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Abstract

In this paper, we extend gauge spaces in the setting of b metric spaces and prove fixed point theorems for
multivalued mappings in this new setting endowed with a graph. An example is constructed to substantiate
our result. We also discuss possible application of our result for solving integral equations. c©2015 All rights
reserved.
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1. Introduction and Preliminaries

Czerwik [11] introduced the notion of a b-metric space. Let X be a nonempty set. A mapping
d : X × X → [0,∞) is said to be a b-metric on X, if there exists s ≥ 1 such that for each x, y, z ∈ X,
we have

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, z) ≤ s[d(x, y) + d(y, z)].
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The triplet (X, d, s) is said to be a b-metric space.
Note that every metric space is a b-metric but converse is not true.
Convergence of a sequence in a b-metric space is defined in a similar fashion as in a metric space. A

sequence {xn} ⊂ X is a Cauchy sequence in (X, d, s), if for each ε > 0 there exists a natural number N(ε)
such that d(xn, xm) < ε for each m,n ≥ N(ε). A b-metric space (X, d, s) is a complete if each Cauchy
sequence in X converges to some point of X.

Czerwik [11] extended Banach contraction principle for self mappings on b metric spaces; for recent
research in this direction, please see: Phiangsungnoen et al. [20], Shatanawi et al [23]. Czerwik [12] further
extended the notion of a b-metric space (X, d, s) by defining Hausdorff metric for the space of all nonempty
closed and bounded subsets of the b-metric space (X, d, s).

Let (X, d, s) be a b metric space. For x ∈ X and A ⊂ X, d(x,A) = inf{d(x, a) : a ∈ A}. Denote by
CB(X) the class of all nonempty closed and bounded subsets of X and by CL(X) the class of all nonempty
closed subsets of X. For A,B ∈ CB(X), the function

H : CB(X)× CB(X)→ [0,∞), H(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

is said to be a Hausdorff b-metric induced by a b-metric space (X, d, s). A Hausdorff b metric space enjoys
the same properties as a Hausdorff metric, expect for triangular inequality which in Hausdorff b metric
spaces has the following form H(A,B) ≤ s[H(A,C) +H(C,B)]. Czerwik [12] extended Nadler’s fixed point
theorem in the setting of Hausdorff b metric spaces.

Jachymaski [15] introduced the notion of Banach G-contraction to extend the notion of Banach contrac-
tion, where G is a graph in the metric space whose vertex set coincides with the metric space. He obtain
some fixed point theorems for such mappings on complete metric space. Afterwards, many authors extended
Banach G-contraction in single as well as multivalued case, see for examples: Tiammee and Suantai [24],
Samreen and Kamran [21, 17, 22], Bojor [4, 5, 6], Nicolae et al. [19], Aleomraninejad et al. [2], Asl et al.
[3].

One may characterize gauge spaces by the fact that the distance between two distinct points of the space
may be zero. For details on gauge spaces, we refer the reader to [13]. Frigon [14] and Chis and Precup
[10] generalized the Banach contraction principle on gauge spaces. Some interesting results are also been
obtained by the authors: Agarwal et al. [1], Chifu and Petrusel [9], Cherichi et al. [8, 7], Lazara and Petrusel
[18], Jleli et al. [16].

By using b metric spaces, in this paper, we first introduce the notion of bs-gauge spaces. Then we extend
this notion to define bs-gauge structure on the space of nonempty closed subsets of the b metric space and
prove some fixed point theorems for multivalued G contractions. To substantiate our main result we have
constructed an example. Moreover, a possible application of our result in solving an integral equation is
also been discussed.

2. Main results

We begin this section by introducing the notion of a bs-pseudo metric space.

Definition 2.1. Let X be a nonempty set. A function d : X ×X → [0,∞) is called bs-pseudo metric on X
if there exists s ≥ 1 such that for each x, y, z ∈ X, we have

(i) d(x, x) = 0 for each x ∈ X;

(ii) d(x, y) = d(y, x);

(iii) d(x, z) ≤ s[d(x, y) + d(y, x)].

Remark 2.2. Every b-metric space (X, d, s) is a bs-pseudo metric space, but the converse is not true.



M. Usman Ali, T. Kamran, M. Postolache, J. Nonlinear Sci. Appl. 8 (2015), 847–855 849

Example 2.3. Let X = C([0,∞),R). Define a function

d : X ×X → [0,∞), d(x(t), y(t)) = max
t∈[0,1]

(x(t)− y(t))2.

