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Abstract

One of the big problems we encounter in groundwater modeling is to provide a correct model that can be
used to describe the movement of water via a particular geological formation. In this work, in order to
further enhance the model of groundwater flow in a leaky aquifer, we made use of a new derivative called
the local variable order derivative. The derivative includes into mathematical formula the complexity of the
leaky aquifer, which is for instance the variation of the aquifer, or the heterogeneity of the leaky aquifer.
The modified equation was solved using the concept of iterative method. We presented in detail the stability
and the uniqueness of the special solution. c©2015 All rights reserved.
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1. Introduction

For the first time, Pythagoras realized that mathematics tools can be used to describe the pattern of
real physical problems. Later on, Diophantus of Alexandria realized that, these natural patterns can be
described via mathematical equations [10]. The notion has been used intensively in the circle of mathematics;
however the idea of motion was not already introduced by that time. In the year 18th, Sir Isaac Newton and
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Gottfried W. Leibniz independently introduced the concept of motion leading to the concept of derivative
[4, 11, 12]. Since then, this concept has been used in almost all the branches of sciences to model real
world problems[3, 7, 8, 9]. It is perhaps important to note that, the big challenge in this process is to
include into mathematical formula all the detail surrounding the physical problem under observation. It
happens to appear that, the Newtonian concept of derivative cannot satisfy all the complexity of the natural
occurrences. For instance, how, do we explain accurately the movement of water within the leaky aquifer?
An attempt to answer this question, Hantush has proposed and equation based on the model proposed by
Theis in [1, 2, 13, 14]. Although this model has being used by many hydro-geologists, it is worth noting that,
the model does not take into account all the details surrounding the movement of water through a leaky
geological formation. A first attempt to enhance model, was to introduce the concept of derivative with
fractional order [3]. This model has improved the description of this physical problem at a certain extend.
Nonetheless, to be accurate, when dealing complexes systems, even the concept of fractional order derivative
has some limitations, for instance it is not possible to accurately model the trap of water under matrices
rocks. We shall mention that, a mathematical model will be considered accurate if and only if the numerical
representation of the mathematic solution is in good agreement with the observed facts. If not there are
two questions that need to be answered: the first one is to know if the experimental data were accurately
measured. The second one will be to know if the mathematical equation is accurately implemented. If the
second question appears to be negative, then, the model needs to be revised. In the case of leaky aquifer
model with non-integer and integer order derivatives have failed to do the job. The aim of our paper is to
revise this model by introducing the concept of variable order derivative, which so far appears to be the
best concept for complexes systems.

2. Groundwater water flow equation using the local variable order derivative

The initial proposed groundwater equation within the leaky aquifer that was proposed by Hantush is given
by:

∂2S(r, t)

∂r2
+

1

r

∂S(r, t)

∂r
− S(r, t)

B2
=
S

T

∂S(r, t)

∂t
(2.1)

The above equation then modified by Atangana [3] as follows

∂2S(r, t)

∂r2
+

1

r

∂S(r, t)

∂r
− S(r, t)

B2
=
S

T

∂αS(r, t)

∂tα
, (2.2)

∂αS(r, t)

∂rα
=

1

Γ(1− α)

∫ t

0
(t− x)1−α∂S(r, x)

∂r
dx, 0 < α ≤ 1.

As we said before, the above model was also unable to describe accurately the complexity of the geological
formation. Therefore in order to further include into mathematical formula the complexity of the aquifer
through which the flow take place, we shall proposed the following version

∂2S(r, t)

∂r2
+

1

r

∂S(r, t)

∂r
− S(r, t)

B2
=
S

T
A
0 D

t

α (S(r, t)) , (2.3)

A
0 D

t

α (S(r, t)) = lim
ε→0

S

(
r, t+ ε

(
t+ 1

Γ(1−l(r,t))

)1−l(r,t)
)
− S (r, t)

ε
.

