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Abstract

The oscillatory behavior of a class of second-order nonlinear dynamic equations with damping on an arbitrary
time scale is considered without requiring explicit sign assumptions on the derivative of the nonlinearity.
Several sufficient conditions for the oscillation of solutions are presented using the Riccati transformation
and integral averaging technique. An illustrative example is provided. c©2015 All rights reserved.
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1. Introduction

In this paper, we study the oscillation of solutions to a second-order nonlinear dynamic equation with a
damping term (

a(t)ψ(x(t))x∆(t)
)∆

+ p(t)x∆σ
(t) + q(t)f (xσ(t)) = 0, (1.1)

where t ∈ [t0,∞)T := [t0,∞) ∩ T, a, p, q ∈ Crd([t0,∞)T, (0,∞)), ψ ∈ C(R, (0,∞)), g1(t) ≤ ψ(x(t)) ≤ g2(t),
g1 and g2 are positive rd-continuous real-valued functions. Analysis of qualitative properties of (1.1) is
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important not only for the sake of further development of the oscillation theory, but for practical reasons
too. As a matter of fact, a particular case of (1.1), a second-order damped differential equation(

a(t)x′(t)
)′

+ p(t)x′(t) + q(t)f(x(t)) = 0,

has numerous applications in the study of noise, vibration, and harshness of vehicles; see, e.g., the paper by
Fu et al. [10].

By a solution of (1.1) we mean a nontrivial function x ∈ C1
rd([t0,∞)T,R) which has the property

a(ψ ◦x)x∆ ∈ C1
rd([t0,∞)T,R) and satisfies (1.1) on [t0,∞)T. Our attention is restricted to those solutions of

(1.1) that satisfy sup{|x(t)| : t ∈ [t1,∞)T} > 0 for all t1 ∈ [t0,∞)T and we tacitly assume that (1.1) possesses
such solutions. A solution of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually
negative; otherwise, it is called nonoscillatory. Equation (1.1) is termed oscillatory if all its solutions are
oscillatory.

The oscillation theory of dynamic equations on time scales has received considerable interest in the past
few years because it plays an important role in unifying the oscillation of differential equations, difference
equations, and the so-called q-difference equations, etc. Following Hilger’s landmark [12], several authors
have expounded on various aspects of the theory of time scales; see, for instance, the paper [3], the mono-
graphs [5, 6], and the references cited therein. For completeness, we recall the following concepts related to
the notion of time scales. A time scale T is an arbitrary nonempty closed subset of the real numbers R and,
since oscillation of solutions is our primary concern, we assume throughout that supT = ∞. For instance,
the real numbers and the integers are special examples of time scales. On any time scale T, we define the
forward and backward jump operators by

σ(t) := inf {s ∈ T|s > t} and ρ(t) := sup {s ∈ T|s < t},

where inf ∅ := supT and sup ∅ := inf T, ∅ denotes the empty set. A point t ∈ T is said to be left-dense if
t > inf T and ρ(t) = t, right-dense if t < supT and σ(t) = t, left-scattered if ρ(t) < t, and right-scattered
if σ(t) > t. A function f : T → R is called rd-continuous (right-dense continuous) provided that f is
continuous at right-dense points in T and its left-sided limits exist (finite) at left-dense points in T. The
set of all such rd-continuous functions is denoted by Crd(T,R). The graininess function µ for a time scale
T is defined by µ(t) := σ(t) − t, and for any function f : T → R the notation fσ(t) denotes f(σ(t)). We
say that a function p : T→ R is regressive provided 1 + µ(t)p(t) 6= 0 for all t ∈ T. The set of all regressive
and rd-continuous functions f : T → R will be denoted in this paper by R(T,R). If p ∈ R(T,R), then the
exponential function is defined by

ep(t, s) := exp

(∫ t

s
ξµ(τ)(p(τ))∆τ

)
for s, t ∈ T,

where the cylinder transformation ξh(z) is defined by

ξh(z) :=

{
Log(1+zh)

h , if h 6= 0,

z, if h = 0,

where Log is the principal logarithm function. It can be seen immediately from the latter formula that the
exponential function never vanishes; however, in contrast to the case T = R, the exponential function could
possibly attain negative values. As an example, consider the problem y∆ = −2y, y(0) = 1 for T = Z. It is
well known (see [5, Theorem 2.33]) that if p ∈ R(T,R), then ep(·, t0) is a solution of the initial value problem
y∆ = p(t)y, y(t0) = 1.