Then

(i) It is clear that d is not a metric on X.

(ii) d is not a pseudo metric on X. In this respect, consider x, y, z ∈ C([0,∞),R) be defined by

x(t) =

{
0 if 0 ≤ t ≤ 1

t− 1 if t > 1,

y(t) = 3, for each t ≥ 0, and z(t) = −3, for each t ≥ 0. Then, we can see that d(y, z) = 36 � 18 =
d(y, x) + d(x, z).

(iii) d is not a b-metric on X. Since, if u, v ∈ C([0,∞),R) are defined by

u(t) =

{
0 if 0 ≤ t ≤ 1

t− 1 if t > 1,

and

v(t) =

{
0 if 0 ≤ t ≤ 1

2t− 2 if t > 1,

then u 6= v, but d(u, v) = 0.

(iv) d is b2-pseudo metric on X with s = 2.

In order to define gauge spaces in the setting of bs-pseudo metrics we need to define following.

Definition 2.4. Let X be a nonempty set endowed with the bs-pseudo metric d. The ds-ball of radius ε > 0
centered at x ∈ X is the set

B(x, d, ε) = {y ∈ X : d(x, y) < ε}.

Definition 2.5. A family F = {dν : ν ∈ A} of bs-pseudo metrics is said to be separating if for each pair
(x, y) with x 6= y, there exists dν ∈ F with dν(x, y) 6= 0.

Definition 2.6. Let X be a nonempty set and F = {dν : ν ∈ A} be a family of bs-pseudo metrics on X.
The topology T (F) having subbases the family

B(F) = {B(x, dν , ε) : x ∈ X, dν ∈ F and ε > 0}

of balls is called topology induced by the family F of bs-pseudo metrics. The pair (X, T (F)) is called a
bs-gauge space. Note that (X, T (F)) is Hausdorff if F is separating.

Definition 2.7. Let (X, T (F)) be a bs-gauge space with respect to the family F = {dν : ν ∈ A} of bs-pseudo
metrics on X and {xn} is a sequence in X and x ∈ X. Then:

(i) The sequence {xn} converges to x if for each ν ∈ A and ε > 0, there exists N0 ∈ N such that dν(xn, x) < ε
for each n ≥ N0. We denote it as xn →F x;

(ii) The sequence {xn} is a Cauchy sequence if for each ν ∈ A and ε > 0, there exists N0 ∈ N such that
dν(xn, xm) < ε for each n,m ≥ N0;

(iii) (X, T (F)) is complete if each Cauchy sequence in (X, T (F)) is convergent in X;
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(iv) A subset of X is said to be closed if it contains the limit of each convergent sequence of its elements.

Remark 2.8. When s = 1, then all above definitions reduce to the corresponding definitions in a gauge space.

Subsequently, in this paper, A is directed set and X is a nonempty set endowed with a separating
complete bs-gauge structure {dν : ν ∈ A}. Further, G = (V,E) is a directed graph in X × X, where the
set of its vertices V is equal to X and set of its edges E contains {(x, x) : x ∈ V }. Furthermore, G has no
parallel edges. For each dν ∈ F , CLν(X) denote the set of all nonempty closed subsets of X with respect
to dv. For each ν ∈ A and A,B ∈ CLν(X), the function Hν : CLν(X)× CLν(X)→ [0,∞) defined by

Hν(A,B) =

{
max

{
supx∈A dν(x,B), supy∈B dν(y,A)

}
, if the maximum exists;

∞, otherwise.

is a generalized Hausdorff bs-pseudo metric on CLν(X). We denote by CL(X) the set of all nonempty closed
subsets in the bs-gauge space (X, T (F)).

Theorem 2.9. Let T : X → CL(X) be a mapping such that for each ν ∈ A, we have

Hν(Tx, Ty) ≤ aνdν(x, y) + bνdν(x, Tx) + cνdν(y, Ty) + eνdν(x, Ty) + Lνdν(y, Tx), (2.1)

for all (x, y) ∈ E, where aν , bν , cν , eν , Lν ≥ 0, and s2aν + s2bν + s2cν + 2s3eν < 1.

