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Abstract

The purpose of this paper is to present fixed point, strict fixed point and fixed set results for (singlevalued
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1. Preliminaries

Fixed point theory and the theory of self-similar sets (sometimes also called ”the mathematics of
fractals”), are linked by some common approaches and by related results. As it is well known, if fi are
singlevalued continuous self operators on a complete metric space X, then f = (f1, ..., fm) is called an
iterated function system (briefly IFS), while the operator Tf : Pcp (X)→ Pcp (X) given by

Tf (Y ) =
m⋃
i=1

fi (Y ) , for each Y ∈ Pcp (X)

is called the fractal operator generated by the IFS f . In this context, a fixed point of Tf is called a self-
similar set for f and, sometimes, it is a fractal (i.e., a set with a non-integer Hausdorff dimension). For
example, if f1, ..., fm are contractions, then Tf is a contraction too and its unique fixed point A∗ ∈ Pcp(X)
is a self-similar set. If f1, ..., fm are similar contractions (see [12]), then A∗ ∈ Pcp(X) is a fractal. Moreover,
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for any nonempty compact subset A of X, the sequence (Tnf (A))n∈N converges to A∗ as n → +∞. The
elements of the sequence of successive approximations for Tf (i.e, the elements of (Tnf (A))n∈N) are also called
pre-fractals.

Notice that a similar result holds if F1, ..., Fm are multivalued contractions with compact values.
The purpose of this paper is to study some other connections between fixed point theory and the theory

of self-similar sets for the case of generalized contractions of Ćirić type (see [1], [2], [3], [9], [10], etc.). Fixed
point, strict fixed point and fixed set results for multivalued operators are presented.

We shall begin by presenting some notions and notations that will be used throughout the paper.
Let (X, d) be a metric space and consider the following families of subsets of X:

P (X) := {Y ∈ P (X) |Y 6= ∅} ;Pb(X) := {Y ∈ P (X)| Y is bounded } ,

Pcl(X) := {Y ∈ P (X)| Y is closed} ;Pcp(X) := {Y ∈ P (X)| Y is compact}

Let us define the gap functional between the sets A and B in the metric space (X, d) as:

D : P (X)× P (X)→ R+, D(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}

the excess (generalized) functional between the sets A and B as:

ρ : P (X)× P (X)→ R+, ρ(A,B) := sup
a∈A

D(a,B)

and the Pompeiu-Hausdorff (generalized) functional as:

H : P (X)× P (X)→ R+ ∪ {+∞}, H(A,B) = max{ρ(A,B), ρ(B,A)}.

The generalized diameter functional is denoted by δ : P (X)× P (X)→ R+ ∪ {∞}, and defined by

δ(A,B) = sup{d(a, b) | a ∈ A, b ∈ B}.

Denote by diam(A) := δ(A,A) the diameter of the set A.
The following lemma is well known.

Lemma 1.1. Let (X, d) be a metric space, A ∈ Pb(X) and q > 1. Then, for every x ∈ X there exists a ∈ A
such that δ(x,A) ≤ qd(x, a).

Let T : X → P (X) be a multivalued operator and Graphic(T ) := {(x, y)|y ∈ T (x)} the graphic of T .
An element x ∈ X is called a fixed point for T if and only if x ∈ T (x) and it is called a strict fixed point if
and only if {x} = T (x).

The set Fix(T ) := {x ∈ X| x ∈ T (x)} is called the fixed point set of T , while the symbol SFix(T ) :=
{x ∈ X| {x} = T (x)} denotes the strict fixed point set of T . Notice that SFix(T ) ⊆ Fix(T ).

If f : X → X is a singlevalued operator, we will also denote by

O(x0, n) := {x0, f(x0), f
2(x0), · · · , fn(x0)}

the orbit of order n of the operator f corresponding to x0 ∈ X, while

O(x0) := {x0, f(x0), f
2(x0), · · · , fn(x0), · · · }

is the orbit of f corresponding to x0 ∈ X. By Fix(f) we denote the fixed point set of t, i.e.,

Fix(f) := {x ∈ X| x = f(x)}.



