Common fixed point theorems for non-compatible self-maps in b-metric spaces

Zhongzhi Yang ${ }^{\text {a }}$, Hassan Sadati ${ }^{\text {b }}$, Shaban Sedghi ${ }^{\text {b,* }}$, Nabi Shobe ${ }^{\text {c }}$
${ }^{a}$ Accounting School, Zhejiang University of Finance and Economics, Hangzhou, China
${ }^{b}$ Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr , Iran
${ }^{\text {c Department of Mathematics, Babol Branch, Islamic Azad University, Babol, Iran }}$

Abstract

By using R-weak commutativity of type ($A g$) and non-compatible conditions of self-mapping pairs in b-metric space, without the conditions for the completeness of space and the continuity of mappings, we establish some new common fixed point theorems for two self-mappings. Our results differ from other already known results. An example is provided to support our new result. © 2015 All rights reserved.

Keywords: $\quad b$-metric space, common fixed point theorem, R-weakly commuting mappings of type ($A g$), non-compatible mapping pairs.
2010 MSC: 47H10, 54H25.

1. Introduction and Preliminaries

Czerwik in [10] introduced the concept of b-metric spaces. Since then, several papers deal with fixed point theory for single-valued and multivalued operators in b-metric spaces (see also [2, 4, 5, 6, 7, 8, 9, 10, [11, 14, 16, 19, 21, 24]). Pacurar [21] proved results on sequences of almost contractions and fixed points in b-metric spaces. Recently, Hussain and Shah [14] obtained results on KKM mappings in cone b-metric spaces. Khamsi ([16]) also showed that each cone metric space has a b-metric structure.

The aim of this paper is to present some common fixed point results for two mappings under generalized contractive condition in b-metric space, where the b-metric function is not necessarily continuous. Because many of the authors in their works have used the b-metric spaces in which the b-metric functions are continuous, the techniques used in this paper can be used for many of the results in the context of b-metric

[^0]space. From this point of view the results obtained in this paper generalize and extend several earlier results obtained in a lot of papers concerning b-metric spaces.

Consistent with [10] and [24, p. 264], the following definition and results will be needed in the sequel.
Definition 1.1 ([10]). Let X be a (nonempty) set and $b \geq 1$ be a given real number. A function $d: X \times X \rightarrow R^{+}$is a b-metric iff, for all $x, y, z \in X$, the following conditions are satisfied:
(b1) $d(x, y)=0$ iff $x=y$,
(b2) $d(x, y)=d(y, x)$,
(b3) $d(x, z) \leq b[d(x, y)+d(y, z)]$.
The pair (X, d) is called a b-metric space.
It should be noted that the class of b-metric spaces is effectively larger than that of metric spaces since a b-metric is a metric when $b=1$.

We present an example which shows that a b-metric on X need not be a metric on X. (see also [24, p. 264]):

Example 1.2. Let (X, d) be a metric space, and $\rho(x, y)=(d(x, y))^{p}$, where $p>1$ is a real number. We show that ρ is a $b-$ metric with $b=2^{p-1}$.

Obviously conditions (b1) and (b2) of Definition 1.1 are satisfied.
If $1<p<\infty$, then the convexity of the function $f(x)=x^{p}(x>0)$ implies

$$
\left(\frac{a+c}{2}\right)^{p} \leq \frac{1}{2}\left(a^{p}+c^{p}\right)
$$

and hence, $(a+c)^{p} \leq 2^{p-1}\left(a^{p}+c^{p}\right)$ holds.
Thus for each $x, y, z \in X$ we obtain

$$
\begin{aligned}
\rho(x, y)=(d(x, y))^{p} & \leq(d(x, z)+d(z, y))^{p} \\
& \leq 2^{p-1}\left((d(x, z))^{p}+(d(z, y))^{p}\right)=2^{p-1}(\rho(x, z)+\rho(z, y))
\end{aligned}
$$

So condition (b3) of Definition 1.1 holds and ρ is a b-metric.
It should be noted that in the preceding example, if (X, d) is a metric space, then (X, ρ) is not necessarily a metric space.

For example, let $X=\mathbb{R}$ be the set of real numbers and $d(x, y)=|x-y|$ be the usual Euclidean metric, then $\rho(x, y)=(x-y)^{2}$ is a b-metric on \mathbb{R} with $b=2$, but is not a metric on \mathbb{R}, because the triangle inequality does not hold.