Assume that following conditions hold:

(i) there exist x0 ∈ X and x1 ∈ Tx0 such that (x0, x1) ∈ E;

(ii) if (x, y) ∈ E, for u ∈ Tx and v ∈ Ty such that dν(u, v) ≤ dν(x, y) for each ν ∈ A, then (u, v) ∈ E;

(iii) if {xn} is a sequence in X such that (xn, xn+1) ∈ E for each n ∈ N and xn → x as n → ∞, then
(xn, x) ∈ E for each n ∈ N;

(iv) for each {qν : qν > 1}ν∈A and x ∈ X there exists y ∈ Tx such that

dν(x, y) ≤ qνdν(x, Tx) ∀ ν ∈ A.

Then T has a fixed point.

Proof. By hypothesis (i), there exist x0, x1 ∈ X such that x1 ∈ Tx0 and (x0, x1) ∈ E. Now, it follows form
(2.1) that

Hν(Tx0, Tx1) ≤ aνdν(x0, x1) + bνdν(x0, Tx0) + cνdν(x1, Tx1) + eνdν(x0, Tx1) + Lνdν(x1, Tx0), (2.2)

for all ν ∈ A.
Since dν(x1, Tx1) ≤ Hν(Tx0, Tx1) and dν(x0, Tx1) ≤ dν(x0, x1) + dν(x1, Tx1), therefore from (2.2), we

get

dν(x1, Tx1) ≤
1

ξν
dν(x0, x1) (2.3)

where, ξν = 1−cν−seν
aν+bν+seν

> 1. Using hypothesis (iv) there exists x2 ∈ Tx1 such that

dν(x1, x2) ≤
√
ξνdν(x1, Tx1). (2.4)

Combining (2.3) and (2.4), we get

dν(x1, x2) ≤
1√
ξν
dν(x0, x1) ∀ ν ∈ A. (2.5)
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Hypothesis (ii) and (2.5), implies that (x1, x2) ∈ E. Continuing in the same way, we get a sequence {xm}
in X such that (xm, xm+1) ∈ E and

dν(xm, xm+1) ≤
( 1√

ξν

)m
dν(x0, x1) ∀ ν ∈ A.

For convenience we assume that ην = 1√
ξν

for each ν ∈ A. Now we show that {xm} is a Cauchy sequence.

For each m, p ∈ N and ν ∈ A, we have

dν(xm, xm+p) ≤
m+p−1∑
i=m

sidν(xi, xi+1)

≤
m+p−1∑
i=m

si(ην)idν(x0, x1)

≤
∞∑
i=m

(sην)i <∞ (since sην < 1).

This implies that {xm} is a Cauchy sequence in X. By completeness of X, we have x∗ ∈ X such that
xm → x∗ as m→∞. By using hypothesis (iii), triangular inequality and (2.1), we have

dν(x∗, Tx∗) ≤ sdν(x∗, xm−1) + sdν(xm−1, Tx
∗)

≤ sdν(x∗, xm−1) + sHν(Txm, Tx
∗)

≤ sdν(x∗, xm−1) + saνdν(xm, x
∗) + sbνdν(xm, Txm)

+ scνdν(x∗, Tx∗) + seνdν(xm, Tx
∗) + sLνdn(x∗, Txm)

≤ sdν(x∗, xm−1) + saνdν(xm, x
∗) + sbνdν(xm, xm+1)

+ scνdν(x∗, Tx∗) + seνdν(xm, Tx
∗) + sLνdν(x∗, xm+1) ∀ ν ∈ A.

Letting m→∞, we get
dν(x∗, Tx∗) ≤ (scν + seν)dν(x∗, Tx∗) ∀ ν ∈ A.

Which is only possible if dν(x∗, Tx∗) = 0. Since the structure {dν : ν ∈ A} on X is separating, we have
x∗ ∈ Tx∗.

In case of single valued mapping T : X → X we have the following result:

Theorem 2.10. Let T : X → X be a mapping such that for each ∈ A we have

dν(Tx, Ty) ≤ aνdν(x, y) + bνdν(x, Tx) + cνdν(y, Ty) + eνdν(x, Ty) + Lνdν(y, Tx), (2.6)

for all (x, y) ∈ E, where, aν , bν , cν , eν , Lν ≥ 0, and saν + sbν + scν + 2s2eν < 1.

