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Abstract

A solution of nonlinear φ-strongly accretive operator equations is found in this paper by using a one-step-
two-mappings iterative scheme in arbitrary real Banach spaces. We give an example to validate our main
theorem. Our results are different from those of Khan et. al., [S. H. Khan, A. Rafiq, N. Hussain, Fixed
Point Theory Appl., 2012 (2012), 10 pages] in view of different and independent iterative schemes in the
sense that none reduces to the other but extend and improve the results of Ding [X. P. Ding, Computers
Math. Appl., 33 (1997), 75–82] and many others. c©2015 All rights reserved.
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1. Introduction

Let K be a nonempty subset of an arbitrary Banach space X and X∗ be its dual space. For a single-
valued map T : X → X, x ∈ X is called a fixed point of T iff T (x) = x. The symbols D(T ), R(T ) and
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F (T ), in this paper, stand for the domain, the range and the set of fixed points of T . We denote by J the
normalized duality mapping from X to 2X

∗
defined by

J(x) = {f∗ ∈ X∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2}.

Let T : D(T ) ⊆ X → X be an operator. A map T is called demicontinuous if {xn} converging to x in the
norm implies that {Txn} converges weakly to Tx. Recall the following definitions which can be found in [18].

Definition 1.1. T is called Lipshitzian if there exists L > 0 such that

‖Tx− Ty‖ 6 L ‖x− y‖ ,

for all x, y ∈ K. If L = 1, then T is called nonexpansive and if 0 < L < 1, T is called contraction.

Definition 1.2. (i) T is said to be strongly pseudocontractive if there exists a t > 1 such that for each
x, y ∈ D(T ), there exists j(x− y) ∈ J(x− y) satisfying

Re 〈Tx− Ty, j(x− y)〉 ≤ 1

t
‖x− y‖2 .

(ii) T is said to be strictly hemicontractive if F (T ) is nonempty and if there exists a t > 1 such that
for each x ∈ D(T ) and q ∈ F (T ), there exists j(x− q) ∈ J(x− q) satisfying

Re 〈Tx− q, j(x− q)〉 ≤ 1

t
‖x− q‖2 .

(iii) T is said to be φ-strongly pseudocontractive if there exists a strictly increasing function
φ : [0,∞) → [0,∞) with φ(0) = 0 such that for each x, y ∈ D(T ), there exists j(x − y) ∈ J(x − y)
satisfying

Re 〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − φ(‖x− y‖) ‖x− y‖ .

(iv) T is said to be φ-hemicontractive if F (T ) is nonempty and if there exists a strictly increasing
function φ : [0,∞) → [0,∞) with φ(0) = 0 such that for each x ∈ D(T ) and q ∈ F (T ), there exists
j(x− q) ∈ J(x− q) satisfying

Re 〈Tx− q, j(x− q)〉 ≤ ‖x− q‖2 − φ(‖x− q‖) ‖x− q‖ .

Clearly, each strictly hemicontractive operator is φ-hemicontractive.

Definition 1.3. (i) T is called accretive if the inequality

||x− y|| ≤ ||x− y + s(Tx− Ty)||

holds for every x, y ∈ D(T ) and for all s > 0.
(ii) T is called strongly accretive if for all x, y ∈ D(T ) there exists a constant k > 0 and j(x−y) ∈ J(x−y)

such that
〈Tx− Ty, j(x− y)〉 ≥ k||x− y||2.