In what follows, let us briefly comment on a number of closely related results which motivated our study.
In the special case when T = R, equation (1.1) reduces to a second-order differential equation(

a(t)ψ(x(t))x′(t)
)′

+ p(t)x′(t) + q(t)f(x(t)) = 0,
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which was studied by Kirane and Rogovchenko [13] and Rogovchenko and Tuncay [17] who established
several oscillation criteria. For oscillation of damped dynamic equations on time scales, we refer the reader
to the papers [1, 2, 4, 7, 8, 9, 11, 15, 16, 18, 19] and the references cited therein. Erbe and Peterson [7, 8]
investigated a second-order nonlinear damped dynamic equation

x∆∆ + p(t)x∆σ
+ q(t)(f ◦ xσ) = 0 (1.2)

under the assumptions that

f ′(u) ≥ f(u)

u
≥ λ > 0 for all |u| ≥ K > 0 (1.3)

and

f ′(u) ≥ f(u)

u
> 0 for all u 6= 0, (1.4)

respectively. Assuming
f ′(u) > 0 and uf(u) > 0 for all u 6= 0 (1.5)

instead of (1.3) and (1.4), Bohner et al. [4] improved results of [7, 8]. We conclude by mentioning that
Saker et al. [18] studied another particular case of (1.1) assuming that ψ(x(t)) = 1 and

f ∈ C(R,R), f ′(u) ≥ K for all u 6= 0 and for some K > 0. (1.6)

Note that conditions (1.3), (1.4), (1.5), and (1.6) cannot be applied to some f , for instance, by letting

f(u) = u

(
1 +

18

2 + u2

)
,

we have

f ′(u) =
(u2 − 4)(u2 − 10)

(2 + u2)2
.

It should be noted that research in this paper was strongly motivated by the contributions of Bohner et
al. [4], Erbe and Peterson [7, 8], Philos [14], and Saker et al. [18]. Our principal goal is to analyze the
oscillatory behavior of solutions to (1.1) in the cases where

f ∈ C(R,R), f(u) ≥ ku for all u 6= 0 and for some k > 0, (1.7)

and ∫ ∞
t0

∆t

a(t)g2(t)ep/(ag1)σ(t, t0)
=∞. (1.8)

As usual, all functional inequalities considered in the sequel are supposed to hold for all t large enough.

2. Oscillation results

Theorem 2.1. Let conditions (1.7) and (1.8) be satisfied. If there exists a function δ ∈ C1
rd([t0,∞)T, (0,∞))

such that

lim sup
t→∞

∫ t

t0

[
kδ(s)q(s)− a(s)g2(s)ϕ2(s)

4δ(s)

]
∆s =∞, (2.1)

where

ϕ(t) := δ∆(t)− δ(t)p(t)

(ag2)σ(t)
,

then equation (1.1) is oscillatory.
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Proof. Suppose to the contrary that x is a nonoscillatory solution of (1.1). Without loss of generality, we
may assume that there exists a t1 ∈ [t0,∞)T such that x(t) > 0 and xσ(t) > 0 for t ∈ [t1,∞)T. It follows
from (1.1) and (1.7) that, for t ∈ [t1,∞)T,(

a(t)ψ(x(t))x∆(t)
)∆

+ p(t)x∆σ
(t) = −q(t)f (xσ(t)) ≤ −kq(t)xσ(t) < 0. (2.2)

Define a function y := a(ψ ◦ x)x∆. By virtue of (2.2),

y∆(t) +
p(t)

aσ(t)ψ(xσ(t))
yσ(t) < 0.