Assume that following conditions hold:

(i) there exists x0 ∈ X such that (x0, Tx0) ∈ E;

(ii) for (x, y) ∈ E, we have (Tx, Ty) ∈ E, provided dν(Tx, Ty) ≤ dν(x, y) for each ν ∈ A;

(iii) if {xn} is a sequence in X such that (xn, xn+1) ∈ E for each n ∈ N and xn → x as n → ∞, then
(xn, x) ∈ E for each n ∈ N;

Then T has a fixed point.
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Example 2.11. Let X = C([0, 10],R) endowed with the dn(x(t), y(t)) = maxt∈[0,n](x(t) − y(t))2 for each
n ∈ {1, 2, 3, . . . , 10} and the graph G = (V,E) as V = X and

E = {(x(t), y(t)) : x(t) ≤ y(t)} ∪ {(x(t), x(t)) : x ∈ X}.

Define T : X → X by Tx(t) = x(t)+1
5 , for each x ∈ X. It is easy to see that (2.5) holds with an = 1/5

and bn = cn = en = Ln = 0 for each n ∈ {1, 2, 3, . . . , 10}. For x0 = 0 and x1 = Tx0 = 1/5, we have
(x0, Tx0) ∈ E. Since T is nondecreasing, for each (x, y) ∈ E, we have (Tx, Ty) ∈ E(G). For each sequence
{xm} in X such that (xm, xm+1) ∈ E for each m ∈ N and xm → x as m → ∞, then (xm, x) ∈ E for each
m ∈ N. Therefore, all conditions of Theorem 2.10 are satisfied and T has a fixed point.

Before going towards our next theorem, we have to define Ψs2 family of mappings. Let ψ : [0,∞)→ [0,∞)
be a nondecreasing mappings such that it satisfies following conditions:

(ψ1) ψ(0) = 0;

(ψ2) ψ(ρt) = ρψ(t) < ρt for each ρ, t > 0 ;

(ψ3)
∑∞

i=1 s
2iψi(t) <∞;

where s ≥ 1.

Theorem 2.12. Let T : X → CL(X) be a mapping such that for each ν ∈ A we have

Hν(Tx, Ty) ≤ ψν(dν(x, y)), ∀ (x, y) ∈ E, (2.7)

where ψν ∈ Ψs2. Assume that the following conditions hold:

(i) there exist x0 ∈ X and x1 ∈ Tx0 such that (x0, x1) ∈ E;

(ii) if (x, y) ∈ E, for u ∈ Tx and v ∈ Ty such that 1
sdν(u, v) < dν(x, y) for each ν ∈ A, then (u, v) ∈ E;

(iii) if {xn} is a sequence in X such that (xn, xn+1) ∈ E for each n ∈ N and xn → x as n → ∞, then
(xn, x) ∈ E for each n ∈ N;

(iv) for each x ∈ X, we have y ∈ Tx such that

dν(x, y) ≤ sdν(x, Tx) ∀ ν ∈ A.

Then T has a fixed point.

Proof. By hypothesis we have x0 ∈ X and x1 ∈ Tx0 such that (x0, x1) ∈ E. From (2.7), we get

dν(x1, Tx1) ≤ Hν(Tx0, Tx1) ≤ ψν(dν(x0, x1)) ∀ ν ∈ A. (2.8)

By hypothesis (iv), for x1 ∈ X, we have x2 ∈ Tx1 such that

dν(x1, x2) ≤ sdν(x1, Tx1) ≤ sψν(dν(x0, x1)) ∀ ν ∈ A. (2.9)

Applying ψν , we have

ψν(dν(x1, x2)) ≤ ψν(sψν(dν(x0, x1))) = sψ2
ν(dν(x0, x1)) ∀ ν ∈ A.

From (2.9), it is clear that (x1, x2) ∈ E. Again from (2.7), we have

dν(x2, Tx2) ≤ Hν(Tx1, Tx2) ≤ ψν(dν(x1, x2)) ∀ ν ∈ A. (2.10)
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By hypothesis (iv), for x2 ∈ X, we have x3 ∈ Tx2 such that

dν(x2, x3) ≤ sdν(x2, Tx2) ≤ sψν(dν(x1, x2)) ≤ s2ψ2
ν(dν(x0, x1)) ∀ ν ∈ A. (2.11)

Clearly, (x2, x3) ∈ E. Continuing in the same way, we get a sequence {xm} in X such that (xm, xm+1) ∈ E
and

dν(xm, xm+1) ≤ smψmν (dν(x0, x1)) ∀ ν ∈ A.

