{array}{rl}
\limsup _{i \rightarrow \infty} M_{t}\left(x_{m_{i}-1}, x_{n_{i}-1}\right)= & \max \left\{\limsup _{i \rightarrow \infty} \mathcal{P}\left(x_{m_{i}}, x_{n_{i}-1}, t\right), 0,0\right. \\
& \underline{\lim \sup _{i \rightarrow \infty} \mathcal{P}\left(x_{m_{i}}, x_{n_{i}}, t\right)+\limsup _{n \rightarrow \infty} \mathcal{P}\left(x_{m_{i}+1}, x_{n_{i}-1}, t\right)} \\
2 s \tag{31}
\end{array}\right\}
$$

So, we have

$$
\begin{equation*}
\limsup _{i \rightarrow \infty} M_{t}\left(x_{m_{i}-1}, x_{n_{i}-1}\right) \leq \varepsilon \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{i \rightarrow \infty} N_{t}\left(x_{m_{i}}, x_{n_{i}-1}\right)=0 \tag{33}
\end{equation*}
$$

Now, taking the upper limit as $i \rightarrow \infty$ in (28) and using (23), (32) and (33) we have

$$
\begin{aligned}
\psi\left(s \cdot \frac{\varepsilon}{s}\right) & \leq \psi\left(s \limsup _{i \rightarrow \infty} \mathcal{P}\left(x_{m_{i}+1}, x_{n_{i}}, t\right)\right) \\
& \leq \psi\left(\limsup _{i \rightarrow \infty} M_{t}\left(x_{m_{i}}, x_{n_{i}-1}, t\right)\right)-\liminf _{i \rightarrow \infty} \varphi\left(M_{t}\left(x_{m_{i}}, x_{n_{i}-1}\right)\right) \\
& \leq \psi(\varepsilon)-\varphi\left(\liminf _{i \rightarrow \infty} M_{t}\left(x_{m_{i}}, x_{n_{i}-1}\right)\right)
\end{aligned}
$$

which further implies that

$$
\varphi\left(\liminf _{i \rightarrow \infty} M_{t}\left(x_{m_{i}}, x_{n_{i}-1}\right)\right)=0
$$

so $\liminf _{i \rightarrow \infty} M_{t}\left(x_{m_{i}}, x_{n_{i}-1}\right)=0$, a contradiction to 31 . Thus, $\left\{x_{n+1}=f x_{n}\right\}$ is a Cauchy sequence in X.
$\stackrel{i \rightarrow \infty}{\mathrm{As}} X$ is a complete space, there exists $u \in X$ such that $x_{n} \rightarrow u$ as $n \rightarrow \infty$, that is,

$$
\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} f x_{n}=u
$$

Now, suppose that f is continuous. Using the triangular inequality, we get

$$
\mathcal{P}(u, f u, t) \leq s \mathcal{P}\left(u, f x_{n}, t\right)+s \mathcal{P}\left(f x_{n}, f u, t\right)
$$

Letting $n \rightarrow \infty$, we get

$$
\mathcal{P}(u, f u, t) \leq s \lim _{n \rightarrow \infty} \mathcal{P}\left(u, f x_{n}, t\right)+s \lim _{n \rightarrow \infty} \mathcal{P}\left(f x_{n}, f u, t\right)
$$

So, we have $f u=u$. Thus, u is a fixed point of f.

Note that the continuity of f in Theorem 2.11 is not necessary and can be dropped.
Theorem 2.12. Under the hypotheses of Theorem 2.11, without the continuity assumption on f, assume that whenever $\left\{x_{n}\right\}$ is a non-decreasing sequence in X such that $x_{n} \rightarrow x \in X$, one has $x_{n} \preceq x$, for all $n \in \mathbb{N}$. Then f has a fixed point in X.
Proof. Following similar arguments to those given in the proof of Theorem 2.11, we construct an increasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow u$, for some $u \in X$. Using the assumption on X, we have that $x_{n} \preceq u$, for all $n \in \mathbb{N}$. Now, we show that $f u=u$. By (17), we have

$$
\begin{align*}
\psi\left(s \mathcal{P}\left(x_{n+1}, f u, t\right)\right) & =\psi\left(s \mathcal{P}\left(f x_{n}, f u, t\right)\right) \\
& \leq \psi\left(M_{t}\left(x_{n}, u\right)\right)-\varphi\left(M_{t}\left(x_{n}, u\right)\right)+L \psi\left(N_{t}\left(x_{n}, u\right)\right) \tag{34}
\end{align*}
$$