Then, we deduce from [5, Theorem 2.33] that(
ep/(aσ(ψ◦xσ))(·, t0)y

)∆
< 0. (2.3)

Hence, ep/(aσ(ψ◦xσ))(·, t0)y is strictly decreasing, and so x∆ is of one sign. That is, there exists a t2 ∈ [t1,∞)T
such that either x∆(t) > 0 or x∆(t) < 0 for t ∈ [t2,∞)T. We consider each of two cases separately.

Case 1. Assume first that x∆(t) < 0 for t ∈ [t2,∞)T. It follows now from (2.3) that there exists a
constant M > 0 such that, for t ∈ [t2,∞)T,

a(t)g2(t)ep/(ag1)σ(t, t0)x∆(t) ≤ a(t)ψ(x(t))ep/(aσ(ψ◦xσ))(t, t0)x∆(t) ≤ −M,

which yields

x∆(t) ≤ − M

a(t)g2(t)ep/(ag1)σ(t, t0)
.

Integrating the latter inequality from t2 to t, we conclude that

x(t) ≤ x(t2)−M
∫ t

t2

∆s

a(s)g2(s)ep/(ag1)σ(s, t0)
,

which implies that limt→∞ x(t) = −∞ when using condition (1.8). This contradicts the fact that x is
positive.

Case 2. Assume now that x∆(t) > 0 for t ∈ [t2,∞)T. Inequality (2.2) implies that, for t ∈ [t2,∞)T,(
a(t)ψ(x(t))x∆(t)

)∆
< 0. (2.4)

For t ∈ [t2,∞)T, define a Riccati substitution by

ω(t) := δ(t)
a(t)ψ(x(t))x∆(t)

x(t)
. (2.5)

Then ω(t) > 0 and

ω∆(t) = (a(ψ ◦ x)x∆)σ(t)

(
δ

x

)∆

(t) + δ(t)
(a(ψ ◦ x)x∆)∆(t)

x(t)

≤ δ∆(t)
(a(ψ ◦ x)x∆)σ(t)

xσ(t)
− δ(t)p(t) (a(ψ ◦ x)x∆)σ(t)

(a(ψ ◦ x))σ(t)x(t)

− δ(t)x
∆(t)(a(ψ ◦ x)x∆)σ(t)

x(t)xσ(t)
− kδ(t)q(t)x

σ(t)

x(t)

(2.6)

due to inequality (2.2). By (2.4) and condition x∆ > 0, we have

x∆(t) ≥ (a(ψ ◦ x)x∆)σ(t)

a(t)ψ(x(t))
≥ (a(ψ ◦ x)x∆)σ(t)

a(t)g2(t)
and xσ(t) ≥ x(t).
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Substituting the latter inequalities into (2.6) and using (2.5), we obtain

ω∆(t) ≤ −kδ(t)q(t) +
1

δσ(t)

(
δ∆ − δp

(ag2)σ

)
(t)ωσ(t)− δ(t)

(δσ(t))2a(t)g2(t)
(ωσ(t))2

= −kδ(t)q(t) +
ϕ(t)

δσ(t)
ωσ(t)− δ(t)

(δσ(t))2a(t)g2(t)
(ωσ(t))2.

(2.7)

This implies, after completing the square, that

ω∆(t) ≤ −
[
kδ(t)q(t)− a(t)g2(t)ϕ2(t)

4δ(t)

]
.

Integrating the latter inequality from t2 to t, we deduce that∫ t

t2

[
kδ(s)q(s)− a(s)g2(s)ϕ2(s)

4δ(s)

]
∆s ≤ ω(t2)− ω(t) ≤ ω(t2),

which contradicts condition (2.1). Therefore, equation (1.1) is oscillatory.

Remark 2.2. On the basis of Theorem 2.1, one can obtain various oscillation criteria for (1.1), e.g., by letting
δ(t) = 1, δ(t) = t, etc. The details are left to the reader.

In the remainder of this section, we employ the integral averaging technique to replace assumption (2.1)
with a Philos-type (see [14]) condition. To this end, let D := {(t, s) : t ≥ s ≥ t0, t, s ∈ [t0,∞)T} and
D0 := {(t, s) : t > s ≥ t0, t, s ∈ [t0,∞)T}. The function H ∈ Crd(D,R) is said to belong to the class P if

H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for (t, s) ∈ D0,

and H has a nonpositive rd-continuous ∆-partial derivative H∆s(t, s) on D0 with respect to the second
variable.