Before stating and proving our results, we present some definitions and a proposition in $b-$ metric space. We recall first the notions of convergence, closedness and completeness in a b-metric space.

Definition $1.3([7])$. Let (X, d) be a b-metric space. Then a sequence $\left\{x_{n}\right\}$ in X is called:
(a) convergent if and only if there exists $x \in X$ such that $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow+\infty$. In this case, we write $\lim _{n \rightarrow \infty} x_{n}=x$.
(b) Cauchy if and only if $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow+\infty$.

Proposition 1.4 (see remark 2.1 in [7]). In a b-metric space (X, d) the following assertions hold:
(i) a convergent sequence has a unique limit,
(ii) each convergent sequence is Cauchy,
(iii) in general, a b-metric is not continuous.

Definition 1.5 ($7 \mathbf{7}$). The b-metric space (X, d) is complete if every Cauchy sequence in X converges.
It should be noted that, in general a b-metric function $d(x, y)$ for $b>1$ is not jointly continuous in all two of its variables. Now we present an example of a b-metric which is not continuous.

Example 1.6 (see example 3 in [14]). Let $X=\mathbb{N} \cup\{\infty\}$ and let $D: X \times X \rightarrow \mathbb{R}$ be defined by

$$
D(m, n)=\left\{\begin{array}{cc}
0, & \text { if } m=n, \\
\left|\frac{1}{m}-\frac{1}{n}\right|, & \text { if } m, n \text { are even or } m n=\infty, \\
5, & \text { if } m \text { and } n \text { are odd and } m \neq n, \\
2, & \text { otherwise } .
\end{array}\right.
$$

Then it is easy to see that for all $m, n, p \in X$, we have

$$
D(m, p) \leq \frac{5}{2}(D(m, n)+D(n, p)) .
$$

Thus, (X, D) is b-metric space with $b=\frac{5}{2}$. Let $x_{n}=2 n$ for each $n \in \mathbb{N}$. Then

$$
D(2 n, \infty)=\frac{1}{2 n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

that is, $x_{n} \rightarrow \infty$, but $D\left(x_{2 n}, 1\right)=2 \neq D(\infty, 1)$ as $n \rightarrow \infty$.
Since in general a b-metric is not continuous, we need the following simple lemmas about the b-convergent sequences.

Lemma 1.7 (1). Let (X, d) be a b-metric space with $b \geq 1$, and suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are b convergent to x, y respectively, then we have

$$
\frac{1}{b^{2}} d(x, y) \leq \liminf _{n \longrightarrow \infty} d\left(x_{n}, y_{n}\right) \leq \limsup _{n \longrightarrow \infty} d\left(x_{n}, y_{n}\right) \leq b^{2} d(x, y)
$$

In particular, if $x=y$, then we have $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$. Moreover for each $z \in X$ we have

$$
\frac{1}{b} d(x, z) \leq \liminf _{n \longrightarrow \infty} d\left(x_{n}, z\right) \leq \limsup _{n \longrightarrow \infty} d\left(x_{n}, z\right) \leq b d(x, z),
$$

Proof. Using the triangle inequality in a b-metric space it is easy to see that

$$
d(x, y) \leq b d\left(x, x_{n}\right)+b^{2} d\left(x_{n}, y_{n}\right)+b^{2} d\left(y_{n}, y\right),
$$

and

$$
d\left(x_{n}, y_{n}\right) \leq b d\left(x_{n}, x\right)+b^{2} d(x, y)+b^{2} d\left(y, y_{n}\right) .
$$

Taking the lower limit as $n \rightarrow \infty$ in the first inequality and the upper limit as $n \rightarrow \infty$ in the second inequality we obtain the first desired result. Similarly, again using the triangle inequality we have:

$$
d(x, z) \leq b d\left(x, x_{n}\right)+b d\left(x_{n}, z\right),
$$

and

$$
d\left(x_{n}, z\right) \leq b d\left(x_{n}, x\right)+b d(x, z) .
$$

Taking the lower limit as $n \rightarrow \infty$ in the first inequality and the upper limit as $n \rightarrow \infty$ in the second inequality we obtain the second desired result.

In 2010, Vats et al. [26] introduced the concept of weakly compatible. Also, in 2010, Manro et al. [17] introduced the concepts of weakly commuting, R-weakly commuting mappings, and R-weakly commuting mappings of type $(P),\left(A_{f}\right)$, and $\left(A_{g}\right)$ in G-metric space.