A. Petruşel, A. Soos, J. Nonlinear Sci. Appl. 8 (2015), 1048–1058 1050

2. Fixed point and strict fixed point results

The basic metric fixed point theorems for singlevalued and respectively multivalued operators are
Banach’s contraction principle (1922), respectively Nadler’s contraction principle (1969). These results were
later extended in many directions, with respect to the spaces and the operators involved (see [2], [4], [6], [7],
[9], etc.). A very active research direction was the case of so called generalized contractions.

Let (X, d) be a metric space and f : X → X be a singlevalued operator. Then, by definition (see I. A.
Rus [11]), f is called a weakly Picard operator if:

(i) Fix(f) 6= ∅;
(ii) for all x ∈ X, the sequence (fn(x))n∈N → x∗(x) ∈ Fix(f) as n→∞.
In particular, if Fix(f) = {x∗}, then f is called a Picard operator.

Moreover, if f is a weakly Picard operator and there exists c̃ > 0 such that

d(x, x∗(x)) ≤ c̃d(x, f(x)), for all x ∈ X,

then f is called a c̃-weakly Picard operator. Similarly, a Picard operator for which there exists c̃ > 0 such
that

d(x, x∗) ≤ c̃d(x, f(x)), for all x ∈ X,

is called a c̃-Picard operator.
A nice extension of Banach’s contraction principle was given by Ćirić, Reich and Rus in 1971-1972.

Theorem 2.1. Let (X, d) be a complete metric space and f : X → X be an operator for which there exist
a, b, c ∈ R+ with a+ b+ c < 1 such that

d(f(x), f(y)) ≤ ad(x, y) + bd(x, f(x)) + cd(y, f(y)), for all x, y ∈ X.

Then f is a c̃-Picard operator, with c̃ := 1
1−β , where β := min{a+b1−c ,

a+c
1−b} < 1.

An extension of this result was proved in a paper from 1973 by Hardy and Rogers. The result, in terms
of Picard operators, is as follows.

Theorem 2.2. Let (X, d) be a complete metric space and f : X → X be an operator for which there exist
a, b, c, e, f ∈ R+ with a+ b+ c+ e+ f < 1 such that

d(f(x), f(y)) ≤ ad(x, y) + bd(x, f(x)) + cd(y, f(y)) + ed(x, f(y)) + fd(y, f(x)), for all x, y ∈ X.

Then f is a c̃-Picard operator, with c̃ := 1
1−β , where β := min{a+b+e1−c−e ,

a+c+f
1−b−f } < 1.

The proofs of the above results are based on the fact that f is a graphic contraction, i.e.,

d(f(x), f2(x)) ≤ βd(x, f(x)), for all x ∈ X.

Another general result was given by Rus in 1979, as follows.

Theorem 2.3. If (X, d) is a complete metric space and f : X → X is an operator for which there exists a
generalized strict comparison function ϕ : R5

+ → R+ (which means that ϕ is increasing in each variable and
the function Φ : R+ → R+ defined by

Φ(t) := ϕ(t, t, t, t, t)

satisfy the conditions that Φn(t)→ 0 as n→ +∞, for all t > 0 and t− Φ(t)→ +∞ as t→ +∞) such that

d(f(x), f(y)) ≤ ϕ(d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))), for all x, y ∈ X,

then f is a Φ-Picard operator (i.e., f is a Picard operator and d(x, x∗) ≤ Φ(d(x, f(x)), for all x ∈ X).
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Remark 2.4. Notice that Theorem 2.1 and Theorem 2.2 are particular cases of Theorem 2.3, for adequate
choices of the function ϕ.

In 1974, Ćirić proved, using an approach involving the orbit of order n and the orbit of the operator f ,
the following very general result.

Theorem 2.5. If (X, d) is a complete metric space and if f : X → X is an operator for which there exists
q ∈ (0, 1) such that, for all x, y ∈ X, we have

d(f(x), f(y)) ≤ qmax{d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))}, (2.1)

then f is a c̃-Picard operator, with c̃ := 1
1−q .