(iii) T is called φ-strongly accretive if there exists j(x − y) ∈ J(x − y) and a strictly increasing function
φ : [0,∞)→ [0,∞) with φ(0) = 0 such that for each x, y ∈ X,

〈Tx− Ty, j(x− y)〉 ≥ φ(||x− y||)||x− y||.
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The class of strongly accretive operators is a proper subclass of the class of φ-strongly accretive operators,
see, for example, [18, 19]. T is called strongly pseudocontractive (respectively, φ-strongly pseudocontractive)
if and only if (I − T ) is strongly accretive (respectively, φ-strongly accretive) where I denotes the identity
operator. Mann iterative scheme was used by Chidume [1] in order to approximate fixed points of Lipschitz
strongly pseudocontractive operators in Lp (or lp) spaces for p ∈ [2,∞). Chidume and Osilike [2] proved that
each strongly pseudocontractive operator with a fixed point is strictly hemicontractive, but the converse is
not necessarily true. They also proved that the class of strongly pseudocontractive operators is a proper
subclass of the class of φ-strongly pseudocontractive operators, and pointed out that the class of φ-strongly
pseudocontractive operators with a fixed point is a proper subclass of the class of φ-hemicontractive op-
erators. These classes of nonlinear operators have been studied by various researchers (see, for example,
[3, 5, 6, 7, 9, 12, 16, 15, 13, 17, 18, 19, 20, 21, 22, 4, 10]). Liu et al., [14] proved that under certain
conditions a three-step iterative scheme with error terms converges strongly to the unique fixed point of
φ−hemi-contractive mappings. Khan et. al., [11] studied strong convergence of three-step iterative scheme
with error terms to a common solution of φ−strongly accretive operator equations in a real Banach space.

In this paper, we study a one-step-two-mappings iterative scheme for solving nonlinear φ-strongly accre-
tive operator equations in arbitrary real Banach spaces. We give an example to validate our main theorem.
Our results are different from those of [11] because of different and independent iterative schemes in the
sense that none reduces to the other but extend and improve the results of [5, 15, 18, 19] and many others.

2. Preliminaries

Some useful results are stated below.

Lemma 2.1 ([23]). Let {an}, {bn} and {cn} be three sequences of nonnegative real numbers with
∞∑
n=1

bn <∞

and
∞∑
n=1

cn <∞. If

an+1 ≤ (1 + bn)an + cn, n ≥ 1,

then the limit lim
n→∞

an exists.

Lemma 2.2 ([8]). Let x, y ∈ X. Then ‖x‖ ≤ ‖x+ ry‖ for every r > 0 if and only if there is f ∈ J(x) such
that Re 〈y, f〉 ≥ 0.

Lemma 2.3 ([15]). Suppose that X is an arbitrary Banach space and A : X → X is a continuous φ-strongly
accretive operator. Then the equation Ax = f has a unique solution for any f ∈ X.

3. Solving a system of nonlinear operator equations by a one-step-two-mappings iterative
scheme

From now onwards, L denotes the Lipschitz constant of T1, T2 : X → X, L∗ = (1 +L) and R(T1) and R(T2)
denote the ranges of T1 and T2 respectively. Following the techniques of [11] and the references cited therein,
we prove our main theorem as follows.

Theorem 3.1. Let X be an arbitrary real Banach space and T1, T2 : X → X Lipschitz φ-strongly accretive
operators. Let f ∈ R(T1) ∩R(T2) and generate {xn} from an arbitrary x0 ∈ X by

xn+1 = anxn + bn(f + (I − T1)xn) + cn(f + (I − T2)xn), n ≥ 0, (3.1)

where {an}, {bn}, {cn} are sequences in (0, 1) satisfying conditions:
(i) an + bn + cn = 1,
(ii) bn ∈ (0, b) for some b ∈ (0, 1),
(iii)

∑∞
n=0 bn =∞,
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(iv)
∑∞

n=0 b
2
n <∞,

(v)
∑∞

n=0 cn <∞.
Then the sequence {xn} converges strongly to the solution of the system Tix = f ; i = 1, 2.

