Stability of functional inequalities associated with the Cauchy-Jensen additive functional equalities in non-Archimedean Banach spaces

Sang Og Kim ${ }^{\text {a,* }}$, Abasalt Bodaghi ${ }^{\text {b }}$, Choonkil Park ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, Hallym University, Chuncheon 200-702, Korea.
${ }^{b}$ Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran.
${ }^{c}$ Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea.

Abstract

In this article, we prove the generalized Hyers-Ulam stability of the following Pexider functional inequalities

$$
\begin{aligned}
\|f(x)+g(y)+k h(z)\| & \leq\left\|k p\left(\frac{x+y}{k}+z\right)\right\| \\
\|f(x)+g(y)+h(z)\| & \leq\left\|k p\left(\frac{x+y+z}{k}\right)\right\|
\end{aligned}
$$

in non-Archimedean Banach spaces. © 2015 All rights reserved.
Keywords: Hyers-Ulam stability, Pexider Cauchy-Jensen functional inequality, non-Archimedean space, additive mapping.
2010 MSC: 39B05, 39B52, 39B62, 39B82.

1. Introduction and Preliminaries

We recall some basic facts concerning non-Archimedean spaces. By a non-Archimedean field, we mean a field \mathbb{K} equipped with a function (valuation) $|\cdot|$ from \mathbb{K} to $[0, \infty)$ such that $|r|=0$ if and only if $r=0$, $|r s|=|r||s|$ and $|r+s| \leq \max \{|r|,|s|\}$ for all $r, s \in \mathbb{K}$. Clearly, $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$.

[^0]Definition 1.1. Let X be a vector space over a non-Archimedean scalar field \mathbb{K} with a valuation $|\cdot|$. A function $\|\cdot\|: X \rightarrow[0, \infty)$ is a non-Archimedean norm if it satisfies for all $r \in \mathbb{K}, x, y \in X$
(i) $\|x\|=0$ if and only if $x=0$,
(ii) $\|r x\|=|r|\|x\|$,
(iii) $\|x+y\| \leq \max \{\|x\|,\|y\|\}$ (the strong triangle inequality).

Then $(X,\|\cdot\|)$ is called a non-Archimedean normed space.
Definition 1.2. Let $\left\{x_{n}\right\}$ be a sequence in a non-Archimedean normed space X.
(1) $\left\{x_{n}\right\}$ converges to $x \in X$ if, for any $\epsilon \geq 0$ there exists an integer N such that $\left\|x_{n}-x\right\| \leq \epsilon$ for $n \geq N$. Then the point x is called the limit of the sequence $\left\{x_{n}\right\}$, which is denoted by $\lim _{n \rightarrow \infty} x_{n}=x$.
(2) $\left\{x_{n}\right\}$ is a Cauchy sequence if the sequence $\left\{x_{n+1}-x_{n}\right\}$ converges to zero.
(3) X is called a non-Archimedean Banach space if every Cauchy sequence in X is convergent.

The stability problem of functional equations originated from a question of Ulam [16] in 1940, concerning the stability of group homomorphisms. In 1941, Hyers [9] gave the first affirmative answer to the problem of Ulam for Banach spaces. Hyers' result was generalized by Aoki 11 for additive mappings and by Rassias [14] for linear mappings by considering an unbounded Cauchy difference. Generalizations of the Rassias' theorem were obtained by Forti [5] and Găvruta [6] who permitted the Cauchy difference to become arbitrary unbounded.

During the last two decades a number of papers and research monographs have been published on various generalizations and applications of the Hyers-Ulam stability to a number of functional equations and mappings. A large list of references concerning the stability of various functional equations can be found e.g., in the books [3, 10, 11].

Gilányi [7] and Rätz [15] showed that if f satisfies the functional inequality

$$
\left\|2 f(x)+2 f(y)-f\left(x y^{-1}\right)\right\| \leq\|f(x y)\|
$$

then f satisfies the Jordan-von Neumann functional equation $2 f(x)+2 f(y)=f(x y)+f\left(x y^{-1}\right)$. Gilányi [8] and Fechner [4] investigated the Hyers-Ulam stability of the functional inequality

$$
\|2 f(x)+2 f(y)-f(x-y)\| \leq\|f(x+y)\|
$$

Park et al. [13] investigated the following inequalities:

$$
\begin{aligned}
& \|f(x)+f(y)+f(z)\| \leq\left\|2 f\left(\frac{x+y+z}{2}\right)\right\| \\
& \|f(x)+f(y)+f(z)\| \leq\|f(x+y+z)\| \\
& \|f(x)+f(y)+2 f(z)\| \leq\left\|2 f\left(\frac{x+y}{2}+z\right)\right\|
\end{aligned}
$$

in Banach spaces. Recently, Cho et al. [2] investigated the following inequality

$$
\|f(x)+f(y)+f(z)\| \leq\left\|k f\left(\frac{x+y+z}{k}\right)\right\|, \quad(0<|k|<3)
$$

in non-Archimedean Banach spaces. Lu and Park [12] investigated the following functional inequalities