Here the function l (r, t) accounts for the complexity associated with the leaky aquifer, S(r, t) is the change
of level of water, S is the storativity, T is the transmissivity and B is the factor that account for the leakage.
We shall show some useful properties of the local variable order derivative.

Theorem 2.1. Assume that f(x, y) is function which ∂
l(x)
x

[
∂
o(y)
y (f(x, y))

]
and ∂

o(y)
y

[
∂
l(x)
x (f(x, y))

]
exist

and is continous over the domain D ⊂ R2 then [5]
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∂l(x)
x

[
∂o(y)
y (f(x, y))

]
= ∂o(y)

y

[
∂l(x)
x (f(x, y))

]
. (2.4)

Theorem 2.2. Assuming that, a given function says f : [a, 8)→ R is o(x)−differentiable at a given point,
say x0 ≥ a, then, f is also continuous at x0.

Proof. Assuming that f is o(x)−differentiable then

A
0 D

o(x)
x (f(x0)) = lim

ε→0

f

(
x0 + ε

(
x0 + 1

Γ(1−o(x))

)1−o(x)
)
− f(x0)

ε
. (2.5)

Theorem 2.3. Assuming that f is o(x)−differentiable on an open interval (a, b) then

1. If A0 D
o(x)
x (f(x)) < 0 for all x ∈ (a, b) then f is decreasing there,

2. If A0 D
o(x)
x (f(x)) > 0 for all x ∈ (a, b) then f is increasing there,

3. If A0 D
o(x)
x (f(x)) = 0 for all x ∈ (a, b) then f is constant there.

Definition 2.4. Let f : [a, ∞)→ R is given function, then we propose that the anti-variable derivative of
f is

A
a I

o(x,t)

x (f(x)) =

∫ x

a

(
t+

1

Γ (1− o (x, t))

)o(x, t)−1

f (t) dt. (2.6)

The above operator is the inverse operator of the proposed fractional derivative. We shall present to
underpin this statement by the following theorem.

Theorem 2.5. Fundamental theorem of local variable calculus: A
0 D

o(x,t)
x

[
A
0 I

o(x,t)
x f(x)

]
= f (x) for all x ≥ a

with f a given continuous and differentiable function.

Proof. Let f be a continous function, then by definition if we let A
0 I

α
xf (x) = F (x), we have

A
0 D

o(x)
x

[
A
0 I

o(x)

x f(x)
]

= lim
ε→0

F

(
x+ ε

(
x+ 1

Γ(1−o(x))

)1−0(x)
)
− F (x)

ε

=

(
x+

1

Γ (1− o(x))

)1−o(x)dF (x)

dx

=

(
x+

1

Γ (1− o(x))

)1−o(x) d

dx

{∫ x

a

(
t+

1

Γ (1− o(t))

)o(t)−1

f(t)dt

}

=

(
x+

1

Γ (1− o(x))

)1−o(x)(
x+

1

Γ (1− o(x))

)o(x)−1

f (x) = f (x) .

This completes the proof.

3. Construction of a possible special solution

The aim of this section is to construct a possible solution of the novel groundwater flow within a leaky
aquifer. To construct a solution to the new equation, we employ the o (x, t )-Laplace operator defined as
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Definition 3.1. Let g be a function defined in (0, ∞), then, we defined the o(x, t)-Laplace transform of f
as

Lo(x) (f (x)) (s) =

∫ ∞
0

(
t+

1

Γ (1− o(x, t))

)o(x,t)−1

e−stf(t)dt. (3.1)

We shall give some properties of the above operator. The above operator satisfies the following properties,
F (s) is the Laplace transform of f(t)

Lo(x,t)

(
A
0 D

o(x,t)
x

(
df(x)

dx

))
(s) = s2F (s)− sf (0)− f(0).