Proof. Let T1, T2 : X → X be two Lipschitz φ-strongly accretive operators with strictly increasing functions
φ1, φ2 : [0,∞) → [0,∞) satisfying φ1(0) = φ2(0) = 0. It follows from [15] that the system Tix = f ; i = 1, 2
has the unique solution, say x∗ ∈ X. Define Vi : X → X by Vix = f + (I − Ti)x; i = 1, 2; then each Vi is
demicontinuous and x∗ is the unique fixed point of Vi; i = 1, 2. Furthermore, for all x, y ∈ X , we have

〈(I − Vi)x− (I − Vi)y, j(x− y)〉 ≥ φi(||x− y||)||x− y||

≥ φi(||x− y||)
(1 + φi(||x− y||) + ||x− y||)

||x− y||2

= ψi(x, y)||x− y||2,

where ψi(x, y) = φi(||x−y||)
(1+φi(||x−y||)+||x−y||)

∈ [0, 1) for all x, y ∈ X; i = 1, 2. Let x∗ ∈
2⋂
i=1

F (Vi) be the fixed point

set of Vi and let ψ(x, y) = inf mini{ψi(x, y)} ∈ [0, 1]. Then

〈(I − Vi)x− (I − Vi)y, j(x− y)〉 ≥ ψ(x, y)||x− y||2; i = 1, 2, (3.2)

and it follows from Lemma 2.2 and inequality (3.2) that

||x− y|| ≤ ||x− y + λ[(I − Vi)x− ψ(x, y)x− ((I − Vi)y − ψ(x, y)y)]||, (3.3)

for all x, y ∈ X and for all λ > 0; i = 1, 2.
Using definition of Vi, (3.1) can be rewritten

xn+1 = anxn + bnV1xn + cnV2xn

= (1− bn − cn)xn + (bn + cn)V1xn + cn(V2xn − V1xn)

= (1− αn)xn + αnV1xn + cn(V2xn − V1xn),

(3.4)

where αn = bn + cn. From (3.4) we have

xn = xn+1 + αnxn − αnV1xn − cn(V2xn − V1xn)

= (1 + αn)xn+1 + αnxn+1 − 2αn((1− αn)xn + αnV1xn

+ cn(V2xn − V1xn)) + αnxn − αnV1xn − cn(V2xn − V1xn)

+ αnV1xn+1 − αnV1xn+1

+ αnψ(xn+1, x
∗)(−xn+1 + (1− αn)xn + αnV1xn + cn(V2xn − V1xn))

= (1 + αn)xn+1 + αn[(I − V1)xn+1 − ψ(xn+1, x
∗)xn+1]

− (1− ψ(xn+1, x
∗))αnxn + (2− ψ(xn+1, x

∗))α2
n(xn − V1xn)

+ αn(V1xn+1 − V1xn)− [1 + (2− ψ(xn+1, x
∗))αn]cn(V2xn − V1xn).

Observe that

x∗ = (1 + αn)x∗ + αn[(I − V1)x∗ − ψ(xn+1, x
∗)x∗]− (1− ψ(xn+1, x

∗))αnx
∗,

so that

xn − x∗ = (1 + αn)(xn+1 − x∗) + αn[(I − V1)xn+1 − ψ(xn+1, x
∗)xn+1

− ((I − V1)x∗ − ψ(xn+1, x
∗)x∗)]

− (1− ψ(xn+1, x
∗))αn(xn − x∗) + (2− ψ(xn+1, x

∗))α2
n(xn − V1xn)

+ αn(V1xn+1 − V1xn)− [1 + (2− ψ(xn+1, x
∗))αn]cn(V2xn − V1xn).



S. H. Khan, B. Gunduz, S. Akbulut, J. Nonlinear Sci. Appl. 8 (2015), 837–846 841

Hence

||xn − x∗|| ≥ (1 + αn)||xn+1 − x∗ +
αn

(1 + αn)
[(I − V1)xn+1 − ψ(xn+1, x

∗)xn+1

− ((I − V1)x∗ − ψ(xn+1, x
∗)x∗)]||

− (1− ψ(xn+1, x
∗))αn||xn − x∗|| − (2− ψ(xn+1, x

∗))α2
n||xn − V1xn||

− αn||V1xn+1 − V1xn|| − [1 + (2− ψ(xn+1, x
∗))αn]cn||V2xn − V1xn||

≥ (1 + αn)||xn+1 − x∗|| − (1− ψ(xn+1, x
∗))αn||xn − x∗||

− (2− ψ(xn+1, x
∗))α2

n||xn − V1xn|| − αn||V1xn+1 − V1xn||
− [1 + (2− ψ(xn+1, x

∗))αn]cn||V2xn − V1xn||.

