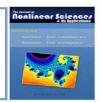
Print: ISSN 2008-1898 Online: ISSN 2008-1901

Journal of Nonlinear Science and Applications



Boundedness and asymptotic behavior of positive solutions for difference equations of exponential form

Huili Ma^{a,*}, Hui Feng^a, Jiaofeng Wang^a, Wandi Ding^b

^aDepartment of Mathematics, Northwest Normal University, Lanzhou Gansu 730070, China. ^bDepartment of Mathematics, Middle Tennessee State University, Murfreesboro TN 37130, USA.

Communicated by Yeol Je Cho

Abstract

In this paper we study the boundedness and the asymptotic behavior of the positive solutions of the difference equation

$$x_{n+1} = a + bx_n e^{-x_{n-1}},$$

where a, b are positive constants, and the initial values x_{-1}, x_0 are positive numbers. ©2015 All rights reserved.

Keywords: Difference equations, boundedness, asymptotic stability. *2010 MSC:* 39A23, 39A10.

1. Introduction

In recent years, the behavior of positive solutions of the difference equations of exponential form has been one of the main topics in the theory of difference equations [1, 2, 3, 4, 5, 6]. In particular, In [2] the authors studied the existence of the equilibrium and the boundedness of solutions of the difference equation

$$x_{n+1} = \alpha + \beta x_{n-1} e^{-x_n},$$

where α, β are positive constants and the initial values x_{-1}, x_0 are positive numbers. Later in [3], Fotiades studied the existence, uniqueness and attractivity of prime period two solution of this equation. For similar research on difference equation, we refer the reader to [1, 4, 5, 6] and the references therein.

*Corresponding author

Email addresses: mahuili@nwnu.edu.cn (Huili Ma), fh_9237@163.com (Hui Feng), 1529189732@qq.com (Jiaofeng Wang), Wandi.Ding@mtsu.edu (Wandi Ding)

In this paper, we investigate the global stability, the boundedness nature of the positive solutions of the difference equation

$$x_{n+1} = a + bx_n e^{-x_{n-1}}, (1.1)$$

where the parameters a, b are positive numbers and the initial conditions x_{-1}, x_0 are arbitrary nonnegative numbers. Equation (1.1) could be also viewed as a model in mathematical biology, in which case we consider a to be the immigration rate and b to be the population growth rate of one species x_n .

2. Preliminaries

Let I be an interval of real numbers, and let $f: I \times I \longrightarrow I$ be a continuous function. Consider the difference equation

$$x_{n+1} = f(x_n, x_{n-1}), n = 0, 1, \cdots,$$
 (2.1)

where the initial values $x_{-1}, x_0 \in I$.

The main tool we will use is the following lemma which is a minor modification of Theorem 5.2 in [4].

Lemma 2.1. Support that f satisfies the following conditions:

- (a) There exist positive number a and b with a < b such that $a \le f(x, y) \le b$ for all $x, y \in [a, b]$.
- (b) f(x,y) is increasing in $x \in [a,b]$ for each $y \in [a,b]$, and f(x,y) is decreasing in $y \in [a,b]$ for each $x \in [a,b]$.
- (c) (2.1) has no solutions of prime period two in [a, b].

Then there exists exactly one equilibrium solution \bar{x} (2.1) which lies in [a, b]. Moreover, every solution of (2.1) with initial conditions $x_{-1}, x_0 \in [a, b]$ converges to \bar{x} .

Before we give the main result of this paper, we establish the existence and uniqueness of equilibrium of (1.1).

Proposition 2.2. Suppose that $b < e^a$. Then (1.1) has a unique positive equilibrium \bar{x} .

Here we omit its proof since it is similar as in [2].

3. Boundedness and the asymptotic behavior of Solutions

The following theorem gives a sufficient condition for every positive solution of (1.1) to be bounded.