We will introduce these concepts in b-metric space.

Definition 1.8. The self-mappings f and g of a b-metric space (X, d) are said to be compatible if $\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=z$, for some $z \in X$.

Definition 1.9. A pair of self-mappings (f, g) of a b-metric space (X, d) are said to be
(a) R-weakly commuting mappings of type $\left(A_{f}\right)$ if there exists some positive real number R such that $d(f g x, g g x) \leq R d(f x, g x), \quad$ for all x in X.
(b) R-weakly commuting mappings of type $\left(A_{g}\right)$ if there exists some positive real number R such that $d(g f x, f f x) \leq R d(g x, f x)$, for all x in X.

Definition 1.10. The self-mapping f of a b-metric space (X, d) is said to be b-continuous at $x \in X$ if and only if it is b-sequentially continuous at x, that is, whenever $\left\{x_{n}\right\}$ is b-convergent to $x,\left\{f\left(x_{n}\right)\right\}$ is b-convergent to $f(x)$.

Example 1.11. Let $d(x, y)=(x-y)^{2}, f x=1$ and $g x= \begin{cases}1, & x \in \mathbb{Q} \\ -1, & \text { otherwise } .\end{cases}$
Thus for each $x, y \in \mathbb{R}$ it is easy to see that the pair of self-mappings (f, g) of a b-metric space are R-weakly commuting mappings of type $\left(A_{f}\right)$ and $\left(A_{g}\right)$.

In this section, we recall some definitions of partial metric space and some of their properties. See [3, 13, 18, 20, 22, 25] for details.

A partial metric on a nonempty set X is a function $p: X \times X \rightarrow \mathbb{R}^{+}$such that for all $x, y, z \in X$:
$\left(\mathrm{p}_{1}\right) x=y \Longleftrightarrow p(x, x)=p(x, y)=p(y, y)$,
$\left(\mathrm{p}_{2}\right) p(x, x) \leq p(x, y)$,
$\left(\mathrm{p}_{3}\right) p(x, y)=p(y, x)$,
$\left(\mathrm{p}_{4}\right) p(x, y) \leq p(x, z)+p(z, y)-p(z, z)$.
A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X. It is clear that, if $p(x, y)=0$, then from $\left(\mathrm{p}_{1}\right)$ and $\left(\mathrm{p}_{2}\right) x=y$, but if $x=y, p(x, y)$ may not be 0 . A basic example of a partial metric space is the pair $\left(\mathbb{R}^{+}, p\right)$, where $p(x, y)=\max \{x, y\}$ for all $x, y \in \mathbb{R}^{+}$. Other examples of the partial metric spaces which are interesting from a computational point of view may be found in [12], [18.

Lemma 1.12. Let (X, d) and (X, p) be a metric space and partial metric space respectively. Then
(i) The function $\rho: X \times X \longrightarrow \mathbb{R}^{+}$defined by $\rho(x, y)=d(x, y)+p(x, y)$, is a partial metric.
(ii) Let $\rho: X \times X \longrightarrow \mathbb{R}^{+}$defined by $\rho(x, y)=d(x, y)+\max \{\omega(x), \omega(y)\}$, then ρ is a partial metric on X, where $\omega: X \longrightarrow \mathbb{R}^{+}$is an arbitrary function.
(iii) Let $\rho: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ defined by $\rho(x, y)=\max \left\{2^{x}, 2^{y}\right\}$, then ρ is a partial metric on \mathbb{R}.
(iv) Let $\rho: X \times X \longrightarrow \mathbb{R}^{+}$defined by $\rho(x, y)=d(x, y)+a$, then ρ is a partial metric on X, where $a \geq 0$. Moreover, $\rho(x, x)=\rho(y, y)$ for all $x, y \in X$.

Each partial metric p on X generates a T_{0} topology τ_{p} on X which has, as a base, the family of open p-balls $\left\{B_{p}(x, \varepsilon): x \in X, \varepsilon>0\right\}$, where $B_{p}(x, \varepsilon)=\{y \in X: p(x, y)<p(x, x)+\varepsilon\}$ for all $x \in X$ and $\varepsilon>0$.

