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Abstract

The purpose of this article is to prove strong convergence theorems for total asymptotically strict quasi-φ-
pseudo-contractions by using a hybrid projection algorithm in Banach spaces. As applications, we apply
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1. Introduction

Fixed point theory, as an important branch of nonlinear analysis theory, has been applied in the study
of nonlinear phenomena. The theory itself is a beautiful mixture of analysis, topology, and geometry. Lots
of problems arising in economics, engineering, and physics can be studied by fixed point techniques.

Constructing iterative algorithms to approximate fixed points of nonlinear mappings is always one of
the main concerns of fixed point theory. The simplest and oldest iterative algorithm is the Picard iterative
algorithm. It is known that T , where T stands for a contractive mapping, admits a unique fixed point and
the sequence generated by the Picard iterative algorithm can converge to the unique fixed point. However,
for more general nonexpansive mappings, the Picard iterative algorithm fails to converge to fixed points of
nonexpansive mappings even when they admit fixed points. The Mann iterative algorithm has been studied
for approximating fixed points of nonexpansive mappings and their extensions. However, It is known that the
Mann iterative algorithm only has weak convergence, even for nonexpansive mappings in infinite-dimensional
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Hilbert spaces; for more details, see [24, 31] and the reference therein. To obtain the strong convergence of
the Mann iterative algorithm so-called hybrid projection algorithms have been considered; for more details,
see [1, 11, 12, 15, 16, 17, 28, 29, 40, 41, 42] and the references therein.

In 2007, Marino and Xu [15] established a strong convergence theorem for fixed points of strict pseudo-
contraction based on hybrid projection algorithms in Hilbert spaces. In 2010, Zhou and Gao [42] studied a
new projection algorithm for strict quasi-φ-pseudocontractions and obtained a strong convergence theorem.
In 2011, Qin, Wang, and Cho [22] introduced a new nonlinear mapping, which was called asymptotically
strict quasi-φ-pseudocontraction, and proved a strong convergence theorem for fixed points of an asymptot-
ically strict quasi-φ-pseudocontraction in some Banach space. In 2012, Qin, Agarwal, Cho, and Kang [19]
established strong convergence theorems for common fixed points of a family of generalized asymptotically
quasi-φ-nonexpansive mappings in the framework of Banach spaces. In the same year, Qin, Wang, Kang [23]
proved strong convergence theorems for fixed points of asymptotically strict quasi-φ-pseudo-contractions, in
the intermediate, sense in a real Banach space.

In this paper, we will introduce a new nonlinear mapping, total asymptotically strict quasi-φ-pseudo-
contraction, and give a strong convergence theorem by a hybrid projection algorithm in a real Banach
space. The results presented in this paper mainly improve the known corresponding results announced in
the literature sources listed within this work.

2. Preliminaries

Throughout this paper, we assume that E is a real Banach space with the dual E∗, C is a nonempty
closed convex subset of E, and J : E → 2E

∗
is the normalized duality mapping defined by

J(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2}, x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing of elements between E and E∗. We note that in a Hilbert
space H, J is the identity operator. The following facts are well known: (1) if E∗ is strictly convex then J
is single valued; (2) if E∗ is uniformly smooth then J is uniformly continuous on bounded subsets of E; (3)
if E∗ is a reflexive and smooth Banach space, then J is single valued and demicontinuous.

A Banach space E is said to be strictly convex if ‖x+y2 ‖ < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and
x 6= y. It is said to be uniformly convex if limn→∞ ‖xn − yn‖ = 0 for any two sequences {xn} and {yn} in
E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞ ‖xn+yn2 ‖ = 1. Let UE = {x ∈ E : ‖x‖ = 1} be the unit sphere of
E. Then the Banach space E is said to be smooth provided

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

exists for all x, y ∈ UE . It is also said to be uniformly smooth if the limit (2.1) is attained uniformly for all
x, y ∈ UE . It is well known that if E is uniformly smooth, then J is uniformly norm-to-norm continuous on
each bounded subset of E. It is also well known that E is uniformly smooth if and only if E∗ is uniformly
convex.

Let E be a smooth Banach space. The Lyapunov functional φ : E × E → R defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀ x, y ∈ E. (2.2)

It is obvious from the definition of the function φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2, ∀ x, y ∈ E. (2.3)

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉, ∀ x, y, z ∈ E. (2.4)
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Observe that in a Hilbert space H, (2.2) is reduced to φ(x, y) = ‖x−y‖2, for all x, y ∈ H. If E is a reflexive,
strictly convex, and smooth Banach space, then, for all x, y ∈ E, φ(x, y) = 0 if and only if x = y. It
is sufficient to show that if φ(x, y) = 0, then x = y. From (2.3), we have ‖x‖ = ‖y‖. This implies that
〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J , we see that Jx = Jy. It follows that x = y; see [10, 34]
for more details.

Let E be a reflexive, strictly convex and smooth Banach space and let C be a nonempty closed and
convex subset of E. The generalized projection [3, 4, 14] ΠC : E → C is a mapping that assigns to an
arbitrary point x ∈ E, the minimum point of the functional φ(x, y); that is, ΠCx = x̄, where x̄ is the
solution to the minimization problem

φ(x̄, x) = min
y∈C

φ(y, x).