The proposed operator satisfies the following properties, F (s) is the Laplace of f(t)

1. Linearity

Lo(x) (af (x) + bg (x)) (s) = aLo(x) (f (x)) (s) + bLo(x) (g (x)) (s),

2. Time delay

Lo(x)

(
A
0 D

o(x,t)
x {f (x− a) .δ(x− a)}

)
(s) = se−saF (s),

3. First derivative

Lo(x)

(
A
0 D

o(x,t)
x

(
df(x)

dx

))
(s) = s2F (s)− sf (0)− f(0),

4. N order derivative

Lo(x)

(
A
0 D

o(x,t)
x

(
dnf(x)

dxn

))
(s) = sn+1F (s)−

n∑
j=0

sjf (n−1)(0),

5. Fractional derivative Caputo type

Lo(x)

(
A
0 D

o(x)
x

(
dαf(x)

dxα

))
(s) = Lo(x)

(
A
0 D

o(x)
x

(
dαf(x)

dxα

))
(s) = sα+1F (s)−

n∑
j=0

sα−kf (n−1) (0) ,

n− 1 < α ≤ n.
6. Integral

Lo(x)

(
A
0 D

o(x)
x

(∫ x

0
f(t)dt

))
(s) = F (s),

7. Convolution

Lo(x)

(
A
0 D

o(x)
x (f ∗ g(x))

)
(s) = sF (s)G(s),

8. Multiplication by distance

Lo(x)

(
A
0 D

o(x)
x {xf(x)}

)
(s) = −sF ′(s),

9. Complex shift

Lo(x)

(
A
0 D

o(x)
x

{
e−axf(x)

})
(s) = sF (s+ a)− f(0),
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10. Distance Scaling

Lo(x)

(
A
0 D

o(x)
x {f (ax)}

)
(s) =

s

a
F
(s
a

)
− f(0).

Proof. Proof of 1: By definition, we have the following formula

Lo(x) (af (x) + bg (x)) (s) =

∫ 8

0

(
t+

1

Γ (1− o(x, t))

)o(x,t)−1

e−st (af (t) + bg (t)) dt.

Using the linearity of the integral, we obtain the following results

aLo(x) (f (x)) (s) + bLo(x) (g (x)) (s) .

This completes the proof of property 1.

proof of 2: By definition, we have the following formula

Lo(x)

(
A
0 D

o(x,t)
x {f (x− a) .δ(x− a)}

)
(s)

=

∫ 8

0

(
t+

1

Γ (1− o(x, t))

)1−o(x,t)(
t+

1

Γ (1− o(x, t))

)o(x,t)−1

e−st (f (t− a) .δ(t− a)) dt

=

∫ 8

0
e−stf (t− a) .δ (t− a) dt.

Using the properties of Laplace transform operator [5, 6], we obtain the requested result

Lo(x)

(
A
0 D

o(x,t)
x {f (x− a) .δ(x− a)}

)
(s) = se−saF (s) .

proof of 3: By definition, we have the following

Lo(x)

(
A
0 D

o(x,t)
x

(
df(x)

dx

))
(s)

=

∫ 8

0

(
t+

1

Γ (1− o(x, t))

)1−o(x,t)(
t+

1

Γ (1− o(x, t))

)o(x,t)−1

e−st
((

df(t)

dt

))
dt

=

∫ 8

0
e−st

((
df(t)

dt

))
dt.

Using the property of Laplace transform for first derivative, we obtain the requested results [5, 6]

Lo(x)

(
A
0 D

o(x,t)
x

(
df(x)

dx

))
(s) = s2F (s)− sf (0)− f (0) .