Let (X, p) be a partial metric space. Then:
A sequence $\left\{x_{n}\right\}$ in a partial metric space (X, p) converges to a point $x \in X$ if and only if $p(x, x)=\lim _{n \rightarrow \infty} p\left(x, x_{n}\right)$.

A sequence $\left\{x_{n}\right\}$ in a partial metric space (X, p) is called a Cauchy sequence if there exists (and is finite) $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$.

A partial metric space (X, p) is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges, with respect to τ_{p}, to a point $x \in X$ such that $p(x, x)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$.

Suppose that $\left\{x_{n}\right\}$ is a sequence in the partial metric space (X, p), then we define $L\left(x_{n}\right)=\left\{x \mid x_{n} \longrightarrow x\right\}$.
The following example shows that every convergent sequence $\left\{x_{n}\right\}$ in a partial metric space (X, p) may not be a Cauchy sequence. In particular, it shows that the limit is not unique.
Example 1.13. Let $X=[0, \infty)$ and $p(x, y)=\max \{x, y\}$. Let

$$
x_{n}=\left\{\begin{array}{cc}
0, & n=2 k \\
1, & n=2 k+1
\end{array}\right.
$$

Then clearly it is convergent sequence and for every $x \geq 1$ we have $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=p(x, x)$, hence $L\left(x_{n}\right)=[1, \infty)$. But $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$ does not exist, that is it is not a Cauchy sequence.

The following Lemma shows that under certain conditions the limit is unique.
Lemma $1.14\left([23)\right.$. Let $\left\{x_{n}\right\}$ be a convergent sequence in partial metric space $(X, p), x_{n} \longrightarrow x$ and $x_{n} \longrightarrow y$. If

$$
\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n}\right)=p(x, x)=p(y, y)
$$

then $x=y$.
Lemma $1.15\left([23,[15])\right.$. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences in partial metric space (X, p) such that

$$
\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n}\right)=p(x, x)
$$

and

$$
\lim _{n \rightarrow \infty} p\left(y_{n}, y\right)=\lim _{n \rightarrow \infty} p\left(y_{n}, y_{n}\right)=p(y, y)
$$

then $\lim _{n \rightarrow \infty} p\left(x_{n}, y_{n}\right)=p(x, y)$. In particular, $\lim _{n \rightarrow \infty} p\left(x_{n}, z\right)=p(x, z)$, for every $z \in X$.
Lemma 1.16. If p is a partial metric on X, then the functions $p^{s}, p^{m}: X \times X \rightarrow \mathbb{R}^{+}$given by

$$
p^{s}(x, y)=2 p(x, y)-p(x, x)-p(y, y)
$$

and

$$
p^{m}(x, y)=\max \{p(x, y)-p(x, x), p(x, y)-p(y, y)\}
$$

for every $x, y \in X$, are equivalent metrics on X.
Lemma 1.17 ([18], [20]). Let (X, p) be a partial metric space.
(a) $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space $\left(X, p^{s}\right)$.
(b) A partial metric space (X, p) is complete if and only if the metric space $\left(X, p^{s}\right)$ is complete. Furthermore, $\lim _{n \rightarrow \infty} p^{s}\left(x_{n}, x\right)=0$ if and only if

$$
p(x, x)=\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)
$$

Definition 1.18. The self-mappings f and g of a partial metric space (X, p) are said to be compatible if $\lim _{n \rightarrow \infty} p\left(f g x_{n}, g f x_{n}\right)=p(u, u)$ for some $u \in X$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} f x_{n}=$ $\lim _{n \rightarrow \infty} g x_{n}=z$, for some $z \in X$.

Definition 1.19. A pair of self-mappings (f, g) of a partial metric space (X, p) are said to be
(a) R-weakly commuting mappings of type $\left(A_{g}\right)$ if there exists some positive real number R such that $p(g f x, f f x) \leq R p(g x, f x), \quad$ for all x in X.
(b) weakly commuting mappings of type $\left(A_{g}\right)$ if $p(g f x, f f x) \leq p(g x, f x)$, for all x in X.

2. Main results

The following is the main result of this section.
Theorem 2.1. Let (X, d) be a b-metric space and (f, g) be a pair of non-compatible selfmappings with $\overline{f X} \subseteq g X$ (here $\overline{f X}$ denotes the closure of $f X$). Assume the following conditions are satisfied

$$
\begin{equation*}
d(f x, f y) \leq \frac{k}{b^{2}} \max \{d(g x, g y), d(f x, g x), d(f y, g y)\} \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$ and $0<k<1$. If (f, g) are a pair of R-weakly commuting mappings of type $\left(A_{g}\right)$, then f and g have a unique common fixed point (say z) and both f and g are not b-continuous at z.