where

$$
\begin{align*}
M_{t}\left(x_{n}, u\right) & =\max \left\{\mathcal{P}\left(x_{n}, u, t\right), \mathcal{P}\left(x_{n}, f x_{n}, t\right), \mathcal{P}(u, f u, t), \frac{\mathcal{P}\left(x_{n}, f u, t\right)+\mathcal{P}\left(f x_{n}, u, t\right)}{2 s}\right\} \\
& =\max \left\{\mathcal{P}\left(x_{n}, u, t\right), \mathcal{P}\left(x_{n}, x_{n+1}, t\right), \mathcal{P}(u, f u, t), \frac{\mathcal{P}\left(x_{n}, f u, t\right)+\mathcal{P}\left(x_{n+1}, u, t\right)}{2 s}\right\} \tag{35}
\end{align*}
$$

and

$$
\begin{align*}
N_{t}\left(x_{n}, u\right) & =\min \left\{\mathcal{P}\left(x_{n}, f x_{n}, t\right), \mathcal{P}\left(x_{n}, f u, t\right), \mathcal{P}\left(u, f x_{n}, t\right), \mathcal{P}(u, f u, t)\right\} \\
& =\min \left\{\mathcal{P}\left(x_{n}, x_{n+1}, t\right), \mathcal{P}\left(x_{n}, f u, t\right), \mathcal{P}\left(u, x_{n+1}, t\right), \mathcal{P}(u, f u, t)\right\} \tag{36}
\end{align*}
$$

Letting $n \rightarrow \infty$ in (35) and (36) and using Lemma 1.8, we get

$$
\begin{equation*}
\frac{\frac{1}{s} \mathcal{P}(u, f u, t)}{2 s} \liminf _{n \rightarrow \infty} M_{t}\left(x_{n}, u\right) \leq \limsup _{n \rightarrow \infty} M_{t}\left(x_{n}, u\right) \leq \max \left\{\mathcal{P}(u, f u, t), \frac{s \mathcal{P}(u, f u, t)}{2 s}\right\}=\mathcal{P}(u, f u, t) \tag{37}
\end{equation*}
$$

and

$$
N_{t}\left(x_{n}, u\right) \rightarrow 0
$$

Again, taking the upper limit as $i \rightarrow \infty$ in (34) and using Lemma 1.8 and (37) we get

$$
\begin{aligned}
\psi(\mathcal{P}(u, f u, t) & =\psi\left(s \cdot \frac{1}{s} \mathcal{P}(u, f u, t)\right) \leq \psi\left(s \limsup _{n \rightarrow \infty} \mathcal{P}\left(x_{n+1}, f u, t\right)\right) \\
& \leq \psi\left(\limsup _{n \rightarrow \infty} M_{t}\left(x_{n}, u\right)\right)-\liminf _{n \rightarrow \infty} \varphi\left(M_{t}\left(x_{n}, u\right)\right) \\
& \leq \psi(\mathcal{P}(u, f u, t))-\varphi\left(\liminf _{n \rightarrow \infty} M_{t}\left(x_{n}, u\right)\right)
\end{aligned}
$$

Therefore, $\varphi\left(\liminf _{n \rightarrow \infty} M_{t}\left(x_{n}, u\right)\right) \leq 0$, equivalently, $\liminf _{n \rightarrow \infty} M_{t}\left(x_{n}, u\right)=0$. Thus, from 37 we get $u=f u$ and hence u is a fixed point of f.

Corollary 2.13. Let (X, \preceq) be a partially ordered set and suppose that there exists a b-parametric metric \mathcal{P} on X such that (X, \mathcal{P}) is a complete parametric b-metric space. Let $f: X \rightarrow X$ be a non-decreasing continuous mapping with respect to \preceq. Suppose that there exist $k \in[0,1)$ and $L \geq 0$ such that

$$
\begin{aligned}
\mathcal{P}(f x, f y, t) \leq & \frac{k}{s} \max \left\{\mathcal{P}(x, y, t), \mathcal{P}(x, f x, t), \mathcal{P}(y, f y, t), \frac{\mathcal{P}(x, f y, t)+\mathcal{P}(y, f x, t)}{2 s}\right\} \\
& +\frac{L}{s} \min \{\mathcal{P}(x, f x, t), \mathcal{P}(y, f x, t)\}
\end{aligned}
$$

for all comparable elements $x, y \in X$ and all $t>0$. If there exists $x_{0} \in X$ such that $x_{0} \preceq f x_{0}$, then f has a fixed point.