For example, the mapping f : [0, 1]→ [0, 1] given by

f(x) =

{
2x+ 1

2 , x ∈ [0, 14 ]
1
2 , x ∈]14 , 1]

(2.2)

Then, f is not a contraction, but it is a Ćirić type operator with q = 2
3 . Notice also that Fix(f) = {12}.

Another example (see [3]) is as follows. Let X1 := {mn | m ∈ {0, 1, 3, 9, · · · }, n ∈ {1, 4, 7, · · · }} and
X2 := {mn | m ∈ {1, 3, 9, 27, · · · }, n ∈ {2, 5, 8, · · · }}. Consider X := X1 ∪X2 and f : X → X defined by:

f(x) =

{
3x
5 , x ∈ X1
x
8 , x ∈ X2

(2.3)

Then, f is a Ćirić type operator with q = 3
5 , but f fails to satisfy Hardy and Rogers’ condition in Theorem

2.3. Moreover Fix(f) = {0}.
Moreover, we can do the following remark.

Remark 2.6. Any Ćirić-Reich-Rus type operator is a Hardy-Rogers type operator and any Hardy-Rogers
type operator is a Ćirić type operator. The reverse implications do not hold, as we can see from several
examples given in [5], [10], [11].

Passing to the multivalued case, let (X, d) be a metric space and let T : X → Pb(X) be a multivalued
operator with nonempty and bounded values. We will be interested in the study of strict fixed points of
multivalued operators satisfying some contractive type conditions with respect to the functional δ.

Notice that the set of strict fixed points of a multivalued operator T is a fixed set with respect to T , in
the sense that T (SFix(T )) = SFix(T ).

In 1972, S. Reich proved the following very interesting strict fixed point theorem for multivalued opera-
tors.

Theorem 2.7. If (X, d) is a complete metric space and if T : X → Pb(X) is a multivalued operator for
which there exist a, b, c ∈ R+ with a+ b+ c < 1 such that

δ(T (x), T (y)) ≤ ad(x, y) + bδ(x, T (x)) + cδ(y, T (y)), for all x, y ∈ X,

then the following conclusions hold:

(i) Fix(T ) = SFix(T ) = {x∗};

(ii) for each x0 ∈ X there exists a sequence of successive approximations for T starting from x0 (which
means that xn+1 ∈ T (xn), for each n ∈ N) convergent to x∗;

(iii) d(xn, x
∗) ≤ βn

1−βd(x0, x1), for n ∈ N∗ (where β := min{a+b1−c ,
a+c
1−b} < 1).
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An important extension of the above result is the following theorem of Ćirić, given in 1972.

Theorem 2.8. Let (X, d) be a complete metric space and let T : X → Pb(X) be a multivalued operator for
which there exists q ∈ R+ with q < 1 such that, for all x, y ∈ X the following condition holds

δ(T (x), T (y)) ≤ qmax{d(x, y), δ(x, T (x)), δ(y, T (y)), D(x, T (y)), D(y, T (x))}.

Then the following conclusions hold:

(i) Fix(T ) = SFix(T ) = {x∗};

(ii) for each x0 ∈ X there exists a sequence of successive approximations for T starting from x0 convergent
to x∗;

(iii) d(xn, x
∗) ≤ q(1−a)n

1−q1−ad(x0, x1), for n ∈ N∗ (where a ∈ (0, 1) is an arbitrary real number).

A very general result was proved by Rus [11], as follows.

Theorem 2.9. Let (X, d) be a complete metric space and T : X → Pb(X) be a multivalued operator for
which there exists a function ϕ : R5

+ → R+ satisfying
i) ϕ is increasing in each variable
ii) there exists p > 1 such that the function Φ : R+ → R+ defined by

Φ(t) := ϕ(t, pt, pt, t, t)

satisfy the conditions that Φn(t)→ 0 as n→ +∞, for all t > 0 and t− Φ(t)→ +∞ as t→ +∞,
such that, for all x, y ∈ X, one have

δ(T (x), T (y)) ≤ ϕ(d(x, y), δ(x, T (x)), δ(y, T (y)), D(x, T (y)), D(y, T (x))).