Theorem 2.3. Let conditions (1.7) and (1.8) be satisfied. If there exists a function δ ∈ C1
rd([t0,∞)T, (0,∞))

such that, for some H ∈ P and for all sufficiently large t∗ ∈ [t0,∞)T,

lim sup
t→∞

1

H(t, t∗)

∫ t

t∗

[
kδ(s)q(s)H(t, s)− a(s)g2(s)(δσ(s)A(t, s))2

4δ(s)H(t, s)

]
∆s =∞, (2.8)

where

A(t, s) := H∆s(t, s) +H(t, s)
ϕ(s)

δσ(s)

and ϕ is defined as in Theorem 2.1, then equation (1.1) is oscillatory.

Proof. As above, we assume that x is an eventually positive solution of (1.1). Proceeding as in the proof
of Theorem 2.1, we arrive at the inequality (2.7). Multiplying (2.7) by H(t, s) and integrating the resulting
inequality from t2 to t, we have∫ t

t2

kδ(s)q(s)H(t, s)∆s ≤−
∫ t

t2

H(t, s)ω∆(s)∆s+

∫ t

t2

H(t, s)
ϕ(s)

δσ(s)
ωσ(s)∆s

−
∫ t

t2

H(t, s)
δ(s)

(δσ(s))2a(s)g2(s)
(ωσ(s))2∆s.

By using integration by parts, we conclude that∫ t

t2

H(t, s)ω∆(s)∆s = −H(t, t2)ω(t2)−
∫ t

t2

H∆s(t, s)ωσ(s)∆s.
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Substitution of the latter equality into (2.9) implies that

∫ t

t2

kδ(s)q(s)H(t, s)∆s ≤ H(t, t2)ω(t2) +

∫ t

t2

[
H∆s(t, s) +H(t, s)

ϕ(s)

δσ(s)

]
ωσ(s)∆s

−
∫ t

t2

H(t, s)
δ(s)

(δσ(s))2a(s)g2(s)
(ωσ(s))2∆s.

Using the method of completing the square in the latter inequality, we get∫ t

t2

[
kδ(s)q(s)H(t, s)− a(s)g2(s)(δσ(s)A(t, s))2

4δ(s)H(t, s)

]
∆s ≤ H(t, t2)ω(t2),

which yields

1

H(t, t2)

∫ t

t2

[
kδ(s)q(s)H(t, s)− a(s)g2(s)(δσ(s)A(t, s))2

4δ(s)H(t, s)

]
∆s ≤ ω(t2),

which contradicts condition (2.8). The proof is complete.

Remark 2.4. The conclusion of Theorem 2.3 remains intact if assumption (2.8) is replaced by the following
two conditions

lim sup
t→∞

1

H(t, t∗)

∫ t

t∗

δ(s)q(s)H(t, s)∆s =∞

and

lim sup
t→∞

1

H(t, t∗)

∫ t

t∗

a(s)g2(s)(δσ(s)A(t, s))2

4δ(s)H(t, s)
∆s <∞.

Remark 2.5. With an appropriate choice of the functions δ and H, one can derive from Theorem 2.3 a
number of oscillation criteria for (1.1). For instance, consider a Kamenev-type function H(t, s) defined by
H(t, s) = (t− s)n−1, (t, s) ∈ D, where n > 2 is an integer. The details are left to the reader.

3. Example

The following example illustrates possible applications of theoretical results obtained in the previous
section.

Example 3.1. For t ∈ [1,∞), consider a second-order differential equation(
1 + sin2 ln t
1
2 + sin2 ln t

1
2 + x2(t)

1 + x2(t)
x′(t)

)′
+

1

t
x′(t) +

1

t2
x(t) = 0. (3.1)

Let k = 1, g1(t) = 1/2, g2(t) = 1, and δ(t) = t. It is not difficult to verify that all assumptions of Theorem
2.1 are satisfied. Hence, equation (3.1) is oscillatory. As a matter of fact, x(t) = sin ln t is one such solution.
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