$$
\begin{aligned}
& \|f(x)+f(y)+f(z)\| \leq\left\|k f\left(\frac{x+y+z}{k}\right)\right\| \\
& \|f(x)+f(y)+k f(z)\| \leq\left\|k f\left(\frac{x+y}{k}+z\right)\right\|
\end{aligned}
$$

in Banach spaces.
In this paper we investigate the generalized Hyers-Ulam stability of the following Pexider functional inequalities

$$
\begin{align*}
& \|f(x)+g(y)+k h(z)\| \leq\left\|k p\left(\frac{x+y}{k}+z\right)\right\| \tag{1.1}\\
& \|f(x)+g(y)+h(z)\| \leq\left\|k p\left(\frac{x+y+z}{k}\right)\right\| \tag{1.2}
\end{align*}
$$

in non-Archimedean Banach spaces.

2. Hyers-Ulam stability of (1.1)

In what follows we assume that X is a non-Archimedean normed space, Y is a non-Archimedean Banach space and k is a nonzero scalar.

Proposition 2.1. Let $f, g, h, p: X \rightarrow Y$ be mappings such that $g(0)=h(0)=p(0)=0$ and

$$
\begin{equation*}
\|f(x)+g(y)+k h(z)\| \leq\left\|k p\left(\frac{x+y}{k}+z\right)\right\| \tag{2.1}
\end{equation*}
$$

for all $x, y, z \in X$. Then f, g and h are additive, $f(x)=g(x)=k h\left(\frac{x}{k}\right)$ for all $x \in X$.
Proof. Letting $x=y=z=0$ in (2.1), we have $f(0)=0$.
Replacing (x, y, z) by $(x,-x, 0)$ in 2.1,

$$
\begin{equation*}
f(x)+g(-x)=0 \tag{2.2}
\end{equation*}
$$

for all $x \in X$. Replacing (x, y, z) by $\left(x, 0,-\frac{x}{k}\right)$ in (2.1),

$$
\begin{equation*}
f(x)+k h\left(-\frac{x}{k}\right)=0 \tag{2.3}
\end{equation*}
$$

for all $x \in X$.
Replacing (x, y, z) by $\left(x, y,-\frac{x+y}{k}\right)$ in (2.1,

$$
\begin{equation*}
f(x)+g(y)+k h\left(-\frac{x+y}{k}\right)=0 \tag{2.4}
\end{equation*}
$$

for all $x \in X$.
By (2.3) and (2.4), we have

$$
\begin{equation*}
f(x)+g(y)-f(x+y)=0 \tag{2.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
f(x)+g(y)=f(x+y) \tag{2.6}
\end{equation*}
$$

for all $x, y \in X$. Letting $x=0$ in (2.6), it follows that $f(y)=g(y)$, and hence

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in X$. Since f is additive it is clear that h is additive and $f(x)=k h\left(\frac{x}{k}\right)$ for all $x \in X$. This completes the proof.

We prove the generalized Hyers-Ulam stability of the functional inequality (1.1).

Theorem 2.2. Let $f, g, h, p: X \rightarrow Y$ be mappings such that $g(0)=h(0)=p(0)=0$ and

$$
\begin{equation*}
\|f(x)+g(y)+k h(z)\| \leq\left\|k p\left(\frac{x+y}{k}+z\right)\right\|+\varphi(x, y, z) \tag{2.7}
\end{equation*}
$$

where $\varphi: X^{3} \rightarrow[0, \infty)$ satisfies $\varphi(0,0,0)=0$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|2|^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right)=0 \tag{2.8}
\end{equation*}
$$

for all $x, y, z \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{align*}
\|f(x)-A(x)\| & \leq \psi_{1}(x) \\
\|g(x)-A(x)\| & \leq \psi_{2}(x) \tag{2.9}\\
\left\|h(x)-\frac{1}{k} A(k x)\right\| & \leq \psi_{3}(x)
\end{align*}
$$

for all $x \in X$. Here,

$$
\begin{aligned}
& \psi_{1}(x)=\sup _{j \geq 0}\left\{|2|^{j} \varphi\left(\frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}, 0\right),|2|^{j} \varphi\left(\frac{x}{2^{j+1}}, 0,-\frac{x}{2^{j+1} k}\right),|2|^{j} \varphi\left(\frac{x}{2^{j}},-\frac{x}{2^{j+1}},-\frac{x}{2^{j+1} k}\right)\right\} \\
& \psi_{2}(x)=\sup _{j \geq 0}\left\{|2|^{j} \varphi\left(-\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, 0\right),|2|^{j} \varphi\left(0, \frac{x}{2^{j+1}},-\frac{x}{2^{j+1} k}\right),|2|^{j} \varphi\left(-\frac{x}{2^{j+1}}, \frac{x}{2^{j}},-\frac{x}{2^{j+1} k}\right)\right\} \\
& \psi_{3}(x)=\frac{1}{|k|} \sup _{j \geq 0}\left\{|2|^{j} \varphi\left(-\frac{k x}{2^{j+1}}, 0, \frac{x}{2^{j+1}}\right),\left|2^{j} \varphi\left(0,-\frac{k x}{2^{j+1}}, \frac{x}{2^{j+1}}\right),\right| 2^{j} \varphi\left(-\frac{k x}{2^{j+1}},-\frac{k x}{2^{j+1}}, \frac{x}{2^{j}}\right)\right\}
\end{aligned}
$$

for all $x \in X$.
Proof. Letting $x=y=z=0$ in (2.7), we get $f(0)=0$. Replacing (x, y, z) by $(x,-x, 0)$ in (2.7), we have

$$
\begin{equation*}
\|f(x)+g(-x)\| \leq \varphi(x,-x, 0) \quad \forall x \in X \tag{2.10}
\end{equation*}
$$