The proof of 4 and 5 are similar to the one above.

proof of 6: By definition, we have

Lo(x)

(
A
0 D

o(x)
x

(∫ x

0
f(t)dt

))
(s) = Lo(x)

((
t+

1

Γ (1− o(x, t))

)1−o(x,t)(∫ t

0
f(v)dv

),)
,

Due to the fundamental theorem of calculus, the right hand side can be transformed to



A. Atangana, E. F. Doungmo Goufo, J. Nonlinear Sci. Appl. 8 (2015), 763–775 768

Lo(x)

((
t+

1

Γ (1− o(x, t))

)1−o(x,t)(∫ t

0
f(v)dv

),)
= Lo(x)

((
t+

1

Γ (1− o (x, t))

)1−o(x,t)
f(t)

)

=

∫ 8

0
e−st (f (t))dt = F (s),

This completes the proof of 6.

Proof 7:

Lo(x)

(
A
0 D

o(x)
x (f ∗ g (x))

)
(s) = Lo(x)

((
t+

1

Γ (1− o (x, t))

)1−o(x,t)
(f ∗ g (x))′

)

=

∫ 8

0

d

dt
f ∗ g (t) e−stdt = sF (s)G(s).

This completes the proof of 7. Note that items 8, 9 and 10 are obvious.

Therefore, applying the above operator on both sides of equation (2.3), we obtain the following equation

Lo(x,t)

{
∂2S (r, t)

∂r2
+

1

r

∂S (r, t)

∂r
− S (r, t)

B2

}
(u) =

S

T

(
u2S (r, u)− uS (r, 0)− S(r, 0)

)
(3.2)

The above equation can be rearranged as follow

S (r, u) =
T

Su2

{
Lo(x,t)

{
∂2S (r, t)

∂r2
+

1

r

∂S (r, t)

∂r
− S (r, t)

B2

}
(u)

}
+

{
1

u
+

1

u2

}
S (r, 0) (3.3)

We next employ the inverse Laplace transform operator on both sides of the above equation to obtain

S (r, t) = L−1

{
T

Su2

{
Lo(x,t)

{
∂2S (r, t)

∂r2
+

1

r

∂S (r, t)

∂r
− S (r, t)

B2

}
(u)

}}
+L−1

{{
1

u
+

1

u2

}
S (r, 0)

}
(3.4)

For simplicity, we put

g (r, t) = L−1

{{
1

u
+

1

u2

}
S (r, 0)

}
.

Then, from equation (3.4) one can construct a recursive formula that will be used to generate the special
solution of equation (2.3). The recursive formula associate to equation (3.4) is

Sn+1 (r, t) = L−1

{
T

Su2

{
Lo(x,t)

{
∂2Sn (r, t)

∂r2
+

1

r

∂Sn (r, t)

∂r
− Sn (r, t)

B2

}
(u)

}}
for n ≥ 1 (3.5)

S0 (r, t) = g(r, t)

Our next step is to prove the stability of used iteration method.

4. Uniqueness of the solution

Let assume by contradiction that, there exist two different special solutions Ssp1(r, t) and Ssp2(r, t). Let

G (S) = A
0 D

t

α (S(r, t)) =
∂2S (r, t)

∂r2
+

1

r

∂S (r, t)

∂r
− S (r, t)

B2
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The aim of our proof is to show that using the inner product that.

‖Ssp1 − Ssp2‖ � ε

To achieve this, we evaluate (G (Ssp1)−G (Ssp2) , w) for w ∈ H =
{
u, v/

∫
uv <∞

}
However,

G (Ssp1)−G (Ssp2) =
∂2

∂r2
{Sexp2 (r, t)− Sexp1 (r, t)}

+
1

r

∂

∂r
{Sexp2 (r, t)− Sexp1 (r, t)}+

1

B2
{Sexp1 (r, t)− Sexp2 (r, t)}

(4.1)

Thus,

(G (Ssp1)−G (Ssp2) , w) =

(
∂2

∂r2
{Sexp2 (r, t)− Sexp1 (r, t)} , w

)
+

(
1

r

∂

∂r
{Sexp2 (r, t)− Sexp1 (r, t)} , w

)
+

(
1

B2
{Sexp1 (r, t)− Sexp2 (r, t)} , w

) (4.2)

We shall evaluate the first component(
∂2

∂r2
{Sexp2 (r, t)− Sexp1 (r, t)} , w

)
.