Proof. Since f and g are non-compatible mappings, there exists a sequence $\left\{x_{n}\right\} \subset X$, such that

$$
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=z, \quad z \in X
$$

but either $\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)$ or $\lim _{n \rightarrow \infty} d\left(g f x_{n}, f g x_{n}\right)$ does not exist or exists and is different from 0 . Since $z \in \overline{f X} \subset g X$, there must exist a $u \in X$ satisfying $z=g u$. We can assert that $f u=g u$. From condition (2.1) and Lemma 1.7, we get

$$
\begin{aligned}
\frac{1}{b} d(f u, g u) & \leq \limsup _{n \longrightarrow \infty} d\left(f u, f x_{n}\right) \\
& \leq \limsup _{n \longrightarrow \infty} \frac{k}{b^{2}} \max \left\{d\left(g u, g x_{n}\right), d\left(f u, g x_{n}\right), d\left(f x_{n}, g u\right)\right\} \\
& \leq \frac{k}{b} \max \{d(g u, g u), d(f u, g u), d(g u, g u)\} \\
& =\frac{k}{b} d(f u, g u)
\end{aligned}
$$

That is, $d(f u, g u) \leq k d(f u, g u)$, hence we get $f u=g u$. Since (f, g) are a pair of R-weakly commuting mappings of type $\left(A_{g}\right)$, we have $d(g f u, f f u) \leq R d(g u, f u)=0$. It means $f f u=g f u$. Next, we prove $f f u=f u$. From condition (2.1), $f u=g u$ and $f f u=g f u$, we have

$$
\begin{aligned}
d(f u, f f u) & \leq \frac{k}{b^{2}} \max \{d(g u, g f u), d(f u, g f u), d(g u, f f u)\} \\
& =\frac{k}{b^{2}} d(f u, f f u) \\
& \leq k d(f u, f f u)
\end{aligned}
$$

Hence, we have $f u=f f u$, which implies that $f u=f f u=g f u$, and so $z=f u$ is a common fixed point of f and g. Next we prove that the common fixed point z is unique. Actually, suppose w is also a common fixed point of f and g, then using the condition (2.1), we have

$$
\begin{aligned}
d(z, w) & =d(f z, f w) \\
& \leq \frac{k}{b^{2}} \max \{d(g z, g w), d(f z, g w), d(f w, g z)\} \\
& =\frac{k}{b^{2}} d(z, w) \\
& \leq k d(z, w)
\end{aligned}
$$

which implies that $z=w$, so uniqueness is proved. Now, we prove that f and g are not b-continuous at z. In fact, if f is b-continuous at z, we consider the sequence $\left\{x_{n}\right\}$; then we have $\lim _{n \rightarrow \infty} f f x_{n}=f z=z$, $\lim _{n \rightarrow \infty} f g x_{n}=f z=z$. Since f and g are R-weakly commuting mappings of type Lemma 1.7 we have

$$
\begin{aligned}
\frac{1}{b^{2}} d\left(\lim _{n \rightarrow \infty} g f x_{n}, z\right) & \leq \limsup _{n \longrightarrow \infty} d\left(g f x_{n}, f f x_{n}\right) \\
& \leq \limsup _{n \longrightarrow \infty} R d\left(g x_{n}, f x_{n}\right) \\
& \leq R b^{2} d(z, z)=0
\end{aligned}
$$

it follows that $\lim _{n \rightarrow \infty} g f x_{n}=z$. Hence, by Lemma 1.7 we can get

$$
\limsup _{n \longrightarrow \infty} d\left(f g x_{n}, g f x_{n}\right) \leq b^{2} d(z, z)=0
$$

therefore,

$$
\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0
$$

This contradicts with f and g being non-compatible, so f is not b-continuous at z. If g is b-continuous at z, then we have

$$
\lim _{n \rightarrow \infty} g f x_{n}=g z=z, \quad \lim _{n \rightarrow \infty} g g x_{n}=g z=z
$$