Replacing (x, y, z) by $\left(x, 0,-\frac{x}{k}\right)$ in (2.7), we have

$$
\begin{equation*}
\left\|f(x)+k h\left(-\frac{x}{k}\right)\right\| \leq \varphi\left(x, 0,-\frac{x}{k}\right) \quad \forall x \in X \tag{2.11}
\end{equation*}
$$

From 2.10 and 2.11 we have

$$
\begin{equation*}
\left\|2 f(x)+g(-x)+k h\left(-\frac{x}{k}\right)\right\| \leq \max \left\{\varphi(x,-x, 0), \varphi\left(x, 0,-\frac{x}{k}\right)\right\} \quad \forall x \in X \tag{2.12}
\end{equation*}
$$

Replacing (x, y, z) by $\left(2 x,-x,-\frac{x}{k}\right)$ in (2.7), we have

$$
\begin{equation*}
\left\|f(2 x)+g(-x)+k h\left(-\frac{x}{k}\right)\right\| \leq \varphi\left(2 x,-x,-\frac{x}{k}\right) . \tag{2.13}
\end{equation*}
$$

By 2.12 and 2.13 , it follows that

$$
\begin{equation*}
\|2 f(x)-f(2 x)\| \leq \max \left\{\varphi(x,-x, 0), \varphi\left(x, 0,-\frac{x}{k}\right), \varphi\left(2 x,-x,-\frac{x}{k}\right)\right\} \tag{2.14}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leq \max \left\{\varphi\left(\frac{x}{2},-\frac{x}{2}, 0\right), \varphi\left(\frac{x}{2}, 0,-\frac{x}{2 k}\right), \varphi\left(x,-\frac{x}{2},-\frac{x}{2 k}\right)\right\} \quad \forall x \in X \tag{2.15}
\end{equation*}
$$

Replacing x by $\frac{x}{2^{j}}$ and multiplying $|2|^{j}$ on both sides of 2.15), we have

$$
\begin{align*}
& \left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\| \\
& \leq \max \left\{|2|^{j} \varphi\left(\frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}, 0\right),|2|^{j} \varphi\left(\frac{x}{2^{j+1}}, 0,-\frac{x}{2^{j+1} k}\right),|2|^{j} \varphi\left(\frac{x}{2^{j}},-\frac{x}{2^{j+1}},-\frac{x}{2^{j+1} k}\right)\right\} \rightarrow 0 \tag{2.16}
\end{align*}
$$

as $j \rightarrow \infty$
for all $x \in X$. Hence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence in Y. Since Y is complete, we can define the map $A: X \rightarrow Y$ such that

$$
A(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

For nonnegative integers $l<m$, we have for all $x \in X$

$$
\begin{align*}
&\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| \leq \max _{l \leq j \leq m-1}\left\{\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|\right\} \\
& \leq \max _{l \leq j \leq m-1}\left\{|2|^{j} \varphi\left(\frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}, 0\right),|2|^{j} \varphi\left(\frac{x}{2^{j+1}}, 0,-\frac{x}{2^{j+1} k}\right)\right. \tag{2.17}\\
&\left.|2|^{j} \varphi\left(\frac{x}{2^{j}},-\frac{x}{2^{j+1}},-\frac{x}{2^{j+1} k}\right)\right\} .
\end{align*}
$$

Letting $l=0$ and taking the limit as $m \rightarrow \infty$ in 2.17, we have

$$
\begin{align*}
& \|f(x)-A(x)\| \\
& \leq \sup _{j \geq 0}\left\{|2|^{j} \varphi\left(\frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}, 0\right),\left|2^{j} \varphi\left(\frac{x}{2^{j+1}}, 0,-\frac{x}{2^{j+1} k}\right),|2|^{j} \varphi\left(\frac{x}{2^{j}},-\frac{x}{2^{j+1}},-\frac{x}{2^{j+1} k}\right)\right\}\right. \tag{2.18}\\
& =\psi_{1}(x)
\end{align*}
$$

for all $x \in X$.
Similarly, there exists a mapping $B: X \rightarrow Y$ such that $B(x)=\lim _{n \rightarrow \infty} 2^{n} g\left(\frac{x}{2^{n}}\right)$ and