The existence and uniqueness of the operator ΠC follow from the properties of the Lyapunov functional
φ(x, y) and the strict monotonicity of the mapping J ; see, [3, 4, 10, 14]. In Hilbert spaces, ΠC = PC , where
PC : H → C is the metric projection from a Hilbert space H onto a nonempty, closed, and convex subset C
of H.

Let T : C → C be a mapping, the set of fixed points of T is denoted by F (T ); that is, F (T ) := {x ∈ C :
Tx = x}. A point p is said to be an asymptotic fixed point of T [25] if C contains a sequence {xn} which
converges weakly to p such that limn→∞ ‖xn − Txn‖ = 0. The set of asymptotic fixed points of T will be
denoted by F̂(T ).

Next, we recall the following definitions.

(1) T is called relatively nonexpansive [7, 8, 9] if F̂ (T ) = F (T ) 6= ∅, and

φ(p, Tx) ≤ φ(p, x), ∀ x ∈ C, ∀ p ∈ F (T ).

The asymptotic behavior of a relatively nonexpansive mapping was studied in [7, 8, 9].

(2) T is said to be relatively asymptotically nonexpansive if F̂ (T ) = F (T ) 6= ∅, and

φ(p, Tnx) ≤ (1 + kn)φ(p, x), ∀ x ∈ C, ∀ p ∈ F (T ), ∀ n ≥ 1,

where {kn} ⊂ [0,∞) is a sequence such that kn → 0 as n → ∞. The class of relatively asymptotically
nonexpansive mappings was first introduced in Su and Qin [32], see also, Agarwal, Cho, and Qin [2], and
Qin et al. [21].

(3) T is said to be hemi-relatively nonexpansive if F (T ) 6= ∅, and

φ(p, Tx) ≤ φ(p, x), ∀ x ∈ C, ∀ p ∈ F (T ).

The class of hemi-relatively nonexpansive mappings was considered in Su, Wang and Xu [33], Wang, Kang
and Cho [38], Phuangphoo and Kumam [18], and Wang and Kumam [39].

(4) T is said to be asymptotically quasi-φ-nonexpansive if F (T ) 6= ∅, and there exists a sequence {kn} ⊂
[0,∞) with kn → 0 as n→∞ such that

φ(p, Tnx) ≤ (1 + kn)φ(p, x), ∀ x ∈ C, ∀ p ∈ F (T ), ∀ n ≥ 1.

The class of asymptotically quasi-φ-nonexpansive mappings was considered in Zhou, Gao, and Tan [43],
Qin, Cho, and Kang [20] and Saewan, Kumam and Kim [30].

(5) T is said to be generalized asymptotically quasi-φ-nonexpansive if F (T ) 6= ∅, and there exist two
sequences {µn} ⊂ [0,∞) with µ→ 0, and {νn} with νn → 0 as n→∞ such that

φ(p, Tnx) ≤ (1 + µn)φ(p, x) + νn, ∀ x ∈ C, ∀ p ∈ F (T ), ∀ n ≥ 1.

The class of generalized asymptotically quasi-φ-nonexpansive mappings was first considered in Qin, Agarwal,
Cho and Kang [19].
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Remark 2.1. According to the comparison with the definition above, the following facts can be obtained
easily.

(a) The class of hemi-relatively mappings and the class of asymptotically quasi-φ-nonexpansive mappings
are more general than the class of relatively nonexpansive mappings and the class of relatively asymptoti-
cally nonexpansive mappings. In fact, hemi-relatively nonexpansive mappings and asymptotically quasi-φ-
nonexpansive do not require F (T ) = F̂ (T ).

(b) The class of generalized asymptotically quasi-φ-nonexpansive mappings is more general than the
class of asymptotically quasi-φ-nonexpansive mappings.

(6) T is said to be a strict quasi-φ-pseudo-contraction if F (T ) 6= ∅, and there exists a constant k ∈ [0, 1)
such that

φ(p, Tx) ≤ φ(p, x) + kφ(x, Tx), ∀x ∈ C, ∀ p ∈ F (T ).

(7) T is said to be an asymptotically strict quasi-φ-pseudo-contraction if F (T ) 6= ∅, and there exists a
sequence {µn} ⊂ [0,∞) with µ→ 0 as n→∞ and a constant k ∈ [0, 1) such that

φ(p, Tnx) ≤ (1 + µn)φ(p, x) + kφ(x, Tnx), ∀ x ∈ C, ∀ p ∈ F (T ), ∀ n ≥ 1.

The class of asymptotically strict quasi-φ-pseudo-contractions was first considered in Qin, Wang, and Cho
[22].

(8) T is said to be an asymptotically strict quasi-φ-pseudo-contraction in the intermediate sense if
F (T ) 6= ∅, and there exists a sequence {µn} ⊂ [0,∞) with µn → 0 as n→∞ and a constant k ∈ [0, 1) such
that

lim sup
n→∞

sup
p∈F (T ),x∈C

(φ(p, Tnx)− (1 + µn)φ(p, x)− kφ(x, Tnx)) ≤ 0. (2.5)

Put
νn = max{0, sup

p∈F (T ),x∈C
(φ(p, Tnx)− (1 + µn)φ(p, x)− kφ(x, Tnx))},

which follows that νn → 0 as n→∞. Then, (2.5) is reduced to the following:

φ(p, Tnx) ≤ (1 + µn)φ(p, x) + kφ(x, Tnx) + νn, ∀ p ∈ F (T ), ∀ x ∈ C, ∀ n ≥ 1.