so that

||xn+1 − x∗|| ≤
[1 + (1− ψ(xn+1, x

∗))αn]

(1 + αn)
||xn − x∗||+ 2α2

n||xn − V1xn||

+ αn||V1xn+1 − V1xn||+ [1 + (2− ψ(xn+1, x
∗))αn]cn||V2xn − V1xn||

≤ [1 + (1− ψ(xn+1, x
∗))αn][1− αn + α2

n]||xn − x∗||
+ 2α2

n||xn − V1xn||+ αn||V1xn+1 − V1xn||+ 3cn||V2xn − V1xn||
≤ [1− ψ(xn+1, x

∗)αn + α2
n]||xn − x∗||+ 2α2

n||xn − V1xn||
+ αn||V1xn+1 − V1xn||+ 3cn||V2xn − V1xn||.

(3.5)

Furthermore, we have the following estimates

||xn − V1xn|| ≤ ||xn − x∗||+ ||V1xn − x∗|| = (1 + L∗)||xn − x∗||, (3.6)

||V2xn − V1xn|| ≤ ||V2xn − x∗||+ ||V1xn − x∗|| ≤ 2L∗||xn − x∗||. (3.7)

Using (3.6) and (3.7),

||V1xn+1 − V1xn|| ≤ L∗||xn+1 − xn||
= L∗ ‖αn(V1xn − xn) + cn(V2xn − V1xn)‖
≤ L∗[αn ‖V1xn − xn‖+ cn ‖V2xn − V1xn‖]
≤ L∗[(1 + L∗)αn||xn − x∗||+ 2L∗cn ‖xn − x∗‖]
= L∗(1 + L∗)αn||xn − x∗||+ 2 (L∗)2 cn ‖xn − x∗‖ .

(3.8)

Substituting (3.6), (3.7) and (3.8) in (3.5), we obtain

||xn+1 − x∗|| ≤ (1 + α2
n)||xn − x∗|| − ψ(xn+1, x

∗))αn||xn − x∗||
+ 2(1 + L∗)α2

n||xn − x∗||+ αn[L∗(1 + L∗)αn||xn − x∗||
+ 2 (L∗)2 cn ‖xn − x∗‖] + 6L∗cn||xn − x∗||

= [1 + (1 + 2(1 + L∗) + L∗(1 + L∗))α2
n

+ 2 (L∗)2 αncn + 6L∗cn]||xn − x∗|| − ψ(xn+1, x
∗))αn||xn − x∗||

≤ (1 + δn)||xn − x∗||,

(3.9)

where

δn = [1 + (1 + 2(1 + L∗) + L∗(1 + L∗))α2
n + 2 (L∗)2 αncn + 6L∗cn]

= [1 + (1 + 2(1 + L∗) + L∗(1 + L∗))(bn + cn)2 + 2 (L∗)2 (bn + cn)cn + 6L∗cn]

≤ [1 + (1 + 2(1 + L∗) + L∗(1 + L∗))(bn + cn)2 + 2 (L∗)2 (bcn + c2n) + 6L∗cn].
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Since cn ∈ (0, 1), cn ≥ c2n and
∑∞

n=0 cn < ∞, the Comparison Test implies that
∑∞

n=0 c
2
n < ∞. Hence

∞∑
n=0

δn <∞. It then follows from Lemma 2.1 that lim
n→∞

||xn − x∗|| exists and so {||xn − x∗||} bounded. Let

lim
n→∞

||xn − x∗|| = δ ≥ 0. We now prove that δ = 0. Assume that δ > 0. Then there exists a positive integer