$$
\begin{align*}
& \|g(x)-B(x)\| \\
& \leq \sup _{j \geq 0}\left\{|2|^{j} \varphi\left(-\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, 0\right),\left|2^{j} \varphi\left(0, \frac{x}{2^{j+1}},-\frac{x}{2^{j+1} k}\right),|2|^{j} \varphi\left(-\frac{x}{2^{j+1}}, \frac{x}{2^{j}},-\frac{x}{2^{j+1} k}\right)\right\}\right. \tag{2.19}\\
& =\psi_{2}(x)
\end{align*}
$$

for all $x \in X$.
Now we consider the mapping h. Replacing (x, y, z) by $\left(x, 0,-\frac{x}{k}\right)$ in (2.7), we have

$$
\begin{equation*}
\left\|f(x)+k h\left(-\frac{x}{k}\right)\right\| \leq \varphi\left(x, 0,-\frac{x}{k}\right) \quad \forall x \in X \tag{2.20}
\end{equation*}
$$

Replacing (x, y, z) by $\left(0, x,-\frac{x}{k}\right)$ in (2.7), we have

$$
\begin{equation*}
\left\|g(x)+k h\left(-\frac{x}{k}\right)\right\| \leq \varphi\left(0, x,-\frac{x}{k}\right) \quad \forall x \in X \tag{2.21}
\end{equation*}
$$

Ву 2.20, 2.21,

$$
\begin{equation*}
\left\|f(x)+g(x)+2 k h\left(-\frac{x}{k}\right)\right\| \leq \max \left\{\varphi\left(x, 0,-\frac{x}{k}\right), \varphi\left(0, x,-\frac{x}{k}\right)\right\} \quad \forall x \in X \tag{2.22}
\end{equation*}
$$

Replacing (x, y, z) by $\left(x, x,-\frac{2 x}{k}\right)$ in (2.7), we have

$$
\begin{equation*}
\left\|f(x)+g(x)+k h\left(-\frac{2 x}{k}\right)\right\| \leq \varphi\left(x, x,-\frac{2 x}{k}\right) \quad \forall x \in X \tag{2.23}
\end{equation*}
$$

From (2.22) and (2.23), it follows that

$$
\left\|2 k h\left(-\frac{x}{k}\right)-k h\left(-\frac{2 x}{k}\right)\right\| \leq \max \left\{\varphi\left(x, 0,-\frac{x}{k}\right), \varphi\left(0, x,-\frac{x}{k}\right), \varphi\left(x, x,-\frac{2 x}{k}\right)\right\},
$$

so that

$$
\|2 h(x)-h(2 x)\| \leq \frac{1}{|k|} \max \{\varphi(-k x, 0, x), \varphi(0,-k x, x), \varphi(-k x,-k x, 2 x)\} \quad \forall x \in X
$$

Then we have

$$
\begin{equation*}
\left\|2 h\left(\frac{x}{2}\right)-h(x)\right\| \leq \frac{1}{|k|} \max \left\{\varphi\left(-\frac{k x}{2}, 0, \frac{x}{2}\right), \varphi\left(0,-\frac{k x}{2}, \frac{x}{2}\right), \varphi\left(-\frac{k x}{2},-\frac{k x}{2}, x\right)\right\} \quad \forall x \in X . \tag{2.24}
\end{equation*}
$$

Then by the same argument, there exists a mapping $C: X \rightarrow Y$ such that $C(x)=\lim _{n \rightarrow \infty} 2^{n} h\left(\frac{x}{2^{n}}\right)$ and

$$
\begin{align*}
& \|h(x)-C(x)\| \\
& \leq \frac{1}{|k|} \sup _{j \geq 0}\left\{|2|^{j} \varphi\left(-\frac{k x}{2^{j+1}}, 0, \frac{x}{2^{j+1}}\right),|2|^{j} \varphi\left(0,-\frac{k x}{2^{j+1}}, \frac{x}{2^{j+1}}\right),|2|^{j} \varphi\left(-\frac{k x}{2^{j+1}},-\frac{k x}{2^{j+1}}, \frac{x}{2^{j}}\right)\right\} \tag{2.25}\\
& =\psi_{3}(x)
\end{align*}
$$

for all $x \in X$.
Next, we show that A, B, C are additive and $A=B, A(x)=k C\left(\frac{x}{k}\right)$ for all $x \in X$.
Replacing (x, y, z) by $\left(\frac{x}{2^{n}},-\frac{x}{2^{n}}, 0\right)$ in (2.7), we have

$$
|2|^{n}\left\|f\left(\frac{x}{2^{n}}\right)+g\left(-\frac{x}{2^{n}}\right)\right\| \leq|2|^{n} \varphi\left(\frac{x}{2^{n}},-\frac{x}{2^{n}}, 0\right),
$$

so that

$$
\begin{equation*}
A(x)+B(-x)=0 \quad \forall x \in X \tag{2.26}
\end{equation*}
$$

Replacing (x, y, z) by $\left(\frac{x}{2^{n}}, 0,-\frac{x}{2^{n} k}\right)$ in 2.7 , we have for all $x \in X$

$$
|2|^{n}\left\|f\left(\frac{x}{2^{n}}\right)+k h\left(-\frac{x}{2^{n} k}\right)\right\| \leq|2|^{n} \varphi\left(\frac{x}{2^{n}}, 0,-\frac{x}{2^{n} k}\right),
$$

so that

$$
\begin{equation*}
A(x)+k C\left(-\frac{x}{k}\right)=0 \quad \forall x \in X \tag{2.27}
\end{equation*}
$$