In the real world problem, the level is bounded, that Ssp1, Ssp2 are bounded, therefore we can find a positive
constant M such that, (Ssp1, Ssp1) < M2. It follows by the use of Schwartz inequality that(

∂2

∂r2
{Sexp2 (r, t)− Sexp1 (r, t)} , w,

)
≤
∥∥∥∥ ∂2

∂r2
{Sexp2 (r, t)− Sexp1 (r, t)}

∥∥∥∥ ‖w‖ (4.3)

However, we can find a positive constant ω1, ω2 such that∥∥∥∥ ∂2

∂r2
{Sexp2 (r, t)− Sexp1 (r, t)}

∥∥∥∥ ≤ ω1ω2 ‖Sexp2 (r, t)− Sexp1 (r, t)‖(
∂2

∂r2
{Sexp2 (r, t)− Sexp1 (r, t)} , w

)
≤ ω1ω2 ‖Sexp2 (r, t)− Sexp1 (r, t)‖ ‖w‖

We next evaluate, (
1

r

∂

∂r
{Sexp2 (r, t)− Sexp1 (r, t)} , w

)
It follows by the use of Schwartz inequality that,(

1

r

∂

∂r
{Sexp2 (r, t)− Sexp1 (r, t)} , w

)
≤
∥∥∥∥1

r

∂

∂r
{Sexp2 (r, t)− Sexp1 (r, t)}

∥∥∥∥ ‖w‖ (4.4)

However, we can find a positive constant O1 such that(
1

r

∂

∂r
{Sexp2 (r, t)− Sexp1 (r, t)} , w

)
≤ O1

r1
‖Sexp2 (r, t)− Sexp1 (r, t)‖ ‖w‖ ,

(
∂2

∂r2
{Sexp2 (r, t)− Sexp1 (r, t)} , w

)
+

(
1

r

∂

∂r
{Sexp2 (r, t)− Sexp1 (r, t)} , w

)
+

(
1

B2
{Sexp1 (r, t)− Sexp2 (r, t)} , w

)
≤
(
O1

r1
+ ω1ω2 +

1

B2

)
‖Sexp2 (r, t)− Sexp1 (r, t)‖ ‖w‖
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Subsequently S(r, t) the exact solution converges to Ssp1, Ssp2 then we can find two large number N,M
such that

‖S − Ssp1‖ �
ε

2
(
O1
r1

+ ω1ω2 + 1
B2

)
‖w‖

for N and ‖S − Ssp2‖ �
ε

2
(
O1
r1

+ ω1ω2 + 1
B2

)
‖w‖

for M

And then,

‖(Ssp1 − Ssp2)‖ ≤ ‖S − Ssp2‖+ ‖S − Ssp1‖

Consider m = max(N,M), then

‖(Ssp1 − Ssp2)‖ � ε(
O1
r1

+ ω1ω2 + 1
B2

)
‖w‖

(4.5)

Replacing the above in (4.5), we arrive at

(G (Ssp1)−G (Ssp2) , w)� ε (4.6)

Now with ε extremely very small, we have that,

‖(Ssp1 − Ssp2)‖ = 0 =⇒ Ssp1 = Ssp2.