The class of asymptotically strict quasi-φ-pseudo-contractions in the intermediate sense was first consid-
ered in Qin, Wang, and Kang [23].

(9) The mapping T is said to be asymptotically regular on C if for any bounded subset K of C,

lim
n→∞

sup
x∈K
{‖Tn+1x− Tnx‖} = 0.

In this paper, we introduce and consider the following new nonlinear mapping: total asymptotically
strict quasi-φ-pseudo-contractions.

(10) T is said to be a total asymptotically strict quasi-φ-pseudo-contraction if F (T ) 6= ∅, and there exist
two sequences {µn} ⊂ [0,∞) and {νn} ⊂ [0,∞) with µn → 0 and νn → 0 as n→∞ and a constant κ ∈ [0, 1)
such that

φ(p, Tnx) ≤ φ(p, x) + κφ(x, Tnx) + µnϕ(φ(p, x)) + νn, ∀ x ∈ C, p ∈ F (T ), (2.6)

where ϕ : [0,∞)→ [0,∞) is a continuous and strictly increasing function with ϕ(0) = 0.

Remark 2.2. The following facts can be obtained from the above definitions.

(a) If the sequence µn ≡ 0, the class of asymptotically strict quasi-φ-pseudo-contractions is reduced to
the class of strict quasi-φ-pseudo-contractions.
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(b) If k = 0, the class of asymptotically strict quasi-φ-pseudo-contractions is reduced to the class of
asymptotically quasi-φ-nonexpansive mappings.

(c) The class of asymptotically strict quasi-φ-pseudo-contractions in the intermediate sense is a gener-
alization of the class of asymptotically strict quasi-φ-pseudo-contractions. In fact, if k = 0 and µ ≡ 0, the
class of asymptotically strict quasi-φ-pseudo-contractions in the intermediate sense is reduced to the class
of asymptotically quasi-φ-nonexpansive mappings in the intermediate sense.

(d) The class of total asymptotically strict quasi-φ-pseudo-contractions is reduced to the class of asymp-
totically strict quasi-φ-pseudo-contractions in the intermediate sense if ϕ(x) ≡ x for all x ∈ [0,∞) and

νn = max{0, sup
p∈F (T ),x∈C

(φ(p, Tnx)− (1 + µn)φ(p, x)− kφ(x, Tnx))}.

The definition of the closedness of T is needed in the process of proof.

(11) T is said to be closed if for any sequence {xn} ⊂ C with xn → x ∈ C and Txn → y ∈ C as n→∞,
then Tx = y.

Next, we give an example of the class of total asymptotically strict quasi-φ-pseudo-contractions.

Example 2.3. Let C be a unit ball in real Hilbert space l2 and let T : C → C be a mapping defined by

T : (x1, x2, x2, · · ·)→ (0, x21, a2x2, a3x3, · · ·), (x1, x2, x3, · · ·) ∈ l2,

where {ai} is a sequence in (0,1) such that
∏∞
i=2 ai = 1

2 . Then, T is a total asymptotically strict quasi-φ-
pseudo-contraction.

Proof. It is proved in Goebel and Kirk [13] that
(i) ‖Tx− Ty‖ ≤ 2‖x− y‖, ∀x, y ∈ C;
(ii) ‖Tnx− Tny‖ ≤ 2

∏∞
j=2 aj‖x− y‖, ∀ x, y ∈ C,∀ n ≥ 2.

Denote by k
1
2
1 = 2, k

1
2
n = 2

∏n
j=2 aj , n ≥ 2, then

limn→∞kn = limn→∞(2

n∏
j=2

aj)
2 = 1.

Letting µn = (kn − 1), for all n ≥ 1, ϕ(t) = t2, for all t ≥ 0, κ ∈ [0, 1) and {νn} be a nonnegative sequence
with νn → 0 as n→∞, then we have

‖Tnx− Tny‖2 ≤ ‖x− y‖2 + κ‖x− y − (Tnx− Tny)‖2 + µnϕ(‖x− y‖) + νn ∀ x, y ∈ C, n ≥ 1.

Since 0 ∈ C and 0 ∈ F (T ), this follows that F (T ) 6= ∅. From the above inequality, we have

‖p− Tny‖2 ≤ ‖p− y‖2 + κ‖y − Tny‖2 + µnϕ(‖p− y‖) + νn. ∀p ∈ F (T ), y ∈ C.

It is well-known that l2 is a real Hilbert space, then φ(x, y) = ‖x− y‖2 for all x, y ∈ l2. Therefore, we have

φ(p, Tny) ≤ φ(p, y) + κφ(y, Tny) + µnϕ(φ(p, y)) + νn. ∀p ∈ F (T ), y ∈ C.

This show that the mapping T is a total asymptotically strict quasi-φ-pseudo-contraction.