N0 such that ||xn − x∗|| ≥ δ
2 for all n ≥ N0. Since lim

n→∞
||xn − x∗|| exists, there exists a real number D such

that ||xn+1 − x∗|| ≤ D. Thus

ψ(xn+1, x
∗)||xn − x∗|| =

φ(||xn+1 − x∗||)
1 + φ(||xn+1 − x∗||) + ||xn+1 − x∗||

||xn − x∗||

≥
φ( δ2)δ

2(1 + φ(D) +D)
,

for all n ≥ N0, it follows from (3.9) that

||xn+1 − x∗|| ≤ ||xn − x∗|| −
φ( δ2)δ

2(1 + φ(D) +D)
αn for all n ≥ N0,

or
φ( δ2)δ

2(1 + φ(D) +D)
αn ≤ ||xn − x∗|| − ||xn+1 − x∗|| for all n ≥ N0.

This implies that
φ( δ2)δ

2(1 + φ(D) +D)

n∑
j=N0

αj ≤ ||xN0 − x∗||.

Since bn ≤ αn, so
φ( δ2)δ

2(1 + φ(D) +D)

n∑
j=N0

bj ≤ ||xN0 − x∗||,

yields
∞∑
n=0

bn < ∞, contradicting the fact that
∞∑
n=0

bn = ∞. Hence lim
n→∞

||xn − x∗|| = 0 and the proof is

complete.

Corollary 3.2. Let X be an arbitrary real Banach space and T1, T2 : X → X be two Lipschitz φ-strongly
accretive operators, where φ, in addition, is continuous. Suppose lim inf

r→∞
φ(r) > 0 or ||Tix||→∞ as ||x||→∞;

i = 1, 2. Let {an}, {bn}, {cn} and {xn} be as in Theorem 3.1. Then for any given f ∈ X, the sequence
{xn} converges strongly to the solution of the system Tix = f ; i = 1, 2.

Proof. The existence of a unique solution to the system Tix = f ; i = 1, 2 follows from [15] and the result
follows from Theorem 3.1.

Theorem 3.3. Let X be a real Banach space and K a nonempty closed convex subset of X. Let
T1, T2 : K → K be two Lipschitz φ-strong pseudocontractions with a nonempty fixed-point set. Let {an}, {bn}
and {cn} be as in Theorem 3.1. Let {xn} be the sequence generated iteratively from an arbitrary x0 ∈ K by

xn+1 = anxn + bnT1xn + cnT2xn, n ≥ 0.

Then {xn} converges strongly to the common fixed point of T1 and T2.

Proof. As in the proof of Theorem 3.1, set αn = bn + cn to obtain

xn+1 = (1− αn)xn + αnT1xn + cn(T2xn − T1xn), n ≥ 0.
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Since each Ti; i = 1, 2 is a φ-strong pseudocontraction, (I−Ti) is φ-strongly accretive so that for all x, y ∈ X,
there exist j(x − y) ∈ J(x − y) and a strictly increasing function φ : (0,∞) → (0,∞) with φ(0) = 0 such
that

〈(I − Ti)x− (I − Ti)y, j(x− y)〉 ≥ φ(||x− y||)||x− y|| ≥ ψ(x, y)||x− y||2; i = 1, 2.

The rest of the argument is now essentially the same as in the proof of Theorem 3.1 and is therefore
omitted.

Remark 3.4. Example given in [2] shows that the class of φ-strongly pseudocontractive operators with
nonempty fixed-point sets is a proper subclass of the class of φ-hemicontractive operators. It is easy to see
that Theorem 3.1 easily extends to the class of φ-hemicontractive operators.

Remark 3.5. Let {αn} be a real sequence satisfying the following conditions:

(i) 0 ≤ αn ≤ 1, n ≥ 0, (ii) lim
n→∞

αn = 0, (iii)
∞∑
n=0

αn =∞ and (iv)
∞∑
n=0

α2
n <∞.