Now, we show that {xm} is a Cauchy sequence. For m, p ∈ N, we have

dν(xm, xm+p) ≤
m+p−1∑
i=m

sidν(xi, xi+1)

≤
m+p−1∑
i=m

s2iψiν(dν(x0, x1)) <∞

This implies that {xm} is a Cauchy sequence in X. By completeness of X, we have x∗ ∈ X such that
xm → x∗ as m→∞. Using hypothesis (iv), triangular inequality and (2.7), we have

dν(x∗, Tx∗) ≤ sdν(x∗, xm−1) + sdν(xm−1, Tx
∗)

≤ sdν(x∗, xm−1) + sHν(Txm, Tx
∗)

≤ sdν(x∗, xm−1) + sψν(dn(xm, x
∗)) ∀ ν ∈ A.

Letting m→∞, we get dν(x∗, Tx∗) = 0 for each ν ∈ A. Since the structure {dν : ν ∈ A} on X is separating,
we have x∗ ∈ Tx∗.

By considering T : X → X in above theorem we get the following one.

Theorem 2.13. Let T : X → X be a mapping such that for each ν ∈ A we have

dν(Tx, Ty) ≤ ψν(dν(x, y)), ∀ (x, y) ∈ E, (2.12)

where ψν ∈ Ψs2. Assume that the following conditions hold:

(i) there exist x0 ∈ X and x1 ∈ Tx0 such that (x0, x1) ∈ E;

(ii) for (x, y) ∈ E, we have (Tx, Ty) ∈ E provided 1
sdν(Tx, Ty) < dν(x, y) for each ν ∈ A, then (u, v) ∈ E;

(iii) if {xn} is a sequence in X such that (xn, xn+1) ∈ E for each n ∈ N and xn → x as n → ∞, then
(xn, x) ∈ E for each n ∈ N.

Then T has a fixed point.

3. Application

Consider the Volterra integral equation of the form:

x(t) = f(t) +

∫ t

0
K(t, s, x(s))ds, t ∈ I (3.1)

where f : I → R is a continuous function, and K : I × I ×R→ R is continuous and nondecreasing function.
Let X = (C[0,∞),R). Define the family of b2-pseudo norms by ‖x‖n = maxt∈[0,n](x(t))2, n ∈ N. By

using this family of b2-pseudonorms we get a family of b2-pseudo metrics as dn(x, y) = ‖x − y‖n. Clearly,
F = {dn : n ∈ N} defines b2-gauge structure on X, which is complete and separating. Define graph
G = (V,E) such that V = X and E = {(x, y) : x(t) ≤ y(t),∀t ≥ 0}.
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Theorem 3.1. Let X = (C[0,∞),R) and let the operator

T : X → X Tx(t) = f(t) +

∫ t

0
K(t, s, x(s))ds, t ∈ I = [0,∞),

where f : I → R is a continuous function, and K : I×I×R→ R is a continuous and nondecreasing function.
Assume that the following conditions hold:

(i) for each t, s ∈ [0, n] and x, y ∈ X with (x, y) ∈ E(G), there exists a continuous mapping p : I × I → I
such that

|K(t, s, x(s))−K(t, s, y(s))| ≤
√
p(t, s)dn(x, y) for each n ∈ N;

(ii) supt≥0
∫ t
0

√
p(t, s)ds = a < 1√

2
;

(iii) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G).

Then the integral equation (3.1) has at least one solution.

Proof. First we show that for each (x, y) ∈ E(G), the inequality (2.1) holds. For any (x, y) ∈ E(G) and
t ∈ [0, n] for each n ≥ 1, we have

(Tx(t)− Ty(t))2 ≤
(∫ t

0
|K(t, s, x(s))−K(t, s, y(s))|ds

)2
≤
(∫ t

0

√
p(t, s)dn(x, y)ds

)2
=
(∫ t

0

√
p(t, s)ds

)2
dn(x, y)

= a2dn(x, y).

Thus, we get dn(Tx, Ty) ≤ a2dn(x, y) for each (x, y) ∈ E and n ∈ N with a2 < 1/2. This implies that
(2.1) holds with an = a2, and bn = cn = en = Ln = 0 for each n ∈ N. As K is nondecreasing, for each
(x, y) ∈ E(G), we have (Tx, Ty) ∈ E(G). Therefore, by Theorem 2.10, there exists a fixed point of the
operator T , that is, integral equation (3.1) has at least one solution.
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