In order to prove our main results, we also need the following lemmas:

Lemma 2.4 ([14]). Let E be a uniformly convex and smooth Banach space. Let {xn} and {yn} be two
sequences in E. If φ(xn, yn)→ 0 and {xn} or {yn} is bounded, then xn − yn → 0 as n→∞.
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Lemma 2.5 ([3]). Let E be a reflexive, strictly convex, and smooth Banach space. Let C be a nonempty,
closed, and convex subset of E, and x ∈ E then

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀ y ∈ C.

Lemma 2.6 ([3]). Let C be a nonempty, closed, and convex subset of a smooth Banach space E and x ∈ E
then x0 = ΠCx if and only if

〈x0 − y, Jx− Jx0〉 ≥ 0, ∀ y ∈ C.

Lemma 2.7. Let E be a uniformly convex and smooth Banach space, let C be a nonempty, closed and convex
subset of E. Suppose T : C → C is a closed and total asymptotically strict quasi-φ-pseudo-contraction. Then,
F (T ) is closed and convex.

Proof. First, we show that F (T ) is closed. Let {pn} be a sequence in F (T ) such that pn → p as n → ∞.
We see that p ∈ F (T ). Indeed, from the definition of T , we have

φ(pn, T
np) ≤ φ(pn, p) + κφ(p, Tnp) + µnϕ(φ(pn, p)) + νn.

In addition, we have from (2.6) that

φ(pn, T
np) = φ(pn, p) + φ(p, Tnp) + 2〈pn − p, Jp− JTnp〉.

It follows that

φ(pn, p) + φ(p, Tnp) + 2〈pn − p, Jp− JTnp〉 ≤ φ(pn, p) + κφ(p, Tnp) + µnϕ(φ(pn, p)) + νn,

which implies that

φ(p, Tnp) ≤ µn
1− κ

ϕ(φ(pn, p)) +
2

1− κ
〈p− pn, Jp− JTnp〉+

νn
1− κ

.

from limn→∞ pn = p, limn→∞ µn = limn→∞ νn = 0 and the above inequality, it follows that

lim
n→∞

φ(p, Tnp) = 0.

From Lemma 2.4, we have Tnp→ p as n→∞. This implies that TTnp = Tn+1p→ p as n→∞. From the
closedness of T , we obtain that p ∈ F (T ), that is, F (T ) is closed.

Next, we show that F (T ) is convex. Let p1, p2 ∈ F (T ) and pt = tp1 + (1 − t)p2, where t ∈ (0, 1). We
see that pt = Tpt. Indeed, we have from the definition of T that

φ(p1, T
npt) ≤ φ(p1, pt) + κφ(pt, T

npt) + µnϕ(φ(p1, pt)) + νn,

φ(p2, T
npt) ≤ φ(p2, pt) + κφ(pt, T

npt) + µnϕ(φ(p2, pt)) + νn.

By virtue of (2.6), we obtain that

φ(pt, T
npt) ≤

µn
1− κ

ϕ(φ(p1, pt)) +
2

1− κ
〈pt − p1, Jpt − JTnpt〉+

νn
1− κ

, (2.7)

φ(pt, T
npt) ≤

µn
1− κ

ϕ(φ(p2, pt)) +
2

1− κ
〈pt − p2, Jpt − JTnpt〉+

νn
1− κ

. (2.8)

Multiplying t and (1− t) on both the sides of (2.7) and (2.8), respectively, yields that

φ(pt, T
npt) ≤

tµn
1− κ

ϕ(φ(p1, pt)) +
(1− t)µn

1− κ
ϕ(φ(p2, pt)) +

νn
1− κ

.

It follows that
lim
n→∞

φ(pt, T
npt) = 0.

In view of Lemma 2.4, we see that Tnpt → pt as n→∞. This implies that TTnpt = Tn+1pt → pt as n→∞.
From the closedness of T , we obtain that pt ∈ F (T ), that is, F (T ) is convex. Therefore, F (T ) is closed and
convex.
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3. Main results

Theorem 3.1. Let C be a nonempty, closed and convex subset of a uniformly convex and smooth Banach
space E. let T : C → C be a closed and total asymptotically strict quasi-φ-pseudo-contraction with two
sequences {µn} ⊂ [0,∞), {νn} ⊂ [0,∞) such that µn → 0, νn → 0 as n → ∞, and a constant κ ∈ [0, 1).
Assume that T is asymptotically regular on C and F (T ) is nonempty and bounded. Let {xn} be a sequence
generated by the following manner:

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0

Cn+1 = {u ∈ Cn : φ(xn, T
nxn) ≤ 2

1−κ〈xn − u, Jxn − JT
nxn〉+ θn},

xn+1 = ΠCn+1x0,

(3.1)

where θn = µn
Mn
1−κ + νn

1−κ , Mn = sup{ϕ(φ(p, xn)) : p ∈ F (T )}. Then the sequence {xn} converges strongly to
x̄ = ΠF (T )x0, where ΠF (T ) is the generalized projection of E onto F (T ).

Proof. The proof is split into six steps.

Step 1: Show that ΠF (T )x0 is well defined for any x0 ∈ E.

By Lemma 2.7, we know that F (T ) is a closed and convex. Therefore, in view of the assumption of
F (T ) 6= ∅, ΠF (T )x0 is well defined for any x0 ∈ E.