Since f and g are R-weakly commuting mappings of type $\left(A_{g}\right)$, we get

$$
d\left(g f x_{n}, f f x_{n}\right) \leq R d\left(g x_{n}, f x_{n}\right)
$$

so by Lemma 1.7 we have

$$
\begin{aligned}
\frac{1}{b^{2}} d\left(z, \lim _{n \rightarrow \infty} f f x_{n}\right) & \leq \limsup _{n \longrightarrow \infty} d\left(g f x_{n}, f f x_{n}\right) \\
& \leq \limsup _{n \longrightarrow \infty} R d\left(g x_{n}, f x_{n}\right) \\
& \leq R b^{2} d(z, z)=0
\end{aligned}
$$

and it follows that

$$
\lim _{n \rightarrow \infty} f f x_{n}=z=f z
$$

This contradicts with f being not b-continuous at z, which implies that g is not b-continuous at z. This completes the proof.

Corollary 2.2. Let (X, d) be a metric space and (f, g) be a pair of non-compatible selfmappings with $\overline{f X} \subseteq g X$ (here $\overline{f X}$ denotes the closure of $f X$). Assume the following conditions are satisfied

$$
\begin{equation*}
d(f x, f y) \leq k \max \{d(g x, g y), d(f x, g x), d(f y, g y)\} \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$ and $0<k<1$. If (f, g) are a pair of R-weakly commuting mappings of type $\left(A_{g}\right)$, then f and g have a unique common fixed point (say z) and both f and g are not continuous at z.

Proof. It is enough to set $b=1$ in Theorem 2.1.
Corollary 2.3. Let (X, p) be a partial metric space and (f, g) be a pair of non-compatible selfmappings with $\overline{f X} \subseteq g X$ (here $\overline{f X}$ denotes the closure of $f X$). Assume the following conditions are satisfied

$$
\begin{equation*}
p(f x, f y) \leq k \max \{p(g x, g y), p(f x, g x), p(f y, g y)\} \tag{2.3}
\end{equation*}
$$

for all $x, y \in X$ and $0<k<1$. If $p(g x, g x)=p(f y, f y)$ for all $x, y \in X$ and (f, g) are a pair of weakly commuting mappings of type $\left(A_{g}\right)$, then f and g have a unique common fixed point (say z) and both f and g are not continuous at z.

Proof. From condition (2.3) we have

$$
2 p(f x, f y) \leq k \max \{2 p(g x, g y), 2 p(f x, g x), 2 p(f y, g y)\}
$$

hence

$$
\begin{aligned}
& 2 p(f x, f y)-p(f x, f x)-p(f y, f y)+p(f x, f x)+p(f y, f y) \\
& \quad \leq k \max \left\{\begin{array}{c}
2 p(g x, g y)-p(g x, g x)-p(g y, g y)+p(g x, g x)+p(g y, g y) \\
2 p(f x, g x)-p(f x, f x)-p(g x, g x)+p(f x, f x)+p(g x, g x) \\
2 p(f y, g y)-p(f y, f y)-p(g y, g y)+p(f y, f y)+p(g y, g y)
\end{array}\right\}
\end{aligned}
$$

Therefore,

$$
p^{s}(f x, f y)+p(f x, f x)+p(f y, f y) \leq k \max \left\{\begin{array}{c}
p^{s}(g x, g y)+p(g x, g x)+p(g y, g y), \\
p^{s}(f x, f y)+p(f x, f x)+p(g x, g x), \\
p^{s}(f y, g y)+p(f y, f y)+p(g y, g y)
\end{array}\right\} .
$$

Let

$$
\max \left\{\begin{array}{c}
p^{s}(g x, g y)+p(g x, g x)+p(g y, g y) \\
p^{s}(f x, f y)+p(f x, f x)+p(g x, g x) \\
p^{s}(f y, g y)+p(f y, f y)+p(g y, g y)
\end{array}\right\}=p^{s}(g x, g y)+p(g x, g x)+p(g y, g y)
$$

In this case we have

$$
p^{s}(f x, f y)+p(f x, f x)+p(f y, f y) \leq k p^{s}(g x, g y)+k p(g x, g x)+k p(g y, g y)
$$

Since, $p(f x, f x)=p(g y, g y)$ and $p(f y, f y)=p(g x, g x)$ it follows that

$$
p^{s}(f x, f y) \leq k p^{s}(g x, g y)+p(g x, g x)(k-1)+p(g y, g y)(k-1) \leq k p^{s}(g x, g y)
$$