This completes the proof. We shall next present the stability of the method

5. Stability analysis of the used method

The stability of method for solving an equation is very important component of analysis since it shows the
strength of the method for solving that equation. To achieve this, we need to make use of the inner product
and the operator G

(G (S)−G (S1) , S − S1)

for any u, v ∈ H constructed in (4.1). In particular we aim to show that, we can find a positive number k
such that

(G (S)−G (S1) , S − S1) ≤ L‖S − S1‖2

Proof. First we have that,

(G (S)−G (S1) , S − S1) =

(
∂2

∂r2
{S (r, t)− S1 (r, t)} , S − S1

)
+

(
1

r

∂

∂r
{S (r, t)− S1 (r, t)} , S − S1

)
+

(
1

B2
{S (r, t)− S1 (r, t)} , S − S1

)
We shall evaluate the first component(

∂2

∂r2
{S (r, t)− S1 (r, t)} , S (r, t)− S1 (r, t)

)
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It follows by the use of Schwartz inequality that(
∂2

∂r2
{S (r, t)− S1 (r, t)} , S (r, t)− S1 (r, t)

)
≤
∥∥∥∥ ∂2

∂r2
{S (r, t)− S1 (r, t)}

∥∥∥∥ ‖S (r, t)− S1 (r, t)‖ (5.1)

However, we can find a positive constant f1, f2 such that∥∥∥∥ ∂2

∂r2
{S (r, t)− S1 (r, t)}

∥∥∥∥ ≤ f1f2 ‖S (r, t)− S1 (r, t)‖

(
∂2

∂r2
{S (r, t)− S1 (r, t)} , S (r, t)− S1 (r, t)

)
≤ f1f2 ‖S (r, t)− S1 (r, t)‖ ‖S (r, t)− S1 (r, t)‖

We next evaluate, (
1

r

∂

∂r
{S (r, t)− S1 (r, t)} , S (r, t)− S1 (r, t)

)
It follows by the use of Schwartz inequality that,(

1

r

∂

∂r
{S (r, t)− S1 (r, t)} , S (r, t)− S1 (r, t)

)
≤
∥∥∥∥1

r

∂

∂r
{S (r, t)− S1 (r, t)}

∥∥∥∥ ‖S (r, t)− S1 (r, t)‖ (5.2)

However, we can find a positive constant g1 such that(
1

r

∂

∂r
{S (r, t)− S1 (r, t)} , S (r, t)− S1 (r, t)

)
≤ g1

r1
‖S (r, t)− S1 (r, t)‖ ‖S (r, t)− S1 (r, t)‖ ,

(
∂2

∂r2
{S (r, t)− S1 (r, t)} , S (r, t)− S1 (r, t)

)
+

(
1

r

∂

∂r
{S (r, t)− S1 (r, t)} , S (r, t)− S1 (r, t)

)
+

(
1

B2
{S (r, t)− S1 (r, t)} , S (r, t)− S1 (r, t)

)
≤
(
g1

r1
+ f1f2 +

1

B2

)
‖S (r, t)− S1 (r, t)‖ ‖S (r, t)− S1 (r, t)‖

Thus,

(G (S)−G (S1) , S − S1) ≤
(
g1

r1
+ f1f2 +

1

B2

)
‖S (r, t)− S1 (r, t)‖2

Let
(
g1
r1

+ f1f2 + 1
B2

)
= L and thus

(G (S)−G (S1) , S − S1) ≤ L‖S (r, t)− S1 (r, t)‖2

The next step is to prove that (G (S)−G (S1) , S − S1) ≤ H ‖S − S1‖ ‖W‖
Thus,

(G (S)−G (S1) , W ) =

(
∂2

∂r2
{S (r, t)− S1 (r, t)} ,W

)
+

(
1

r

∂

∂r
{S (r, t)− S1 (r, t)} ,W

)
(5.3)

+

(
1

B2
{S (r, t)− S1 (r, t)} ,W

)
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We shall evaluate the first component(
∂2