Theorem 3.1. Every positive solution of (1.1) is bounded if

$$b < e^a. aga{3.1}$$

Proof. Let $\{x_n\}_{n=-1}^{\infty}$ be an arbitrary solution of Eq.(1.1). Observe that for all $n \ge 2$,

$$x_{n+1} = a + bx_n e^{-x_{n-1}} \le a + bx_n e^{-a}.$$
(3.2)

We will now consider the non-homogeneous difference equations

$$y_{n+1} = a + by_n e^{-a}, n = 2, 3, \cdots$$
 (3.3)

From (3.3), an arbitrary solution $\{y_n\}_{n=2}^{\infty}$ of (3.3) is given by

$$y_n = r(be^{-a})^n + \frac{a}{1 - be^{-a}},$$
(3.4)

where r depends on the initial values y_2 . Thus we see that relations (3.1) and (3.4) imply that y_n is a bounded sequence. Now we will consider the solution y_n of (3.3) such that

$$y_2 = x_2.$$
 (3.5)

Thus from (3.2) and (3.5) we get

 $x_n \le y_n, \quad n \ge 2.$

Therefore it follows that x_n is bounded.

Next theorem will study the existence of invariant intervals of (1.1).

Theorem 3.2. Consider (1.1) where relations (3.1) hold. Then the following statements are true: (i) The set

$$\left[a, \frac{a}{1 - be^{-a}}\right]$$

is an invariant set for (1.1).

(ii) Let ε be an arbitrary positive number and x_n be an arbitrary solution of (1.1). We then consider the set

$$I = [a, \frac{a+\varepsilon}{1-be^{-a}}].$$
(3.6)

Then there exists an n_0 such that for all $n \ge n_0$

$$x_n \in I. \tag{3.7}$$

Proof. (i) Let x_n be a solution of (1.1) with initial values x_{-1}, x_0 such that

$$x_{-1}, x_0 \in [a, \frac{a}{1 - be^{-a}}].$$
 (3.8)

Then from (1.1) and (3.8) we get

$$a \le x_1 = a + bx_0 e^{-x_{-1}} \le a + b \frac{a}{1 - be^{-a}} e^{-a} = \frac{a}{1 - be^{-a}}$$

Then it follows by induction that

$$a \le x_n \le \frac{a}{1 - be^{-a}}, n = 1, 2, \cdots.$$

This completes the proof of statement (i).

(ii) Let x_n be an arbitrary solution of (1.1). Therefore, from Theorem 3.1 we get

$$0 < l = \liminf_{n \to \infty} x_n, \ L = \limsup_{n \to \infty} x_n < \infty.$$
(3.9)

It follows from (1.1) and (3.9) that

$$L \le a + bLe^{-l}, \ l \ge a + ble^{-L},$$

which imply that

$$a \le L \le \frac{a}{1 - be^{-a}}$$

Thus from (1.1), we see that there exists an n_0 such that (3.7) holds true. This completes the proof of the proposition.

In the following, we will study the asymptotic behavior of the positive solutions of (1.1).

Theorem 3.3. Consider (1.1) where the initial values x_{-1}, x_0 are positive constants and a, b are positive constants satisfying

$$b < e^a. \tag{3.10}$$

Then (1.1) has a unique positive equilibrium \bar{x} such that

$$\bar{x} \in [a, \frac{a}{1 - be^{-a}}]. \tag{3.11}$$

Moreover, every positive solution of (1.1) tends to the unique positive equilibrium \bar{x} as $n \to \infty$.

Proof. Following by Proposition 2.1 and Theorem 3.2, it suffices to show that any positive solution x_n converges to the unique positive equilibrium \bar{x} of (1.1). So, by lemma2.1, we need to show that (1.1) has no positive solutions with prime period two.

Let $x, y \in (a, \infty)$ be such that

$$x = a + bye^{-x}$$
 and $y = a + bxe^{-y}$. (3.12)

It suffices to show that x = y, x > a, y > a.