Proof. Follows from Theorem 2.11 by taking $\psi(t)=t$ and $\varphi(t)=(1-k) t$, for all $t \in[0,+\infty)$.

Corollary 2.14. Under the hypotheses of Corollary 2.13, without the continuity assumption of f, let for any non-decreasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow x \in X$ we have $x_{n} \preceq x$, for all $n \in \mathbb{N}$. Then, f has a fixed point in X.

3. Fuzzy b-metric spaces

In 1988, Grabiec [14] defined contractive mappings on a fuzzy metric space and extended fixed point theorems of Banach and Edelstein in such spaces. Successively, George and Veeramani [11] slightly modified the notion of a fuzzy metric space introduced by Kramosil and Michálek and then defined a Hausdorff and first countable topology on it. Since then, the notion of a complete fuzzy metric space presented by George and Veeramani has emerged as another characterization of completeness, and many fixed point theorems have also been proved (see for more details [9, 3, 13, 16, 23, 18] and the references therein). In this section we develop an important relation between parametric b-metric and fuzzy b-metric and deduce certain new fixed point results in triangular partially ordered fuzzy b-metric space.

Definition 3.1. (Schweizer and Sklar [26]) A binary operation $\star:[0,1] \times[0,1] \rightarrow[0,1]$ is called a continuous t-norm if it satisfies the following assertions:
(T1) \star is commutative and associative;
(T2) \star is continuous;
(T3) $a \star 1=a$ for all $a \in[0,1]$;
(T4) $a \star b \leq c \star d$ when $a \leq c$ and $b \leq d$, with $a, b, c, d \in[0,1]$.
Definition 3.2. A 3-tuple $(X, M, *)$ is said to be a fuzzy metric space if X is an arbitrary set, $*$ is a continuous t-norm and M is fuzzy set on $X^{2} \times(0, \infty)$ satisfying the following conditions, for all $x, y, z \in X$ and $t, s>0$,
(i) $M(x, y, t)>0$;
(ii) $M(x, y, t)=1$ for all $t>0$ if and only if $x=y$;
(iii) $M(x, y, t)=M(y, x, t)$;
(iv) $M(x, y, t) * M(y, z, s) \leq M(x, z, t+s)$;
(v) $M(x, y,):.(0, \infty) \rightarrow[0,1]$ is continuous;

The function $M(x, y, t)$ denotes the degree of nearness between x and y with respect to t.
Definition 3.3. A fuzzy b-metric space is an ordered triple (X, B, \star) such that X is a nonempty set, \star is a continuous t-norm and B is a fuzzy set on $X \times X \times(0,+\infty)$ satisfying the following conditions, for all $x, y, z \in X$ and $t, s>0$:
(F1) $B(x, y, t)>0$;
(F2) $B(x, y, t)=1$ if and only if $x=y$;
(F3) $B(x, y, t)=B(y, x, t)$;
(F4) $B(x, y, t) \star B(y, z, s) \leq B(x, z, b(t+s))$ where $b \geq 1$;
(F5) $B(x, y, \cdot):(0,+\infty) \rightarrow(0,1]$ is left continuous.
Definition 3.4. Let (X, B, \star) be a fuzzy b-metric space. Then
(i) a sequence $\left\{x_{n}\right\}$ converges to $x \in X$, if and only if $\lim _{n \rightarrow+\infty} B\left(x_{n}, x, t\right)=1$ for all $t>0$;
(ii) a sequence $\left\{x_{n}\right\}$ in X is a Cauchy sequence if and only if for all $\epsilon \in(0,1)$ and $t>0$, there exists n_{0} such that $B\left(x_{n}, x_{m}, t\right)>1-\epsilon$ for all $m, n \geq n_{0}$;
(iii) the fuzzy b-metric space is called complete if every Cauchy sequence converges to some $x \in X$.