Replacing (x, y, z) by $\left(\frac{x}{2^{n}}, \frac{y}{2^{n}},-\frac{x+y}{2^{n k}}\right)$ in (2.7), we have

$$
|2|^{n}\left\|f\left(\frac{x}{2^{n}}\right)+g\left(\frac{y}{2^{n}}\right)+k h\left(-\frac{x+y}{2^{n} k}\right)\right\| \leq|2|^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}},-\frac{x+y}{2^{n} k}\right) .
$$

Hence

$$
\begin{equation*}
A(x)+B(y)+k C\left(-\frac{x+y}{k}\right)=0 \quad \forall x, y \in X . \tag{2.28}
\end{equation*}
$$

Then by (2.26) and 2.27,

$$
\begin{equation*}
A(x)-A(-y)-A(x+y)=0 \quad \forall x, y \in X \tag{2.29}
\end{equation*}
$$

Letting $x=y=0$ in (2.29), it follows that $A(0)=0$. Letting $x=0$ in (2.29), it follows that $A(-y)=-A(y)$, so that by (2.29) again,

$$
A(x+y)=A(x)+A(y) \quad \forall x, y \in X
$$

Letting $x=0$ in 2.28, we have by (2.27)

$$
B(y)-A(y)=B(y)+k C\left(-\frac{y}{k}\right)=0
$$

so that $A=B$. Since A is additive, it follows by 2.27 that $A(x)=k C\left(\frac{x}{k}\right)$ and C is additive. By (2.18), 2.19) and 2.25 , the inequalities 2.9 hold true.

Next, we show the uniqueness of A. Assume that $T: X \rightarrow Y$ is another additive map satisfying (2.9). Then $\|f(x)-T(x)\| \leq \psi_{1}(x)$ for all $x \in X$. So, we have

$$
\begin{aligned}
\|A(x)-T(x)\| & =\lim _{n \rightarrow \infty}|2|^{n}\left\|A\left(\frac{x}{2^{n}}\right)-T\left(\frac{x}{2^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \max \left\{|2|^{n}\left\|A\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|,|2|^{n}\left\|T\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|\right\} \\
& \leq \lim _{n \rightarrow \infty} \sup _{j \geq 0}\left\{|2|^{n+j} \varphi\left(\frac{x}{2^{n+j+1}},-\frac{x}{2^{n+j+1}}, 0\right),|2|^{n+j} \varphi\left(\frac{x}{2^{n+j+1}}, 0,-\frac{x}{2^{n+j+1} k}\right)\right. \\
& \left.|2|^{n+j} \varphi\left(\frac{x}{2^{n+j}},-\frac{x}{2^{n+j+1}},-\frac{x}{2^{n+j+1} k}\right)\right\} \\
& =0
\end{aligned}
$$

for all $x \in X$. Hence it follows that $A=T$. This completes the proof.
Corollary 2.3. Let $f, g, h, p: X \rightarrow Y$ be mappings such that $g(0)=h(0)=p(0)=0$ and $|2|<1,|k|<1$. Assume that

$$
\|f(x)+g(y)+k h(z)\| \leq\left\|k p\left(\frac{x+y}{k}+z\right)\right\|+\theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)
$$

for all $x, y, z \in X$, where θ and r are constants with $\theta>0$ and $0 \leq r<1$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that for all $x \in X$

$$
\begin{aligned}
& \|f(x)-A(x)\| \leq\left(1+\frac{1}{|2|^{r}}+\frac{1}{|2 k|^{r}}\right) \theta\|x\|^{r}, \\
& \|g(x)-A(x)\| \leq\left(1+\frac{1}{|2|^{r}}+\frac{1}{|2 k|^{r}}\right) \theta\|x\|^{r}, \\
& \left\|h(x)-\frac{1}{k} A(k x)\right\| \leq\left\{\begin{array}{l}
\frac{1}{|k|}\left(1+\frac{2 \cdot|k|^{r}}{|2|^{r}}\right) \theta\|x\|^{r} \quad \text { if } \quad|k|^{r}+|2|^{r} \geq 1, \\
\frac{1}{|k|} \frac{1+|k|^{r}}{|2|^{r}} \theta\|x\|^{r} \quad \text { if } \quad|k|^{r}+|2|^{r}<1 .
\end{array}\right.
\end{aligned}
$$

Corollary 2.4. Let $f, g, h, p: X \rightarrow Y$ be mappings such that $g(0)=h(0)=p(0)=0$ and

$$
\|f(x)+g(y)+k h(z)\| \leq\left\|k p\left(\frac{x+y}{k}+z\right)\right\|+\theta\|x\|^{r} \cdot\|y\|^{r} \cdot\|z\|^{r}
$$

for all $x, y, z \in X$, where θ and r are constants with $\theta>0$ and $r<\frac{1}{3}$. If $|2| \neq 1$, then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{aligned}
& \|f(x)-A(x)\| \leq \frac{1}{|4 k|^{r}} \theta\|x\|^{3 r} \\
& \|g(x)-A(x)\| \leq \frac{1}{|4 k|^{r}} \theta\|x\|^{3 r} \\
& \left\|h(x)-\frac{1}{k} A(k x)\right\| \leq \frac{|k|^{2 r-1}}{|4|^{r}} \theta\|x\|^{3 r}
\end{aligned}
$$

for all $x \in X$.