If we set an = (1−αn), bn = αn, cn = 0 for all n ≥ 0 in Theorems 3.1 and 3.3, we obtain the corresponding
convergence theorems for the original Mann iterative scheme.

Remark 3.6. All the results proved in this paper can also be proved for the iterative scheme with error terms
or a finite family of φ−strongly accretive operators. In these cases our main iterative scheme (3.1) looks like

xn+1 = anxn + bn(f + (I − T1)xn) + cn(f + (I − T2)xn) + dnun, n ≥ 0, (3.10)

where {un} is a bounded sequence and {an}, {bn}, {cn}, {dn} are sequences in [0, 1] such that
an + bn + cn + dn = 1 and

xn+1 = α0nxn +
m∑
i=1

αin(f + (I − Ti)xn), n ≥ 0,

where {α0n}, {α1n}, . . . , {αmn} are m+ 1 real sequences in [0, 1] satisfying
m∑
i=0

αin = 1 respectively.

Remark 3.7. Since the iterative scheme (3.1) and (3.10) are computationally simpler than Ishikawa iterative
scheme used by Osilike [19] and Ishikawa iterative scheme with error terms used by Ding [5] respectively,
therefore our results are better.

Example 3.8. Let X=(−∞,+∞) with the usual norm |·|. Define T1, T2 :X→X and φ : [0,+∞)→ [0,+∞)

by T1x =

{
2x2

1+2x for x ∈ [0,+∞)

x for x ∈ (−∞, 0)
, T2x = 4

5x for x ∈ (−∞,+∞) and φ(t) = t2

1+2t for t ∈ [0,+∞),

respectively. Set

an = 1− (2 + n)−1 − (3 + n2)−1, bn = (2 + n)−1, cn = (3 + n2)−1, for all n ≥ 0.

Clearly (i) an + bn + cn = 1 (ii) bn ∈ (0, b) for b = 1
2 ∈ (0, 1) (iii) To prove that

∑∞
n=0 bn =∞, take b′n = 1

n .

Since lim b′n
bn

= lim n
2+n = 1 > 0 and

∑∞
n=0 b

′
n = ∞, therefore

∑∞
n=0 bn = ∞ by using Limit Comparison

Test. (iv)
∑∞

n=0 b
2
n <∞ and (v)

∑∞
n=0 cn <∞ can be proved in a similar way.

In order to prove that T1 is φ-strongly accretive, we have to consider the following four possible cases:

Case 1. x, y ∈ [0,+∞). It follows that

〈Tx− Ty, x− y〉 − φ(|x− y|) |x− y|

=

(
2x2

1 + 2x
− 2y2

1 + 2y

)
(x− y)− (x− y)2

1 + 2 |x− y|
|x− y|

= (x− y)2
(

2x+ 2y + 4xy

(1 + 2x)(1 + 2y)
− |x− y|

1 + 2 |x− y|

)
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= (x− y)2
(

2x+ 2y + 4xy + |x− y| (2x+ 2y + 4xy)− |x− y|
(1 + 2x)(1 + 2y)(1 + 2 |x− y|)

)

= (x− y)2
(

(1 + 2x+ 2y + 4xy) |x− y|+ 2x+ 2y + 4xy − 2 |x− y|
(1 + 2x)(1 + 2y)(1 + 2 |x− y|)

)

= (x− y)2
(

|x− y|
(1 + 2 |x− y|)

+
2x+ 2y + 4xy − 2 |x− y|

(1 + 2x)(1 + 2y)(1 + 2 |x− y|)

)
≥ 0.

which implies that
〈Tx− Ty, x− y〉 ≥ φ(|x− y|) |x− y| . (3.11)

Case 2. x, y ∈ (−∞, 0). It is easy to verify that

〈Tx− Ty, x− y〉 = (x− y)2 ≥ |x− y|3

1 + 2 |x− y|
= φ(|x− y|) |x− y| .