Since,

$$
\begin{aligned}
k p(g x, g x)+k p(g y, g y) & -p(f x, f x)-p(f y, f y) \\
& =k p(g x, g x)+k p(g y, g y)-p(g y, g y)-p(g x, g x) \\
& =p(g x, g x)(k-1)+p(g y, g y)(k-1) \leq 0
\end{aligned}
$$

Hence we have

$$
p^{s}(f x, f y) \leq k \max \left\{p^{s}(g x, g y), p^{s}(f x, g x), p^{s}(f y, g y)\right\}
$$

Moreover, since (f, g) are a pair of weakly commuting mappings of type $\left(A_{g}\right)$ in partial metric space (X, p), we have $p(g f x, f f x) \leq p(g x, f x)$. Hence $2 p(g f x, f f x) \leq 2 p(g x, f x)$, therefore

$$
p^{s}(g f x, f f x)+p(g f x, g f x)+p(f f x, f f x) \leq p^{s}(g x, f x)+p(g x, g x)+p(f x, f x)
$$

Since, $p(g f x, g f x)=p(g x, g x)$ and $p(f f x, f f x)=p(f x, f x)$ it follows that

$$
p^{s}(g f x, f f x) \leq p^{s}(g x, f x)
$$

That is (f, g) are a pair of R-weakly commuting mappings of type $\left(A_{g}\right)$ in metric space $\left(X, p^{s}\right)$ for $R=1$. Therefore, all conditions of Corollary 2.2 are satisfied, hence f and g have a unique common fixed point (say z) and both f and g are not continuous at z.

Next, we give an example to support Theorem 2.1.

Example 2.4. Let $X=[2,20]$ and let d be metric on $X \times X \longrightarrow(0,+\infty)$ defined as $d(x, y)=(x-y)^{2}$. We define mappings f and g on X by

$$
f x=\left\{\begin{array}{ll}
2, & x=2 \text { or } x \in(5,20] \\
6, & x \in(2,5],
\end{array} \quad \text { and } g x= \begin{cases}2, & x=2 \\
18, & x \in(2,5] \\
\frac{x+1}{3}, & x \in(5,20]\end{cases}\right.
$$

Clearly, from the above functions we know that $\overline{f(X)} \subseteq g(X)$, and the pair (f, g) are noncompatible self-maps. To see that f and g are non-compatible, consider a sequence $\left\{x_{n}=5+\frac{1}{n}\right\}$. We have $f x_{n} \longrightarrow 2, g x_{n} \longrightarrow 2, f g x_{n} \longrightarrow 6$ and $g f x_{n} \longrightarrow 2$. Thus

$$
\lim _{n \rightarrow \infty} d\left(g f x_{n}, f g x_{n}\right)=16 \neq 0
$$

On the other hand, there exists $R=1$ such that

$$
d(g f x, f f x)= \begin{cases}(2-2)^{2}, & x=2 \\ \left(\frac{7}{3}-2\right)^{2}, & x \in(2,5] \\ (2-2)^{2}=0, & x \in(5,20]\end{cases}
$$

and

$$
d(f x, g x)= \begin{cases}(2-2)^{2}=0, & x=2 \\ (18-6)^{2}, & x \in(2,5] \\ \left(\frac{x+1}{3}-2\right)^{2}, & x \in(5,20]\end{cases}
$$

for all $x \in X$, hence it is easy to see that in every case we have

$$
d(g f x, f f x) \leq d(g x, f x)
$$

That is, the pair (f, g) are R-weakly commuting mappings of type $\left(A_{g}\right)$. Now we prove that the mappings f and g satisfy the condition 2.1 of Theorem 2.1 with $k=\frac{1}{2}$. For this, we consider the following cases:

Case (1) If $x, y \in\{2\} \cup(5,20]$, then we have

$$
\begin{aligned}
d(f x, f y) & =d(2,2)=0 \\
& \leq k \max \{d(g x, g y), d(f x, g x), d(f y, g y)\},
\end{aligned}
$$

and hence 2.1 is obviously satisfied.
Case (2) If $x, y \in(2,5]$, then we have

$$
\begin{aligned}
d(f x, f y) & =d(6,6)=0 \\
& \leq k \max \{d(g x, g y), d(f x, g x), d(f y, g y)\}
\end{aligned}
$$

for all x, y in X, and hence (2.1) is obviously satisfied.
Case (3) If $x \in\{2\} \cup(5,20]$ and $y \in(2,5]$, then we have $d(f x, f y)=d(2,6)=16$ and

$$
d(g x, g y)= \begin{cases}(2-18)^{2}, & x=2 \\ \left(\frac{x+1}{3}-18\right)^{2}, & x \in(5,20]\end{cases}
$$

Thus we obtain $[d(f x, f y) \leq k \max \{d(g x, g y), d(f x, g x), d(f y, g y)\}]$ for all x, y in X. Thus all the conditions of Theorem 2.1 are satisfied and 2 is a unique point in X such that $f 2=g 2=2$.