3. Hyers-Ulam stability of 1.2

Proposition 3.1. Let $f, g, h, p: X \rightarrow Y$ be mappings such that $g(0)=h(0)=p(0)=0$ and

$$
\begin{equation*}
\|f(x)+g(y)+h(z)\| \leq\left\|k p\left(\frac{x+y+z}{k}\right)\right\| \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in X$. Then $f=g=h$ and they are additive.
Proof. Replacing (x, y, z) by $(x,-x, 0)$ in (3.1), we get

$$
\begin{equation*}
f(x)+g(-x)=0 \quad \forall x \in X \tag{3.2}
\end{equation*}
$$

Replacing (x, y, z) by $(x, 0,-x)$ in (3.1), we get

$$
f(x)+h(-x)=0 \quad \forall x \in X
$$

and so

$$
g(x)=h(x) \quad \forall x \in X
$$

Replacing (x, y, z) by $(x+y,-x,-y)$ in (3.1), we have

$$
f(x+y)+g(-x)+g(-y)=0 \quad \forall x, y \in X
$$

so that by 3.2

$$
f(x+y)-f(x)-f(y)=0 \quad \forall x, y \in X
$$

That is, f is additive. Since $f(-x)+g(x)=0$ by (3.2), we have $-f(x)+g(x)=0$ for all $x \in X$. Hence $f=g$. This completes the proof.

We now prove the Hyers-Ulam stability of the functional inequality 1.2 .
Theorem 3.2. Let $f, g, h, p: X \rightarrow Y$ be mappings such that $g(0)=h(0)=p(0)=0$ and

$$
\begin{equation*}
\|f(x)+g(y)+h(z)\| \leq\left\|k p\left(\frac{x+y+z}{k}\right)\right\|+\varphi(x, y, z) \tag{3.3}
\end{equation*}
$$

where $\varphi: X^{3} \rightarrow[0, \infty)$ satisfies $\varphi(0,0,0)=0$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|2|^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right)=0 \tag{3.4}
\end{equation*}
$$

for all $x, y, z \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{align*}
\|f(x)-A(x)\| & \leq \psi_{1}(x) \tag{3.5}\\
\|g(x)-A(x)\| & \leq \psi_{2}(x) \tag{3.6}\\
\|h(x)-A(x)\| & \leq \psi_{3}(x) \tag{3.7}
\end{align*}
$$

Here,

$$
\begin{aligned}
& \psi_{1}(x)=\sup _{j \geq 0}\left\{\left|2^{j}\right| \varphi\left(\frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}, 0\right),\left|2^{j}\right| \varphi\left(\frac{x}{2^{j+1}}, 0,-\frac{x}{2^{j+1}}\right),\left|2^{j}\right| \varphi\left(\frac{x}{2^{j}},-\frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}\right)\right\} \\
& \psi_{2}(x)=\sup _{j \geq 0}\left\{\left|2^{j}\right| \varphi\left(-\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, 0\right),\left|2^{j}\right| \varphi\left(0, \frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}\right),\left|2^{j}\right| \varphi\left(-\frac{x}{2^{j+1}}, \frac{x}{2^{j}},-\frac{x}{2^{j+1}}\right)\right\} \\
& \psi_{3}(x)=\sup _{j \geq 0}\left\{\left|2^{j}\right| \varphi\left(-\frac{x}{2^{j+1}}, 0, \frac{x}{2^{j+1}}\right),\left|2^{j}\right| \varphi\left(0,-\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}\right),\left|2^{j}\right| \varphi\left(-\frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}, \frac{x}{2^{j}}\right)\right\}
\end{aligned}
$$

Proof. Replacing (x, y, z) by $(0,0,0)$ in (3.3), we get $f(0)=0$. Replacing (x, y, z) by $(x,-x, 0)$ in (3.3), we have

$$
\|f(x)+g(-x)\| \leq \varphi(x,-x, 0)
$$

Replacing (x, y, z) by $(x, 0,-x)$ in (3.3), we have

$$
\|f(x)+h(-x)\| \leq \varphi(x, 0,-x)
$$

Then

$$
\begin{equation*}
\|2 f(x)+g(-x)+h(-x)\| \leq \max \{\varphi(x,-x, 0), \varphi(x, 0,-x)\} . \tag{3.8}
\end{equation*}
$$

Replacing (x, y, z) by $(2 x,-x,-x)$ in (3.3), we have

$$
\begin{equation*}
\|f(2 x)+g(-x)+h(-x)\| \leq \varphi(2 x,-x,-x) \tag{3.9}
\end{equation*}
$$