Definition 3.5. Let $(X, B, *, b)$ be a fuzzy b-metric space. The fuzzy b-metric B is called triangular whenever,

$$
\left.\frac{1}{B(x, y, t)}-1 \leq b\left[\frac{1}{B(x, z, t)}-1+\frac{1}{B(z, y, t)}-1\right)\right]
$$

for all $x, y, z \in X$ and all $t>0$.
Example 3.6. Let (X, d, s) be a b-metric space. Define $B: X \times X \times(0, \infty) \rightarrow[0, \infty)$ by $B(x, y, t)=\frac{t}{t+d(x, y)}$. Also suppose $a * b=\min \{a, b\}$. Then $(X, B, *)$ is a fuzzy b-metric spaces with constant $b=s$. Further B is a triangular fuzzy B-metric.

Remark 3.7. Notice that $\mathcal{P}(x, y, t)=\frac{1}{B(x, y, t)}-1$ is a parametric b-metric whenever B is a triangular fuzzy b-metric.

As an applications of Remark 3.7 and the results established in section 2, we can deduce the following results in ordered fuzzy b-metric spaces.

Theorem 3.8. Let (X, \preceq) be a partially ordered set and suppose that there exists a triangular fuzzy b-metric B on X such that $(X, B, *, b)$ is a complete fuzzy b-metric space. Let $f: X \rightarrow X$ be an increasing mapping with respect to \preceq such that there exists an element $x_{0} \in X$ with $x_{0} \preceq f x_{0}$. Suppose that

$$
\begin{equation*}
b\left[\frac{1}{B(f x, f y, t))}-1\right] \leq \beta\left(\frac{1}{B(x, y, t)}-1\right) \mathcal{M}(x, y, t) \tag{38}
\end{equation*}
$$

for all $t>0$ and for all comparable elements $x, y \in X$, where

$$
\mathcal{M}(x, y, t)=\max \left\{\frac{1}{B(x, y, t)}-1, \frac{\left[\frac{1}{B(x, f x, t)}-1\right]\left[\frac{1}{B(y, f y, t)}-1\right]}{\frac{1}{B(f x, f y, t)}}, \frac{\left[\frac{1}{B(x, f x, t)}-1\right]\left[\frac{1}{B(y, f y, t)}-1\right]}{\frac{1}{B(x, y, t)}}\right\}
$$

If f is continuous, then f has a fixed point.
Theorem 3.9. Under the hypotheses of Theorem 3.8, without the continuity assumption on f, assume that whenever $\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow u$, one has $x_{n} \preceq u$ for all $n \in \mathbb{N}$. Then f has a fixed point.

Theorem 3.10. Let (X, \preceq) be a partially ordered set and suppose that there exists a triangular fuzzy bmetric B on X such that $(X, B, *, b)$ is a complete fuzzy b-metric space. Let $f: X \rightarrow X$ be a continuous non-decreasing mapping with respect to \preceq. Also suppose that there exist $L \geq 0$ and two altering distance functions ψ and φ such that

$$
\psi\left(b\left[\frac{1}{B(f x, f y, t))}-1\right]\right) \leq \psi\left(\mathcal{M}_{t}(x, y)\right)-\varphi\left(\mathcal{M}_{t}(x, y)\right)+L \psi\left(\mathcal{N}_{t}(x, y)\right)
$$

for all comparable elements $x, y \in X$ where,

$$
\mathcal{M}_{t}(x, y)=\max \left\{\frac{1}{B(x, y, t)}-1, \frac{1}{B(x, f x, t)}-1, \frac{1}{B(y, f y, t)}-1, \frac{1}{2 b}\left[\frac{1}{B(x, f y, t)}+\frac{1}{B(y, f x, t)}-2\right]\right\}
$$

and

$$
\mathcal{N}_{t}(x, y)=\min \left\{\frac{1}{B(x, f x, t)}-1, \frac{1}{B(y, f y, t)}-1, \frac{1}{B(y, f x, t)}-1, \frac{1}{B(x, f y, t)}-1\right\} .
$$

If there exists $x_{0} \in X$ such that $x_{0} \preceq f x_{0}$, then f has a fixed point.
Theorem 3.11. Under the hypotheses of Theorem 3.10, without the continuity assumption on f, assume that whenever $\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow u \in X$, one has $x_{n} \preceq u$ for all $n \in \mathbb{N}$. Then f has a fixed point.