∂r2
{S (r, t)− S1 (r, t)} ,W

)
It follows by the use of Schwartz inequality that,(

∂2

∂r2
{S (r, t)− S1 (r, t)} ,W

)
≤
∥∥∥∥ ∂2

∂r2
{S (r, t)− S1 (r, t)}

∥∥∥∥ ‖W‖
However, we can find a positive constant m1,m2 such that∥∥∥∥ ∂2

∂r2
{Sexp2 (r, t)− Sexp1 (r, t)}

∥∥∥∥ ≤ m1m2 ‖S (r, t)− S1 (r, t)‖

(
∂2

∂r2
{Sexp2 (r, t)− Sexp1 (r, t)} , W

)
≤ m1m2 ‖S (r, t)− S1 (r, t)‖ ‖W‖

We next evaluate, (
1

r

∂

∂r
{S (r, t)− S1 (r, t)} ,W

)
It follows by the use of Schwartz inequality that,(

1

r

∂

∂r
{S (r, t)− S1 (r, t)} ,W

)
≤
∥∥∥∥1

r

∂

∂r
{S (r, t)− S1 (r, t)}

∥∥∥∥ ‖W‖ (5.4)

However, we can find a positive constant N1 such that(
1

r

∂

∂r
{S (r, t)− S1 (r, t)} ,W

)
≤ N1

r1
‖S (r, t)− S1 (r, t)‖ ‖W‖

However putting all these equation together, we obtain the following

(
∂2

∂r2
{S (r, t)− S1 (r, t)} ,W

)
+

(
1

r

∂

∂r
{S (r, t)− S1 (r, t)} ,W

)
+

(
1

B2
{S1 (r, t)− S (r, t)} ,W

)

≤
(
N1

r1
+m1m2 +

1

B2

)
‖S (r, t)− S1 (r, t)‖ ‖W‖

Taking
(
N1
r1

+m1m2 + 1
B2

)
= H

Then
(G (S)−G (S1) , S − S1) ≤ H ‖S − S1‖ ‖W‖ (5.5)

This completes the proof.

6. Numerical simulations

We devote this part to the numerical simulation, to achieve this we first propose an algorithm that will be
used for numerical simulations.
Algorithm 1
Input

S0 (r, t) = g(r, t)

as preliminary input,
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• i−number terms in the rough calculation

• Output SAp(r, t), the approximate solution

Step 1: Put S0 (r, t) = g(r, t) and SAp(r, t) = SAp(r, t)
Step 2: for i = 1 to n− 1 do step 3, step 4 and step 5

Sn+1 (r, t) = L−1

{
T

Su2

{
Lo(x,t)

{
∂2Sn (r, t)

∂r2
+

1

r

∂Sn (r, t)

∂r
− Sn (r, t)

B2

}
(u)

}}
Step 3: compute

β1(n+1) (r, t) = β1(n) (r, t) + SAp(r, t)

Step 4: Compute:

SAp(r, t) = SAp(r, t) + β1(n+1) (r, t)

Stop.
The overhead method shall be employed to yield the numerical replication of the physical problem under
investigation as indicate in the following figure 1 and 2. The considered equation is subjected to the following
conditions. The equation (2.1) is subjected to the following initial and boundary conditions:

Φ (r, 0) = Φ0, lim
r→8

Φ(r, t) = Φ0 Q =
2π

n
2

Γ
(
n
2

)rn−1
b Kd3−n∂rΦ (rb, t) .

Figure 1: Contour plot of the proposed solution as function of space and time. This shows the wave in change of level of water
within the confined aquifer during the pumping test on one side of the well for o (r, t) =0.8 sin(r, t)



A. Atangana, E. F. Doungmo Goufo, J. Nonlinear Sci. Appl. 8 (2015), 763–775 774

Figure 2: Contour plot of the proposed solution as function of space and time. This shows the wave in change of level of water
within the confined aquifer during the pumping test around the well for o (r, t) =0.8 sin(r, t)

7. Conclusion

A new derivative that takes into account the complexity of the physical phenomena was used to enhance
the model describing the movement of groundwater flowing within a leaky aquifer. We made use of a new
operator called o(x, t)-Laplace transform together with the concept of iterative method to solve the new
groundwater equation. We have showed in detail stability analysis of the used method together with the
uniqueness of the special solution. We presented the numerical simulations.
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