Step 2: Show that Cn is closed and convex for each n ≥ 1.

From the structure of Cn in (3.1), it is obvious that Cn is closed for each n ≥ 1. Therefore, we only
show that Cn is convex for each n ≥ 1. This can be proved by induction on n. For n = 1, it is obvious that
C1 = C is convex. Suppose that Cn is convex for some n ∈ N. Next, we show that Cn+1 is also convex for
the same n. Let w1, w2 ∈ Cn+1 and wt = tw1 + (1− t)w2, where t ∈ (0, 1). It follows that

φ(xn, T
nxn) ≤ 2

1− κ
〈xn − w1, Jxn − JTnxn〉+ θn (3.2)

and

φ(xn, T
nxn) ≤ 2

1− κ
〈xn − w1, Jxn − JTnxn〉+ θn, (3.3)

where w1, w2 ∈ Cn. Multiplying t and (1− t) on both the sides of (3.2) and (3.3), respectively, implies that

φ(xn, T
nxn) ≤ 2

1− κ
〈xn − wt, Jxn − JTnxn〉+ θn,

where wt ∈ Cn. It follows that wt ∈ Cn+1, that is, Cn+1 is convex for the same n. Therefore, Cn is closed
and convex for each n ≥ 1.

Step 3: Show that F (T ) ⊂ Cn for each n ≥ 1.

It is obvious that F (T ) ⊂ C = C1. Suppose that F (T ) ⊂ Cn for some n ∈ N. We see that F (T ) ⊂ Cn+1

for the same n. Indeed, For any p ∈ F (T ) ⊂ Cn, we see that

φ(p, Tnxn) ≤ φ(p, x) + κφ(xn, T
nxn) + µnϕ(φ(p, xn)) + νn. (3.4)

On the other hand, we obtain from (2.6) that

φ(p, Tnxn) = φ(p, xn) + φ(xn, T
nxn) + 2〈p− xn, Jxn − JTnxn〉. (3.5)
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Combining (3.4) with (3.5), we have

φ(xn, T
nxn) ≤ µn

1− κ
ϕ(φ(p, xn)) +

2

1− κ
〈xn − p, Jxn − JTnxn〉+

νn
1− κ

≤ µn
1− κ

Mn +
2

1− κ
〈xn − p, Jxn − JTnxn〉+

νn
1− κ

=
2

1− κ
〈xn − p, Jxn − JTnxn〉+ θn,

which implies that p ∈ Cn+1, that is, F (T ) ⊂ Cn+1 for the same n. By the mathematical induction principle,
F (T ) ⊂ Cn for each n ≥ 1.

Step 4: Show that {xn} is a Cauchy sequence.

From xn = ΠCnx0, one sees

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀ z ∈ Cn. (3.6)

Since F (T ) ⊂ Cn for all n ≥ 1, we arrive at

〈xn − w, Jx0 − Jxn〉 ≥ 0, ∀ w ∈ F (T ). (3.7)

From Lemma 2.5, one has

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(w, x0)− φ(w, xn) ≤ φ(w, x0)

for each w ∈ F (T ) and n ≥ 1. Therefore, the sequence φ(xn, x0) is bounded. On the other hand, noticing
that xn = ΠCnx0 and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, one has

φ(xn, x0) ≤ φ(xn+1, x0)

for all n ≥ 0. Therefore, {φ(xn, x0)} is nondecreasing. It follows that the limit of {φ(xn, x0)} exists. By the
construction of Cn, one has that Cm ⊂ Cn and xm = ΠCmx0 ∈ Cn for any positive integer m ≥ n. It follows
that

φ(xm, xn) = φ(xm,ΠCnx0)

≤ φ(xm, x0)− φ(ΠCnx0, x0)

= φ(xm, x0)− φ(xn, x0).

(3.8)

Letting m, n → ∞ in (3.8), one has φ(xm, xn) → 0. It follows from Lemma 2.4 that xm − xn → 0 as
m, n→∞. Hence {xn} is a Cauchy sequence. Since E is a Banach space and C is closed and convex, one
can assume that xn → x̄ ∈ C as n→∞.

Step 5: Show that x̄ ∈ F (T ).

By utilizing the construction of Cn and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, we have

φ(xn, T
nxn) ≤ 2

1 + κ
〈xn − xn+1, Jxn − JTnxn〉+ θn, (3.9)

Since limn→∞ ‖xn − xn+1‖ = 0 and limn→∞ θn = 0, we have from (3.9) that

lim
n→∞

φ(xn, T
nxn)→ 0.

In view of Lemma 2.4, we arrive at
lim
n→∞

‖xn − Tnxn‖ = 0. (3.10)
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Note that xn → x̄ as n→∞ and

‖Tnxn − x̄‖ ≤ ‖Tnxn − xn‖+ ‖xn − x̄‖.

It follows from the above inequality that
Tnxn → x̄, (3.11)

as n→∞. Observe that

‖Tn+1xn − x̄‖ ≤ ‖Tn+1xn − Tnxn‖+ ‖Tnxn − x̄‖. (3.12)

By using (3.11), (3.12) and the asymptotic regularity of T , we have

Tn+1xn → x̄,

as n→∞, that is, TTnxn → x̄. From the closedness of T , we obtain that x̄ = T x̄.