Theorem 3.12. Let (X, \preceq) be a partially ordered set and suppose that there exists a triangular fuzzy bmetric B on X such that $(X, B, *, b)$ is a complete fuzzy b-metric space. Let $f: X \rightarrow X$ be an increasing mapping with respect to \preceq such that there exists an element $x_{0} \in X$ with $x_{0} \preceq f x_{0}$. Suppose that

$$
\begin{equation*}
b\left[\frac{1}{B(f x, f y, t))}-1\right] \leq \psi(\mathcal{N}(x, y, t)) \tag{39}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathcal{N}(x, y, t)= & \max \left\{\frac{1}{B(x, y, t))}-1, \frac{\left[\frac{1}{B(x, f x, t)}-1\right]\left[\frac{1}{B(x, f y, t)}-1\right]+\left[\frac{1}{B(y, f y, t)}-1\right]\left[\frac{1}{B(y, f x, t)}-1\right]}{1+b\left[\frac{1}{B(x, f x, t)}+\frac{1}{B(y, f y, t)}-2\right]},\right. \\
& \frac{\left[\frac{1}{B(x, f x, t)}-1\right]\left[\frac{1}{B(x, f y, t)}-1\right]+\left[\frac{1}{B(y, f y, t)}-1\right]\left[\frac{1}{B(y, f x, t)}-1\right]}{\frac{1}{B(x, f y, t)}+\frac{1}{B(y, f x, t)}-1}
\end{aligned}
$$

for some $\psi \in \Psi$ and for all comparable elements $x, y \in X$ and all $t>0$. If f is continuous, then f has a fixed point.

4. Application to existence of solutions of integral equations

Let $X=C([0, T], \mathbb{R})$ be the set of real continuous functions defined on $[0, T]$ and $\mathcal{P}: X \times X \times(0, \infty) \rightarrow$ $[0,+\infty)$ be defined by $\mathcal{P}(x, y, \alpha)=\sup _{t \in[0, T]} e^{-\alpha t}|x(t)-y(t)|^{2}$ for all $x, y \in X$ and all $t>0$. Then $(X, \mathcal{P}, 2)$ is a complete parametric b-metric space. Let \preceq be the partial order on X defined by $x \preceq y$ if and only if $x(t) \leq y(t)$ for all $t \in[0, T]$. Then $\left(X, d_{\alpha}, \preceq\right)$ is a complete partially ordered metric space. Consider the following integral equation

$$
\begin{equation*}
x(t)=p(t)+\int_{0}^{T} S(t, s) f(s, x(s)) d s \tag{40}
\end{equation*}
$$

where
(A) $f:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous,
(B) $p:[0, T] \rightarrow \mathbb{R}$ is continuous,
(C) $S:[0, T] \times[0, T] \rightarrow[0,+\infty)$ is continuous and

$$
\sup _{t \in[0, T]} e^{-\alpha t}\left(\int_{0}^{T} S(t, s) d s\right)^{2} \leq 1
$$

(D) there exist $k \in[0,1)$ and $L \geq 0$ such that

$$
\begin{aligned}
0 \leq f(s, y(s))-f(s, x(s)) & \leq\left(\frac{k e^{-\alpha s}}{2} \max \{|x(s)-y(s)|,|x(s)-H x(s)|,|y(s)-H y(s)|,\right. \\
& \left.\frac{|x(s)-H y(s)|+|y(s)-H x(s)|}{4}\right\} \\
& \left.+\frac{L e^{-\alpha s}}{2} \min \{|x(s), H x(s)|,|y(s)-H x(s)|\}\right)^{\frac{1}{2}}
\end{aligned}
$$

for all $x, y \in X$ with $x \preceq y, s \in[0, T]$ and $\alpha>0$ where

$$
H x(t)=p(t)+\int_{0}^{T} S(t, s) f(s, x(s)) d s, \quad t \in[0, T], \quad \text { for all } \quad x \in X
$$

(E) there exist $x_{0} \in X$ such that

$$
x_{0}(t) \leq p(t)+\int_{0}^{T} S(t, s) f\left(s, x_{0}(s)\right) d s
$$

We have the following result of existence of solutions for integral equations.
Theorem 4.1. Under assumptions $(A)-(E)$, the integral equation 40) has a unique solution in $X=C([0, T], R)$.