Hence by (3.8) and (3.9),

$$
\|2 f(x)-f(2 x)\| \leq \max \{\varphi(x,-x, 0), \varphi(x, 0,-x), \varphi(2 x,-x,-x)\}
$$

and so

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leq \max \left\{\varphi\left(\frac{x}{2},-\frac{x}{2}, 0\right), \varphi\left(\frac{x}{2}, 0,-\frac{x}{2}\right), \varphi\left(x,-\frac{x}{2},-\frac{x}{2}\right)\right\} \tag{3.10}
\end{equation*}
$$

for all $x \in X$. Replacing x by $\frac{x}{2^{j}}$ and multiplying by $\left|2^{j}\right|$ on both sides of (3.10) for every nonnegative integer j, we have

$$
\begin{align*}
& \left\|2^{j+1} f\left(\frac{x}{2^{j+1}}\right)-2^{j} f\left(\frac{x}{2^{j}}\right)\right\| \\
& \quad \leq \max \left\{\left|2^{j}\right| \varphi\left(\frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}, 0\right),\left|2^{j}\right| \varphi\left(\frac{x}{2^{j+1}}, 0,-\frac{x}{2^{j+1}}\right),\left|2^{j}\right| \varphi\left(\frac{x}{2^{j}},-\frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}\right)\right\} \tag{3.11}
\end{align*}
$$

for all $x \in X$. Hence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence in Y. Since Y is complete, we can define the mapping $A: X \rightarrow Y$ such that

$$
A(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right) .
$$

For nonnegative integers $l<m$, we have

$$
\begin{align*}
\| 2^{l} f\left(\frac{x}{2^{l}}\right) & -2^{m} f\left(\frac{x}{2^{m}}\right) \| \\
& \leq \max _{l \leq j \leq m-1}\left\{\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|\right\} \tag{3.12}\\
& \leq \max _{l \leq j \leq m-1}\left\{\left|2^{j}\right| \varphi\left(\frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}, 0\right),\left|2^{j}\right| \varphi\left(\frac{x}{2^{j+1}}, 0,-\frac{x}{2^{j+1}}\right),\left|2^{j}\right| \varphi\left(\frac{x}{2^{j}},-\frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}\right)\right\}
\end{align*}
$$

for all $x \in X$. Letting $l=0$ and taking the limit as $m \rightarrow \infty$ in (3.12), we have

$$
\begin{align*}
\| f(x) & -A(x) \| \\
& \leq \sup _{j \geq 0}\left\{|2|^{j} \varphi\left(\frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}, 0\right),|2|^{j} \varphi\left(\frac{x}{2^{j+1}}, 0,-\frac{x}{2^{j+1}}\right),|2|^{j} \varphi\left(\frac{x}{2^{j}},-\frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}\right)\right\}=\psi_{1}(x) \tag{3.13}
\end{align*}
$$

for all $x \in X$.
Similarly, there exists a mapping $B: X \rightarrow Y$ such that

$$
B(x):=\lim _{n \rightarrow \infty} 2^{n} g\left(\frac{x}{2^{n}}\right),
$$

and

$$
\begin{aligned}
\| g(x) & -B(x) \| \\
& \leq \sup _{j \geq 0}\left\{\left|2^{j}\right| \varphi\left(-\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, 0\right),\left|2^{j}\right| \varphi\left(0, \frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}\right),\left|2^{j}\right| \varphi\left(-\frac{x}{2^{j+1}}, \frac{x}{2^{j}},-\frac{x}{2^{j+1}}\right)\right\}=\psi_{2}(x) .
\end{aligned}
$$

We also obtain a mapping $C: X \rightarrow Y$ such that

$$
C(x):=\lim _{n \rightarrow \infty} 2^{n} h\left(\frac{x}{2^{n}}\right)
$$

and

$$
\begin{aligned}
\| h(x) & -C(x) \| \\
& \leq \sup _{j \geq 0}\left\{\left|2^{j}\right| \varphi\left(-\frac{x}{2^{j+1}}, 0, \frac{x}{2^{j+1}}\right),\left|2^{j}\right| \varphi\left(0,-\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}\right),\left|2^{j}\right| \varphi\left(-\frac{x}{2^{j+1}},-\frac{x}{2^{j+1}}, \frac{x}{2^{j}}\right)\right\}=\psi_{3}(x) .
\end{aligned}
$$