Step 6: Show that x̄ = ΠF (T )x0.

Notice from (3.7), that
〈xn − w, Jx0 − Jxn〉 ≥ 0, ∀ w ∈ F (T ).

Taking the limit in the above inequality yields

〈x̄− w, Jx0 − Jx̄〉 ≥ 0, ∀ w ∈ F (T ).

Hence, we obtain from Lemma 2.6 that x̄ = ΠF (T )x0. This completes the proof.

Based on Theorem 3.1, we have the following corollary.

Corollary 3.2. Let C be a nonempty, closed and convex subset of a uniformly convex and smooth Banach
space E. Let T : C → C be a closed and asymptotically strict quasi-φ-pseudo-contraction in the intermediate
sense with a sequence {µn} ⊂ [0,∞) such that µn → 0 as n → ∞, and a constant κ ∈ [0, 1). Assume that
T is asymptotically regular on C and F (T ) is nonempty and bounded. Let {xn} be a sequence generated by
the following manner:

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0

Cn+1 = {u ∈ Cn : φ(xn, T
nxn) ≤ 2

1−κ〈xn − u, Jxn − JT
nxn〉+ θn},

xn+1 = ΠCn+1x0,

where θn = µn
Mn
1−κ + νn

1−κ , Mn = sup{φ(p, xn) : p ∈ F (T )} and

νn = max{0, sup
p∈F (T ),x∈C

(φ(p, Tnx)− (1 + µn)φ(p, x)− κφ(x, Tnx))}.

Then the sequence {xn} converges strongly to x̄ = ΠF (T )x0, where ΠF (T ) is the generalized projection of E
onto F (T ).

Proof. Putting ϕ(x) = x for all x ∈ [0,∞) and

νn = max{0, sup
p∈F (T ),x∈C

(φ(p, Tnx)− (1 + µn)φ(p, x)− κφ(x, Tnx))},

the conclusion can be obtained from Theorem 3.1.
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Let C be a nonempty, closed, and convex subset of a Hilbert space H, a mapping T : C → C is said
to be a total asymptotically strict quasi-pseudo-contraction if F (T ) 6= ∅, and there exist two sequences
{µn} ⊂ [0,∞), {ν} ⊂ [0,∞) with µn → 0 and ν → 0 as n→∞ and a constant κ[0, 1) such that

‖Tnx− p‖2 ≤ ‖x− p‖2 + κ‖x− Tnx‖2 + µnϕ(‖x− p‖) + νn,

where ϕ : [0,∞)→ [0,∞) is a continuous and strictly increasing function with ϕ(0) = 0.

In the framework of Hilbert spaces, we have the following result for a total asymptotically strict quasi-
pseudo-contraction.

Corollary 3.3. Let C be a nonempty, closed and convex subset of a Hilbert space H. Let T : C → C be
a closed and total asymptotically strict quasi-pseudo-contraction with two sequences {µn} ⊂ [0,∞), {νn} ⊂
[0,∞) such that µn → 0 and νn → 0 as n→∞, and a constant κ ∈ [0, 1). Assume that T is asymptotically
regular on C and F (T ) is nonempty and bounded. Let {xn} be a sequence generated by the following manner:

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = PC1x0

Cn+1 = {u ∈ Cn : ‖xn − Tnxn‖ ≤ 2
1−κ〈xn − u, xn − T

nxn〉+ θn},
xn+1 = PCn+1x0,

where θn = µn
Mn
1−κ + νn

1−κ , Mn = sup{ϕ(‖p − xn‖) : p ∈ F (T )}. Then the sequence {xn} converges strongly
to x̄ = PF (T )x0, where PF (T ) is the metric projection of E onto F (T ).

Remark 3.4. Since the class of the total asymptotically strict quasi-φ-pseudo-contractions includes the class
of asymptotically strict quasi-φ-pseudo-contractions in the intermediate sense, the class of asymptotically
strict quasi--pseudo-contractions, the class of strict quasi-φ-pseudo-contractions, the class of generalized
asymptotically quasi--nonexpansive mappings, the class of asymptotically quasi-φ-nonexpansive mappings,
the class of relatively asymptotically nonexpansive mappings, and the class of hemi-relatively nonexpansive
mappings as special cases. So, Theorem 3.1 improves many current results, see Su, and Qin [32], Su, Wang,
and Xu [33], Wang, Kang, and Cho [38], Zhou, Gao, and Tan [43], Qin, Cho, and Kang [20], Qin, Wang,
and Kang [23], Qin, Wang, and Cho [22].

4. Applications

4.1. Application to optimization problems

In this part, we consider minimizers of proper, lower semicontinuous, and convex functionals. Let T be
a mapping of E into 2E

∗
. The effective domain of T is denoted by D(T ), that is, D(T ) = {x ∈ E : Tx 6= ∅}.

The range of T is denoted by R(T ), that is, R(T ) = ∪{Tx : x ∈ D(T )}. A multi-valued operator T : E → 2E
∗

with graph G(T ) = {(x, x∗) : x∗ ∈ Tx} is said to be monotone if for any x, y ∈ D(T ), x∗ ∈ Tx and y∗ ∈ Ty,

〈x− y, x∗ − y∗〉 ≥ 0.