Then
Fix(T ) = SFix(T ) = {x∗}.

Remark 2.10. Notice again that if, in particular:
1) ϕ(t1, t2, t3, t4, t5) := at1 + bt2 + ct3 + et4 + ft5, (a, b, c, e, f ∈ R+, a+ b+ c+ e+ f < 1)

or
2) ϕ(t1, t2, t3, t4, t5) := qmax{t1, t2, t3, t4, t5}, (q ∈ [0, 1[),

then we obtain Theorem 2.7 and Theorem 2.8 from our previous considerations.

Remark 2.11. In the above two results, the approach is based on the construction of a selection t : X → X
of T (i.e., t(x) ∈ T (x), for each x ∈ X), which satisfies the corresponding fixed point theorem (Ćirić-Reich-
Rus (Theorem 2.1), Ćirić (Theorem 2.5) and respectively Rus (Theorem 2.3), for the case of singlevalued
operators.

Some extensions of the above theorems can be proved as follows. For example, we will give an extension
of Reich’s Theorem.

Theorem 2.12. Let (X, d) be a complete metric space and let T : X → Pb(X) be a multivalued operator
with close graph. Suppose there exist a, b, c ∈ R+ with a+ b+ c < 1 such that

δ(T (x), T (y)) ≤ ad(x, y) + bδ(x, T (x)) + cδ(y, T (y)), for all (x, y) ∈ Graph(T ).

then the following conclusions hold:

(i) Fix(T ) = SFix(T ) 6= ∅;
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(ii) for each x0 ∈ X there exists a sequence of successive approximations for T starting from x0 convergent
to x∗;

(iii) d(xn, x
∗) ≤ βn

1−βd(x0, x1), for n ∈ N∗ (where β := min{a+bq1−c ,
a+cq
1−b } < 1, for any real q with 1 < q <

min{1−a−bc , 1−a−cb }).

Proof. (i)+(ii) Let x0 ∈ X. Then, by Lemma 1.1, for 1 < q < 1−a−c
b there exists x1 ∈ T (x0) such that

δ(x0, T (x0)) ≤ qd(x0, x1).

Thus, we have that

δ(x1, T (x1)) ≤ δ(T (x0), T (x1)) ≤ ad(x0, x1) + bδ(x0, T (x0)) + cδ(x1, T (x1))

≤ ad(x0, x1) + bqd(x0, x1) + cδ(x1, T (x1)).

Hence

δ(x1, T (x1)) ≤
a+ bq

1− c
d(x0, x1). (2.4)

For x1 ∈ X we can get again x2 ∈ T (x1) such that δ(x1, T (x1)) ≤ qd(x1, x2). Then

d(x1, x2) ≤ δ(x1, T (x1)) ≤
a+ bq

1− c
d(x0, x1). (2.5)

On the other hand, as before we have that

δ(x2, T (x2)) ≤ δ(T (x1), T (x2)) ≤ ad(x1, x2) + bδ(x1, T (x1)) + cδ(x2, T (x2))

≤ ad(x1, x2) + bqd(x1, x2) + cδ(x2, T (x2)).

Using (2.5) we obtain

δ(x2, T (x2)) ≤
a+ bq

1− c
d(x1, x2) ≤

(
a+ bq

1− c

)2

d(x0, x1). (2.6)

For x2 ∈ X we obtain x3 ∈ T (x2) such that δ(x2, T (x2)) ≤ qd(x2, x3).
Then

d(x2, x3) ≤ δ(x2, T (x2)) ≤
(
a+ bq

1− c

)2

d(x0, x1). (2.7)

By this procedures we obtain a sequence (xn)n∈N with the following properties:

(1) (xn, xn+1) ∈ Graph(T ) for each n ∈ N;

(2) d(xn, xn+1) ≤
(
a+bq
1−c

)n
d(x0, x1) for each n ∈ N;

(3) δ(xn, T (xn)) ≤
(
a+bq
1−c

)n
d(x0, x1) for each n ∈ N;

From (2) we obtain that the sequence (xn)n∈N is Cauchy. Since the metric space X is complete we get
that the sequence is convergent, i.e., xn → x∗ as n → ∞. By the closedness of the operator T and (1) we
get that x∗ ∈ Fix(T ). We will show now that x∗ ∈ SFix(T ).