From (3.12) we get

$$x = \frac{y-a}{be^{-y}}, \quad y = \frac{x-a}{be^{-x}}$$

and so

$$x = \frac{(x - a - abe^{-x})e^{\frac{x - a + xbe^{-x}}{be^{-x}}}}{b^2}.$$

 Set

$$F(x) = \frac{(x - a - abe^{-x})e^{\frac{x - a + xbe^{-x}}{be^{-x}}}}{b^2} - x, \quad x \in (a, \infty).$$
(3.13)

Since (1.1) has a unique positive equilibrium \bar{x} , the following relation holds

$$\bar{x} = \frac{a}{1 - be^{-\bar{x}}}.\tag{3.14}$$

We claim that

$$F'(\bar{x}) > 0.$$
 (3.15)

From (3.13) and (3.14), we have

$$F'(\bar{x}) = \frac{e^{2\bar{x}}(\bar{x}^4 + (2-2a)\bar{x}^3 + (a^2 - 2a)\bar{x}^2 + 2a\bar{x} - a^2)}{b^2\bar{x}^2}.$$
(3.16)

To prove (3.15) is true, it suffices to prove that for $u \ge a$,

$$g(u) - h(u) > 0,$$

$$g(u) = u^{4} + 2u^{3} + a^{2}u^{2} + 2au,$$

$$h(u) = 2au^{3} + 2au^{2} + a^{2}.$$

(3.17)

From (3.17) we get

$$g'(u) = 4u^{3} + 6u^{2} + 2a^{2}u + 2a, \qquad h'(u) = 6au^{2} + 4au, g''(u) = 12u^{2} + 12u + 2a^{2}, \qquad h''(u) = 12au + 4a, g'''(u) = 24u + 12, \qquad h'''(u) = 12a, g^{(4)}(u) = 24, \qquad h^{(4)}(u) = 0.$$

$$(3.18)$$

Now from (3.10) and (3.18), we have

$$g^{(4)}(u) - h^{(4)}(u) = 24 > 0.$$

Since $u \ge a > 0$, we have

$$g'''(u) - h'''(u) > g'''(a) - h'''(a) = 12a + 12 > 0.$$
(3.19)

Using (3.19) and (3.10) we get

$$g''(u) - h''(u) > g''(a) - h''(a) = 2a^2 + 8a > 0.$$
(3.20)

Therefore from (3.20) and (3.10) it follows

$$g'(u) - h'(u) > g'(a) - h'(a) = 2a^2 + 2a > 0.$$
(3.21)

Hence from (3.21) and as $u \ge a$, we get

$$g(u) - h(u) > g(a) - h(a) = a^2 > 0,$$

which implies that (3.15) is true.

Since \bar{x} is a solution of the equation F(x) = 0 and (3.15) is satisfied there is $\epsilon > 0$ such that

$$F(\bar{x} - \epsilon) < 0 \quad and \quad F(\bar{x} + \epsilon) > 0. \tag{3.22}$$

Moreover from (3.13) we have

$$F(a) = -\frac{a+ab}{b} < 0, \quad \lim_{x \to \infty} F(x) = +\infty.$$
 (3.23)

From (3.22) and (3.23) it follows that there exists exactly one root of F(x) = 0 in $(a, +\infty)$. So, (1.1) has no positive solutions of prime period two. The proof is complete.

Theorem 3.4. Suppose that $a \ge 2$,

$$b < \frac{2}{a + \sqrt{a^2 - 4a}} e^{1+a}.$$
(3.24)

Then the equilibrium \bar{x} of (1.1) is locally asymptotically stable.

Proof. The linearized equation of (1.1) at the equilibrium \bar{x} is

$$y_{n+1} = py_n + qy_{n-1}, \quad n = 0, 1, \cdots,$$
 (3.25)

where

$$p = be^{-\bar{x}} = \frac{\bar{x} - a}{x} > 0, \quad q = -b\bar{x}e^{-\bar{x}} = a - \bar{x} < 0.$$
(3.26)

From [2], a necessary and sufficient condition for absolute value of both eigenvalues of (3.25) less than one is

$$|p| < 1 - q < 2. \tag{3.27}$$

that is, by direct computation,

$$b < \frac{2}{a + \sqrt{a^2 - 4a}} e^{1+a},\tag{3.28}$$

which imply \bar{x} is locally asymptotically stable. The proof is complete.