A monotone operator T is said to be maximal if its graph G(T ) is not properly contained in the graph of
any other monotone operator. If E is reflexive and strictly convex, then a monotone operator T is maximal
if and only if R(J + rT ) = E∗ for all r > 0, see [27, 35] for more details.

Let E be a Banach space with the dual E∗. For a proper lower semicontinuous convex function f : E →
(−∞,∞], the subdifferential mapping ∂f ⊂ E × E∗ of f is defined as follows:

∂f(x) = {x∗ ∈ E∗ : f(y) ≥ f(x) + 〈y − x, x∗〉, ∀ y ∈ E}, ∀ x ∈ E.
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From Rockafellar [26], we know that ∂f is maximal monotone operator, and 0 ∈ ∂f(v) if and only if
f(v) = minx∈E f(x). For each r > 0, and x ∈ E, there eixsts a unique xr ∈ D(∂f) such that

Jx ∈ Jxr + r∂fxr.

If Jrx = xr, then we can define a single valued mapping Jr : E → D(∂f) by

Jr = (J + r∂f)−1J,

which is said to be the resolvent of ∂f . We affirm that (∂f)−10 = F (Jr) for all r > 0. In fact,

u ∈ F (Jr)⇔ u = Jru = (J + r∂f)−1Ju⇔ Ju ∈ Ju+ r∂fu

⇔ 0 ∈ r∂fu⇔ 0 ∈ ∂fu⇔ u ∈ (∂f)−10, ∀ r > 0.

It is well known that if ∂f is a maximal monotone operator, then (∂f)−10 is closed and convex. In
view of Lemma 4.2 of Wang, Kang, Cho [38], we learn that Jr is a closed hemi-relatively nonexpansive
mapping. Notice that every hemi-relatively nonexpansive mapping is a total asymptotically strict quasi-φ-
pseudo-contraction. In view of Theorem 3.1, the following theorem is obtianed immediately.

Theorem 4.1. Let C be a nonempty, closed and convex subset of a uniformly convex and smooth Banach
space E. Let f : E → (−∞,∞] be a proper, lower semicontinuous, and convex function, ∂f the subdiffer-
ential mapping of f , Jr the resolvent of ∂f . Assume that (∂f)−1(0) is nonempty. Let {xn} be a sequence
generated by the following manner:

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0

Cn+1 = {u ∈ Cn : φ(xn, Jrxn) ≤ 2〈xn − u, Jxn − JJrxn〉},
xn+1 = ΠCn+1x0,

(4.1)

where r > 0. Then the sequence {xn} converges strongly to x̄ = Π(∂f)−1(0)x0, where Π(∂f)−1(0) is the
generalized projection of E onto (∂f)−1(0).

4.2. Application to equilibrium problems

In this part, we consider the problem for finding a solution to equilibrium problems. Let C be a nonempty,
closed, and convex subset of a Banach space E. Let f : C ×C → R be a bifunction satisfying the following
conditions:

(A1) f(x, y) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) lim supt↓0 f(tz + (1− t)x, y) ≤ f(x, y) for all x, y, z ∈ C;

(A4) f(x, ·) is convex and lower semicontinuous for all x ∈ C.

The mathematical model related to equilibrium problems is to find x̄ ∈ C such that

f(x̄, y) ≥ 0, ∀ y ∈ C. (4.2)

The set of solutions to equilibrium problems (4.2) is denoted by EP (f). The following lemma can be obtained
in Blum and Oettli [6]:
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Lemma 4.2. Let C be a closed convex subset of a smooth, strictly convex, and reflexive Banach space E,
and let f be a fibunction from C×C to R satisfying (A1)-(A4), and let r > 0 and x ∈ E. Then, there exists
z ∈ C such that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀ y ∈ C.

The following lemma can be found in Takahashi and Zembayashi [37]:

Lemma 4.3. Let C be a closed convex subset of a uniformly smooth, strictly convex, and reflexive Banach
space E, and let f be a fibunction from C × C to R satisfying (A1)-(A4). For r > 0 and x ∈ E, define a
mapping Tr : E → C as follows:

Trx = {z ∈ C : f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀ y ∈ C}, ∀ x ∈ E.

Then, the following hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉;

(3) R(Tr) = EP (f);

(4) EP (f) is closed and convex.

Motivate by Takahashi et al. [36] in a Hilbert space, we obtain the following lemma:

Lemma 4.4. Let C be a closed convex subset of a uniformly smooth, strictly convex, and reflexive Banach
space E, and let f be a fibunction from C ×C to R satisfying (A1)-(A4). Let Af be a multi-valued mapping
of E into E∗ defined by

Afx =

{
{x∗ ∈ E∗ : f(x, y) ≥ 〈y − x, z∗〉, ∀ y ∈ C}, x ∈ C,
∅, x /∈ C.

Then, EP (f) = A−1f 0 and Af is a maximal monotone operator with D(Af ) ⊂ C. Furthore, for any x ∈ E
and r > 0, the resolvent Tr of f coincides with the resolvent of Af ; i.e.,

Trx = (J + rAf )−1Jx.