References

[1] A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64 (2014), 941-960.1.7
[2] M. Akkouchi, Common fixed point theorems for two selfmappings of a b-metric space under an implicit relation, Hacet. J. Math. Stat., 40 (2011), 805-810. 1
[3] I. Altun, H. Simsek, Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud., 1 (2008), 1-8.1
[4] H. Aydi, M. Bota, E. Karapinar, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 2012 (2012), 8 pages. 1
[5] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Inter. J. Mod. Math., 4 (2009), 285-301.1
[6] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Studia Univ. BabesBolyai, Math., 54 (2009), 1-14. 1
[7] M. Boriceanu, M. Bota, A. Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8 (2010), 367-377. 1 , 1.3, 1.41 .5
[8] M. Bota, A. Molnar, C. Varga, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory, 12 (2011), 21-28. 1
[9] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform, Univ. Ostraviensis, 1 (1993), 5-11.1
[10] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263-276.1,1.1
[11] S. Czerwik, K. Dlutek, S. L. Singh, Round-off stability of iteration procedures for set-valued operators in b-metric Spaces, J. Natur. Phys. Sci., 15 (2001), 1-8. 1
[12] M. H. Escardo, PCF extended with real numbers, Theoret. Comput. Sci., 162 (1996), 79-115. 1
[13] R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures, 7 (1999), 71-83. 1
[14] N. Hussain, M. H. Shah, KKM mappings in cone b- metric spaces, Comput. Math. Appl., 62 (2011), 1677-1684. $1,1.6$
[15] E. Karapinar, N. Shobkolaei, S. Sedghi, S. M. Vaezpour, A common fixed point theorem for cyclic operators on partial metric spaces, Filomat, 26 (2012), 407-414. 1.15
[16] M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123-3129. 1 .
[17] S. Manro, S. S. Bhatia, S. Kumar, Expansion mapping theorems in G-metric spaces, Int. J. Contemp. Math. Sci., 5 (2010), 2529-2535. 1
[18] S. G. Matthews, Partial metric topology, Papers on general topology and applications, Ann. New York Acad. Sci., $\mathbf{7 2 8}$ (1994), 183-197.1, 1.17
[19] M. O. Olatinwo, Some results on multi-valued weakly jungck mappings in b-metric space, Cent. Eur. J. Math., 6 (2008), 610-621.1
[20] S. Oltra, O. Valero, Banach's fixed point theorem for partial metric spaces, Rend. Istid. Math. Univ. Trieste., 36 (2005), 17-26.1,1.17
[21] M. Pacurar, Sequences of almost contractions and fixed points in b-metric spaces, An. Univ. Vest Timis. Ser. Mat. Inform., 3 (2010), 125-137. 1
[22] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., 2010 (2010), 6 pages. 1
[23] N. Shobkolaei, S. M. Vaezpour, S. Sedghi, A Common fixed point theorem on ordered partial metric spaces, J. Basic. Appl. Sci. Res., 1 (2011), 3433-3439. 1.141 .15
[24] S. L. Singh, B. Prasad, Some coincidence theorems and stability of iterative proceders, Comput. Math. Appl., 55 (2008), 2512-2520.1, 1
[25] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., 6 (2005), 229-240. 1
[26] R. K. Vats, S. Kumar, V. Sihag, Some common fixed point theorem for compatible mappings of type (\vec{A}) in complete G-metric space, Adv. Fuzzy Math., 6 (2011), 27-38. 1

[^0]: * Corresponding author

 Email addresses: zzyang_99@163.com (Zhongzhi Yang), sadati_s@yahoo.com (Hassan Sadati), sedghi_gh@yahoo.com (Shaban Sedghi), nabi_shobe@yahoo.com (Nabi Shobe)