Indeed, since x∗ ∈ Fix(T ) it is clear that x∗ ∈ Graph(T ).Using the contractive condition with x = y = x∗

we obtain

δ(T (x∗)) = δ(T (x∗), T (x∗)) ≤ ad(x∗, x∗) + bδ(x∗, T (x∗)) + cδ(x∗, T (x∗)) = (b+ c)δ(T (x∗)).

Hence
δ(T (x∗)) ≤ (b+ c)δ(T (x∗)). (2.8)

This implies that δ(T (x∗)) = 0 and hence T (x∗) is a singleton. Thus x∗ ∈ SFix(T ). Moreover, we also
obtain that Fix(T ) = SFix(T ).

(iii) The conclusion easily follows by (2).
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3. A fractal operator theory for generalized contractions

We will present now an existence and uniqueness result for the multivalued fractal operator generated
by a multivalued generalized contraction. We will follow the method proposed in [6] and [8].

Let (X, d) be a metric space and F : X → P (X) be a multivalued operator. The fractal operator
generated by F is denoted by F̂ : Pcp (X)→ Pcp (X) and is defined by Y 7→ F̂ (Y )

F̂ (Y ) :=
⋃
x∈Y

F (x) , for each Y ∈ Pcp (X)

A fixed point for F̂ is a fixed set for F , i.e., a nonempty compact set A∗ with the property F̂ (A∗) = A∗.

Concerning the above problem, we have the following result proved in [6]. For the sake of completeness
we recall here the proof too.

Theorem 3.1. Let (X, d) be a complete metric space and let F : X → Pcl(X) be an upper semicontinuous
multivalued operator. Suppose that there exists a continuous and increasing (in each variable) function
ϕ : R3

+ → R+ such that the function Ψ : R+ → R+ defined by

Ψ(t) := ϕ(t, t, t)

satisfies the following properties:

(i) Ψn(t)→ 0 as n→ +∞, for all t > 0;

(ii) t−Ψ(t)→ +∞ as t→ +∞.

Suppose also that

H(F (x), F (y)) ≤ ϕ(d(x, y), D(x, F (y)), D(y, F (x))), for all x, y ∈ X.

Then the fractal operator F̂ : Pcp (X) → Pcp (X) generated by F has a unique fixed point, i.e., there exists
a unique A∗ ∈ Pcp(X) such that

F̂ (A∗) = A∗.

Proof. We will prove that F̂ satisfies all the assumptions of Theorem 2.3 with a three argument function ϕ,
i.e.,

H(F̂ (A), F̂ (B)) ≤ ϕ(H(A,B), H(A, F̂ (B)), H(B, F̂ (A))), for all A,B ∈ Pcp (X) .

Indeed we have:

ρ(F̂ (A), F̂ (B)) = sup
a∈A

ρ(F (a), F̂ (B)) = sup
a∈A

( inf
b∈B

ρ(F (a), F (b)))

≤ sup
a∈A

( inf
b∈B

H(F (a), F (b)))

≤ sup
a∈A

( inf
b∈B

(ϕ(d(a, b), D(a, F (b)), D(b, F (a)))))

≤ sup
a∈A

ϕ( inf
b∈B

d(a, b), inf
b∈B

D(a, F (b)), inf
b∈B

D(b, F (a)))

= sup
a∈A

ϕ(D(a,B), D(a, F (B)), D(F (a), B))

= ϕ(sup
a∈A

D(a,B), sup
a∈A

D(a, F (B)), sup
a∈A

D(F (a), B))

= ϕ(ρ(A,B), ρ(A,F (B)), ρ(F (A), B))

≤ ϕ(H(A,B), H(A,F (B)), H(B,F (A)))

= ϕ(H(A,B), H(A, F̂ (B)), H(B, F̂ (A))).
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By the above inequality and the similar one for ρ(F (B), F (A)), we obtain that

H(F (A), F (B)) ≤ ϕ(H(A,B), H(A,F (B)), H(B,F (A))).