Proof. Let $H: X \rightarrow X$ be defined by

$$
H x(t)=p(t)+\int_{0}^{T} S(t, s) f(s, x(s)) d s, \quad t \in[0, T], \quad \text { for all } \quad x \in X
$$

First, we will prove that H is a non-decreasing mapping with respect to \preceq. Let $x \preceq y$ then by (D) we have $0 \leq f(s, y(s))-f(s, x(s))$ for all $s \in[0, T]$. On the other hand by definition of H we have

$$
H y-H x=\int_{0}^{T} S(t, s)[f(s, y(s))-f(s, x(s))] d s \geq 0 \quad \text { for all } \quad t \in[0, T]
$$

Then $H x \preceq H y$, that is, H is a non-decreasing mapping with respect to \preceq. Now suppose that $x, y \in X$ with $x \preceq y$. Then by $(C),(D)$ and the definition of H we get

$$
\begin{aligned}
\mathcal{P}(H x, H y, \alpha)= & \sup _{t \in[0, T]} e^{-\alpha t}|H x(t)-H y(t)|^{2} \\
= & \sup _{t \in[0, T]} e^{-\alpha t}\left|\int_{0}^{T} S(t, s)[f(s, x(s))-f(s, y(s))] d s\right|^{2} \\
\leq & \sup _{t \in[0, T]} e^{-\alpha t}\left(\int_{0}^{T} S(t, s)|f(s, x(s))-f(s, y(s))| d s\right)^{2} \\
\leq & \sup _{t \in[0, T]} e^{-\alpha t}\left(\int _ { 0 } ^ { T } S (t , s) \left(\frac{k e^{-\alpha s}}{2} \max \{|x(s)-y(s)|,\right.\right. \\
& \left.|x(s)-H x(s)|,|y(s)-H y(s)|, \frac{|x(s)-H y(s)|+|y(s)-H x(s)|}{4}\right\} \\
& \left.\left.+\frac{L e^{-\alpha s}}{2} \min \{|x(s), H x(s)|,|y(s)-H x(s)|\}\right)^{\frac{1}{2}} d s\right)^{2} \\
\leq & \sup _{t \in[0, T]} e^{-\alpha t}\left(\int _ { 0 } ^ { T } S (t , s) \left(\frac { k } { 2 } \operatorname { m a x } \left\{\sup _{s \in[0, T]} e^{-\alpha s}|x(s)-y(s)|, \sup _{s \in[0, T]} e^{-\alpha s}|x(s)-H x(s)|\right.\right.\right. \\
& \left.\sup _{s \in[0, T]} e^{-\alpha s}|y(s)-H y(s)|, \frac{\sup _{s \in[0, T]} e^{-\alpha s}|x(s)-H y(s)|+\sup _{s \in[0, T]} e^{-\alpha s}|y(s)-H x(s)|}{4}\right\} \\
& \left.\left.+\frac{L}{2} \min \left\{\sup _{s \in[0, T]} e^{-\alpha s}|x(s), H x(s)|, \sup _{s \in[0, T]} e^{-\alpha s}|y(s)-H x(s)|\right\}\right)^{\frac{1}{2}} d s\right)^{2} \\
= & \sup _{t \in[0, T]} e^{-\alpha t}\left(\int _ { 0 } ^ { T } S (t , s) \left(\frac{k}{2} \max \{\mathcal{P}(x, y, \alpha), \mathcal{P}(x, H x, \alpha), \mathcal{P}(y, H y, \alpha),\right.\right. \\
& \left.\frac{\mathcal{P}(x, H y, \alpha)+\mathcal{P}(y, H x, \alpha)}{4}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\frac{L}{2} \min \{\mathcal{P}(x, H x, \alpha), \mathcal{P}(y, H x, \alpha)\}\right)^{\frac{1}{2}} d s\right)^{2} \\
= & \left(\sup _{t \in[0, T]} e^{-\alpha t}\left(\int_{0}^{T} S(t, s) d s\right)^{2}\right)\left(\frac{k}{2} \max \{\mathcal{P}(x, y, \alpha), \mathcal{P}(x, H x, \alpha),\right. \\
& \left.\left.\mathcal{P}(y, H y, \alpha), \frac{\mathcal{P}(x, H y, \alpha)+\mathcal{P}(y, H x, \alpha)}{4}\right\}+\frac{L}{2} \min \{\mathcal{P}(x, H x, \alpha), \mathcal{P}(y, H x, \alpha)\}\right) \\
\leq & \frac{k}{2} \max \left\{\mathcal{P}(x, y, \alpha), \mathcal{P}(x, H x, \alpha), \mathcal{P}(y, H y, \alpha), \frac{\mathcal{P}(x, H y, \alpha)+\mathcal{P}(y, H x, \alpha)}{4}\right\} \\
+ & \frac{L}{2} \min \{\mathcal{P}(x, H x, \alpha), \mathcal{P}(y, H x, \alpha)\}
\end{aligned}
$$

Now, by (E) there exists $x_{0} \in X$ such that $x_{0} \preceq H x_{0}$. Then, the conditions of Corollary 2.13 are satisfied and hence the integral equation (40) has a unique solution in $X=C([0, T], \mathbb{R})$.