Case 3. x ∈ [0,+∞) and y ∈ (−∞, 0). Then

〈Tx− Ty, x− y〉 − φ(|x− y|) |x− y|

=

(
2x2

1 + 2x
− y
)

(x− y)− (x− y)3

1 + 2(x− y)

= (x− y)

(
2x2 − 2xy − y

1 + 2x
− (x− y)2

1 + 2(x− y)

)
= (x− y)

(
x2 − 2xy + y2 + 2x3 − 4x2y + 2xy2 − y

(1 + 2x) (1 + 2(x− y))

)
= (x− y)

(
(x− y)2 + (x− y)(2x2 − 2xy)− y

(1 + 2x) (1 + 2(x− y))

)
= (x− y)

(
(x− y)2(1 + 2x)− y

(1 + 2x) (1 + 2(x− y))

)
≥ 0,

which means that (3.11) holds.

Case 4. x ∈ (−∞, 0) and y ∈ [0,+∞). As in the proof of Case 3, we conclude that (3.11) holds.
Next we assert that T1 is Lipschitzian mapping with L = 1. We consider the following possible cases:
Case 1. x, y ∈ [0,+∞). Then

|T1x− T1y| =
∣∣∣∣ 2x2

1 + 2x
− 2y2

1 + 2y

∣∣∣∣
=

∣∣∣∣(x− y)

(
2x+ 2y + 4xy

(1 + 2x) (1 + 2y)

)∣∣∣∣
≤ |x− y| .

Case 2. x, y ∈ (−∞, 0). It is clear that

|T1x− T1y| ≤ |x− y| .

Case 3. x ∈ [0,+∞) and y ∈ (−∞, 0). It follows that

|T1x− T1y| − |x− y| =
2x2

1 + 2x
− y − (x− y) =

−x
1 + 2x

≤ 0,
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that is,
|T1x− T1y| ≤ |x− y| . (3.12)

Case 4. x ∈ (−∞, 0) and y ∈ [0,+∞). As in the proof of Case 3, deduce that (3.12) holds.
Clearly, T2 is a Lipschitz φ-strongly accretive operator with Lipschitz constant L = 4

5 and
F = F (T1) ∩ F (T2) = {0} 6= ∅.

We take 8
5 = f ∈ R(T1) ∩ R(T2). Then solution of the system Tix = 8

5 ; i = 1, 2 is 2. Now we show
that {xn} converges strongly to 2 which is solution of the system Tix = 8

5 ; i = 1, 2. By taking n = 0 and
x0 ∈ (−∞,+∞), we get a0 = 1

6 , b0 = 1
2 , c0 = 1

3 and find x1 from

x1 = a0x0 + b0(
8

5
+ (I − T1)x0) + c0(

8

5
+ (I − T2)x0).

Similarly, x2, x3, . . . , xn, . . .. We obtain the first 100 terms of {xn} as in following table for initial value
x0 = −1, x0 = 0 and x0 = 3, respectively.

No. of Iterations x0 = −1 x0 = 0 x0 = 3

n xn xn xn

1 1.100000000 1.333333333 2.247619048
2 1.561250000 1.676767677 2.247619048
3 1.715758950 1.790804297 2.076501948
4 1.788990932 1.844763423 2.056695272
5 1.831507297 1.876069036 2.056695272
10 1.914411300 1.937072451 2.022932785
15 1.942009195 1.957368784 2.015528882
20 1.955964577 1.967629983 2.011788345
25 1.964426111 1.973850983 2.009521452
30 1.970117561 1.978035119 2.007997145
35 1.974213714 1.981046318 2.006900331
40 1.977305872 1.983319378 2.006072477
45 1.979724589 1.985097363 2.005424999
50 1.981669323 1.986526861 2.004904455
75 1.987657138 1.990826026 2.003326049
100 1.990652252 1.993063486 2.002524633

From the table above, we see that the sequence {xn} converges strongly to 2 which is the solution of the
system Tix = 8

5 ;i = 1, 2. This means that Theorem 3.1 is applicable.
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