Proof. First, we show that EP (f) = A−1f 0. In fact, we have that

u ∈ EP (f)⇔ f(u, y) ≥ 0, ∀ y ∈ C
⇔ f(z, y) ≥ 〈y − u, 0∗〉, ∀ y ∈ C
⇔ 0∗ ∈ Afu
⇔ u ∈ A−1f 0.

We show that Af is monotone. Let (x1, z
∗
1), (x2, z

∗
2) ∈ Af . Then, we have, for all y ∈ C,

f(x1, y) ≥ 〈y − x1, z∗1〉 and f(x2, y) ≥ 〈y − x2, z∗2〉

and hence
f(x1, x2) ≥ 〈x2 − x1, z∗1〉 and f(x2, x1) ≥ 〈x1 − x2, z∗2〉.
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It follows by applying (A2) that

0 ≥ f(x1, x2) + f(x2, x1) ≥ 〈x2 − x1, z∗1〉+ 〈x1 − x2, z∗2〉 = −〈x1 − x2, z∗1 − z∗2〉.

This implies that Af is montone. Next, we show that Af is maximal monotone. To prove that Af is maximal
monotone, it is sufficient to show that R(J + rAf ) = E∗ for all r > 0. Let x ∈ E and r > 0. Hence, in view
of Lemma 4.2, there exists z ∈ C such that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀ y ∈ C.

Therefore we obtain that

f(z, y) ≥ 〈y − z, 1

r
(Jx− Jz)〉, ∀ y ∈ C.

In view of the definition of Af , we have

Afz 3
1

r
(Jx− Jz),

which implies that Jx ∈ Jz + rAfz. Hence E∗ ⊂ R(J + rAf ). So, R(J + rAf ) = E∗ and at the same time,
Jx ∈ Jz + rAfz implies that Trx = (J + rAf )−1Jx for all x ∈ E and r > 0. This completes the proof.

Theorem 4.5. Let C be a nonempty, closed and convex subset of a uniformly convex and smooth Banach
space E. Let f be a bifunction from C × C to R satisfying (A1)-(A4) and Tr be defined as Lemma 4.3 for
r > 0. Assume that EP (f) is nonempty. Let {xn} be a sequence generated by the following manner:

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0

Cn+1 = {u ∈ Cn : φ(xn, Trxn) ≤ 2〈xn − u, Jxn − JTrxn〉},
xn+1 = ΠCn+1x0.

Then the sequence {xn} converges strongly to x̄ = ΠEP (f)x0, where ΠEP (f) is the generalized projection of
E onto EP (f).

Proof. From Lemma 4.4, we know that Tr be regarded as the resolvent of Af for r > 0. By using Theorem
4.1, we have that the sequence {xn} converges strongly to x̄ = Π(Af )−1(0)x0. From Lemma 4.4, we get

EP (f) = A−1f (0). So, the sequence {xn} converges strongly to x̄ = ΠEP (f)x0.

5. Numerical Examples

In this section, we give an numerical example of a maximal monotone operator to illustrate our result.

Example 5.1. Let E = R, C = [0, 1], Tx = 1
2x, Ax = x. From the definition of T , it is obvious that 0 is

the unique fixed point of T , that is, F (T ) = {0}. Since

|Tx− Ty|2 + |(Id− T )x− (Id− T )y|2 = |1
2
x− 1

2
y|2 + |x− 1

2
x− (y − 1

2
y)|2 =

1

2
|x− y|2 ≤ |x− y|2,

it follows that T is a firmly nonexpansive mapping. From [5], we have A = T−1− Id is maximally monotone
and the resolvent operator JA = T . On the other hand, we have

φ(0, JAx) = φ(0, Tx) = |0|2 − 〈0, JTx〉+ |Tx|2 =
1

4
x2 ≤ x2 = |0|2 − 〈0, Jx〉+ |x|2 = φ(0, x),
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it follows from Lemma 4.2 of Wang, Kang, Cho [38] that T is a closed hemi-relatively nonexpansive mapping.
From (2.2), we compute that

φ(xn, JAxn) = |xn|2 − 2〈xn, JAxn〉+ |JAxn|2 =
1

4
x2n (5.1)

and

2〈xn − u, Jxn − JJAxn〉 = 2〈xn − u, Jxn − J
1

2
xn〉 = x2n − xnu. (5.2)

From (5.1), (5.2), and the Cn+1 of the algorithm (4.1) can be evolved into the following:

Cn+1 = {u ∈ Cn : u ≤ 3

4
xn}.

Therefore, the algorithm (4.1) can be simplified as

x0 ∈ R chosen arbitrarily,

C1 = C = [0, 1],

x1 = ΠC1x0

Cn+1 = {u ∈ Cn : u ≤ 3
4xn},

xn+1 = ΠCn+1x0 = 3
4xn.

(5.3)

So, the sequence {xn} converges strongly to x̄ = ΠA−1(0)x0 = 0 by using Theorem 4.1.

Take initial point x0 ∈ (1,+∞) arbitrarily, the numerical experiment result using software Matlab 7.0 is
given in Figure 1, which shows that the iteration process of the sequence {xn} converges to 0.

Figure 1: x0 ∈ (1,+∞), the convergence process of the sequence {xn} in Example 5.1
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