Acknowledgement

This article was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah. The authors acknowledge with thanks DSR, KAU for financial support.

References

[1] R. P. Agarwal, N. Hussain, M. A. Taoudi, Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations, Abstr. Appl. Anal., 2012 (2012), 15 pages. 2.1
[2] M. A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Inequal. Appl., 2013 (2013), 25 pages. 1
[3] I. Altun, D. Turkoglu, Some fixed point theorems on fuzzy metric spaces with implicit relations, Commun. Korean Math. Soc., 23 (2008), 111-124. 3
[4] G. V. R. Babu, M. L. Sandhya, M. V. R. Kameswari, A note on a fixed point theorem of Berinde on weak contractions, Carpathian J. Math., 24 (2008), 8-12.2.3
[5] V. Berinde, General contrcactive fixed point theorems for Ćirić-type almost contraction in metric spaces, Carpathian J. Math., 24 (2008), 10-19. 2.3
[6] L. Ćirić, M. Abbas, R. Saadati, N. Hussain, Common fixed points of almost generalized contractive mappings in ordered metric spaces, Appl. Math. Comput., 217 (2011), 5784-5789.2.3
[7] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostravensis, 1 (1993), 5-11.1, 1.1
[8] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263-276. 1
[9] C. Di Bari, C. Vetro, A fixed point theorem for a family of mappings in a fuzzy metric space, Rend. Circ. Math. Palermo, 52 (2003), 315-321.3
[10] D. Đukić, Z. Kadelburg, S. Radenović, Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstr. Appl. Anal., 2011 (2011), 13 pages. 2.1
[11] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395-399.3
[12] M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604-608. 2.1
[13] D. Gopal, M. Imdad, C. Vetro, M. Hasan, Fixed point theory for cyclic weak ϕ-contraction in fuzzy metric space, J. Nonlinear Anal. Appl., 2012 (2012), 11 pages. 3
[14] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1988), 385-389. 3
[15] N. Hussain, S. Al-Mezel, P. Salimi, Fixed points for ψ-graphic contractions with application to integral equations, Abstr. Appl. Anal., 2013 (2013), 11 pages.2.1
[16] N. Hussain, S. Khaleghizadeh, P. Salimi, A. A. N. Abdou, A new approach to fixed point results in triangular intuitionistic fuzzy metric spaces, Abstr. Appl. Anal., 2014 (2014), 16 pages. 1,3
[17] N. Hussain, V. Parvaneh, J. R. Roshan, Z. Kadelburg, Fixed points of cyclic weakly (ψ, φ, L, A, B)-contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl., 2013 (2013), 18pages. 1.1
[18] N. Hussain, P. Salimi, Implicit contractive mappings in Modular metric and Fuzzy Metric Spaces, The Sci. World J., 2014 (2014), 13 pages. 3
[19] N. Hussain, M. H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl., 62 (2011), 1677-1684. 1
[20] N. Hussain, M. A. Taoudi, Krasnosel'skii-type fixed point theorems with applications to Volterra integral equations, Fixed Point Theory Appl., 2013 (2013), 16 pages. 2.1
[21] M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123-3129. 1 .
[22] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), 1-9. 2.3
[23] M. A. Kutbi, J. Ahmad, A. Azam, N. Hussain, On fuzzy fixed points for fuzzy maps with generalized weak property, J. Appl. Math., 2014 (2014), 12 pages. 3
[24] J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223-229. 2.1
[25] J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized $(\psi, \varphi)_{s}$-contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl., 2013 (2013), 23 pages. 2.3
[26] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 314-334.3.1

[^0]: *Corresponding author
 Email addresses: nhusain@kau.edu.sa (Nawab Hussain), salimipeyman@gmail.com (Peyman Salimi), vahid.parvaneh@kiau.ac.ir (Vahid Parvaneh)