Remark 3.5. If $a \ge 2$, $b > \frac{2}{a + \sqrt{a^2 - 4a}}e^{1+a}$, the equilibrium \bar{x} is unstable.

Theorem 3.6. If $a \geq 2$,

$$b < \min\{e^a, \frac{2}{a + \sqrt{a^2 - 4a}}e^{1+a}\},$$

the equilibrium \bar{x} of (1.1) is globally asymptotically stable.

Proof. It follows immediately from Theorem 3.3 and Theorem 3.4.

Example 3.7. See Figure 1, (a) and (b) show the stability of equilibrium of (1.1) and (c) shows the unstable case whenever (3.24) is not satisfied.

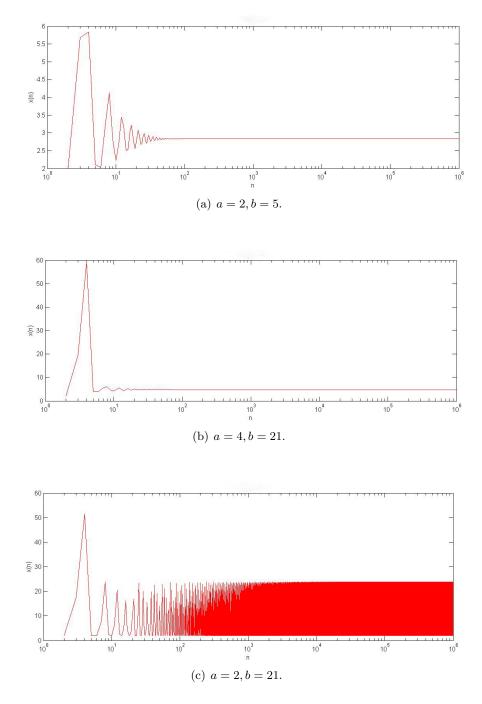


Figure 1

898

Acknowledgements

This paper was funded by the National Natural Science Foundation of China (61363058), the Scientific Research Fund for Colleges and Universities of Gansu Province (2013B-007,2013A-016), Natural Science Foundation of Gansu Province (145RJZA232,145RJYA259) and Promotion Funds for Young Teachers in Northwest Normal University (NWNU-LKQN-12-14).

References

- [1] R. Devault, W. Kosmala, G. Ladas, S. W. Schultz, Global Behavior of $y_{n+1} = \frac{p+y_{n-k}}{qy_n+y_{n-k}}$, Nonlinear Anal., 47 (2001), 4743–4751.1
- [2] H. El-Metwally, E. A. Grove, G. Ladas, R. Levins, M. Radin, On the difference equation $x_{n+1} = \alpha + \beta x_{n-1} e^{-x_n}$, Nonlinear Anal., 47 (2001), 4623–4634.1, 2, 3
- [3] N. Fotiades, G. Papaschinopoulos, Existence, uniqueness and attractivity of prime period two solution for a difference equation of exponential form, Math. Comput. Model., 218 (2012), 11648–11653.1
- [4] M. R. S. Kulenovic, G. Ladas, W. S. Sizer, On the Recursive Sequence $x_{n+1} = \frac{\alpha x_n + \beta x_{n-1}}{\gamma x_n + \delta x_{n-1}}$, Math. Sci. Res. Hot-Line, **2** (1998), 1–16.1, 2
- [5] G. Papaschinopoulos, M. Radin, C. J. Schinas, On the system of two difference equations of exponetial form: $x_{n+1} = a + bx_{n-1}e^{-y_n}$; $y_{n+1} = c + dy_{n-1}e^{-x_n}$, Math. Comput. Model., 54 (2011), 2969–2977.1
- [6] G. Stefanidou, G. Papaschinopoulos, C. J. Schinas, On a system of two exponential type difference equations, Comm. Appl. Nonlinear Anal., 17 (2010), 1–13.1