Next, we show that $A=B=C$ and they are additive. Replacing (x, y, z) by $\left(\frac{x}{2^{n}},-\frac{x}{2^{n}}, 0\right)$ in 3.3 , we have

$$
\left|2^{n}\right|\left\|f\left(\frac{x}{2^{n}}\right)+g\left(-\frac{x}{2^{n}}\right)\right\| \leq\left|2^{n}\right| \varphi\left(\frac{x}{2^{n}},-\frac{x}{2^{n}}, 0\right)
$$

and so

$$
\begin{equation*}
A(x)+B(-x)=0 \tag{3.14}
\end{equation*}
$$

for all $x \in X$. Similarly $A(x)+C(-x)=0$ for all $x \in X$. Hence $B=C$.
Replacing (x, y, z) by $\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{-(x+y)}{2^{n}}\right)$ in (3.3), we have

$$
\left|2^{n}\right|\left\|f\left(\frac{x}{2^{n}}\right)+g\left(\frac{y}{2^{n}}\right)+h\left(\frac{-(x+y)}{2^{n}}\right)\right\| \leq\left|2^{n}\right| \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{-(x+y)}{2^{n}}\right)
$$

and so

$$
A(x)+B(y)+C(-(c+y))=0
$$

for all $x, y \in X$. Then

$$
A(x)-A(-y)-A(x+y)=0
$$

so that

$$
\begin{equation*}
A(x+y)=A(x)-A(-y) \tag{3.15}
\end{equation*}
$$

for all $x, y \in X$. Letting $x=y=0$ in (3.15), we have $A(0)=0$. Letting $x=0$ in (3.15), $A(-y)=-A(y)$, so that

$$
A(x+y)=A(x)+A(y)
$$

for all $y \in X$. Then it follows by 3.14 that

$$
A(-x)=-A(x)=B(-x)
$$

for all $x \in X$. Hence $A=B=C$ and A is additive. Therefore the inequalities (3.5), (3.6) and (3.7) hold.
Since the uniqueness of A can be proved similarly as in the proof of Theorem 2.2, we omit it. This completes the proof.

Corollary 3.3. Let $f, g, h, p: X \rightarrow Y$ be mappings such that $g(0)=h(0)=p(0)=0$ and

$$
\|f(x)+g(y)+h(z)\| \leq\left\|k p\left(\frac{x+y+z}{k}\right)\right\|+\theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)
$$

for all $x, y, z \in X$, where θ and r are constants with $\theta>0$ and $r<1$. If $|2| \neq 1$, then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{gathered}
\|f(x)-A(x)\| \leq\left(2|2|^{-r}+1\right) \theta\|x\|^{r} \\
\|g(x)-A(x)\| \leq\left(2|2|^{-r}+1\right) \theta\|x\|^{r} \\
\|h(x)-A(x)\| \leq\left(2|2|^{-r}+1\right) \theta\|x\|^{r}
\end{gathered}
$$

for all $x \in X$.

Corollary 3.4. Let $f, g, h, p: X \rightarrow Y$ be mappings such that $g(0)=h(0)=p(0)=0$ and

$$
\|f(x)+g(y)+h(z)\| \leq\left\|k p\left(\frac{x+y+z}{k}\right)\right\|+\theta\|x\|^{r} \cdot\|y\|^{r} \cdot\|z\|^{r}
$$

for all $x, y, z \in X$, where θ and r are constants with $\theta>0$ and $r<\frac{1}{3}$. If $|2| \neq 1$, then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{aligned}
& \|f(x)-A(x)\| \leq|2|^{-2 r} \theta\|x\|^{3 r} \\
& \|g(x)-A(x)\| \leq|2|^{-2 r} \theta\|x\|^{3 r} \\
& \|h(x)-A(x)\| \leq|2|^{-2 r} \theta\|x\|^{3 r}
\end{aligned}
$$

for all $x \in X$.

Acknowledgements:

The first author was supported by Hallym University Research Fund, 2014 (HRF-201403-008).

References

[1] T. Aoki, On the stability of the linear transformation mappings in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.1
[2] Y. Cho, C. Park, R. Saadati, Functional inequalities in non-Archimedean Banach spaces, Appl. Math. Lett., 23 (2010), 1239-1242. 1
[3] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing, NJ, (2002). 1
[4] W. Fechner, Stability of functional inequalities associated with the Jordan-von Neumann functional equations, Aequationes Math., 71 (2006), 149-161. 1
[5] G. L. Forti, An existence and stability theorem for a class of functional equations, Stochastica, 4 (1980), 23-30.1
[6] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximate additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. 1
[7] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math., 62 (2001), 303-309. 1
[8] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl., 5 (2002), 707-710. 1
[9] D. H. Hyers, On the stability of linear functional equations, Proc. Nat. Acad. Sci. USA., 27 (1941), 222-224.1
[10] D. H. Hyers, G. Isac,T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, (1998). 1
[11] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Springer, New York, (2011). 1
[12] G. Lu, C. Park, Additive functional inequalities in Banach spaces, J. Inequal. Appl., 2012 (2012), 10 pages. 1
[13] C. Park, Y. Cho, M. Han, Functional inequalities associated with Jordan-von Neumann-type additive functional equations, J. Inequal. Appl., 2007 (2007), 13 pages. 1
[14] Th. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. 1
[15] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math., 66 (2003), 191-200. 1
[16] S. M. Ulam, Problems of modern mathematics, Sciences Editions John Wiley \& Sons Inc., New York, (1960). 1

[^0]: *Corresponding author
 Email addresses: sokim@hallym.ac.kr (Sang Og Kim), abasalt.bodaghi@gmail.com (Abasalt Bodaghi), baak@hanyang.ac.kr (Choonkil Park)