As a consequence, by Theorem 2.3, applied for F̂ , we get that F̂ has a unique fixed point in Pcp(X), i.e.,
there exists a unique A∗ ∈ Pcp(X) such that F̂ (A∗) = A∗.

Moreover, if (X, d) is a metric space and F1, ..., Fm : X → P (X) are multivalued operators, then the
system F = (F1, ..., Fm) is called an iterated multifunction system (IMS).

If the system F = (F1, ..., Fm) is such that, for each i ∈ {1, 2, · · ·m}, the multivalued operators
Fi : X → Pcp (X) are upper semicontinuos, then the operator TF defined as

TF (Y ) =

m⋃
i=1

Fi (Y ) , for each Y ∈ Pcp (X)

has the property that TF : Pcp (X)→ Pcp (X) and it is called the multivalued fractal operator generated by
the IMS F = (F1, ..., Fm) .

A nonempty compact subset A∗ ⊂ X is said to be a self-similar set corresponding to the iterated
multifunction system F = (F1, ..., Fm) if and only if it is a fixed point for the associated multivalued fractal
operator, i.e., TF (A∗) = A∗.

In particular, if Fi are singlevalued continuous operators from X to X, then f = (f1, ..., fm) is called an
iterated function system (briefly IFS) and the operator Tf : Pcp (X)→ Pcp (X) given by

Tf (Y ) =

m⋃
i=1

fi (Y ) , for each Y ∈ Pcp (X)

is called the fractal operator generated by the IFS f . A fixed point of Tf is called a self-similar set corre-
sponding to the IFS f . In certain conditions, the self-similar sets are fractals (see [12]).

An existence and uniqueness result for the multivalued fractal is the following theorem (see [6]).

Theorem 3.2. Let (X, d) be a complete metric space and let Fi : X → Pcl(X) (i ∈ {1, 2, · · · ,m}) be
upper semicontinuous multivalued operators. Suppose that there exists continuous and increasing (in each
variable) functions ϕi : R3

+ → R+ (i ∈ {1, 2, · · · ,m}) such that the function Ψi : R+ → R+ defined by
Ψi(t) := ϕi(t, t, t), (i ∈ {1, 2, · · · ,m}) satisify, for each i ∈ {1, 2, · · · ,m}, the following properties:

(i) Ψn
i (t)→ 0 as n→ +∞, for all t > 0;

(ii) t−Ψi(t)→ +∞ as t→ +∞.

Suppose also that, for each i ∈ {1, 2, · · · ,m}, we have that

H(Fi(x), Fi(y)) ≤ ϕi(d(x, y), D(x, F (y)), D(y, F (x))), for all x, y ∈ X.

Then the multivalued fractal operator TF : Pcp (X) → Pcp (X) generated by IMS F := (F1, ..., Fm) has a
unique fixed point, i.e., there exists a unique A∗ ∈ Pcp(X) such that TF (A∗) = A∗.

Proof. For A,B ∈ Pcp(X) and using the proof of the previous theorem, we have

H(TF (A), TF (B)) = H(
m⋃
i=1

Fi (A) ,
m⋃
i=1

Fi (B))

≤ max
i∈{1,2,··· ,m}

H(Fi(A), Fi(B))

≤ max
i∈{1,2,··· ,m}

ϕi(H(A,B), H(A,Fi(B)), H(B,Fi(A)))

≤ max
i∈{1,2,··· ,m}

ϕi(H(A,B), H(TF (B), A), H(TF (A), B))

= ϕ̄(H(A,B), H(TF (B), A), H(TF (A), B)),



A. Petruşel, A. Soos, J. Nonlinear Sci. Appl. 8 (2015), 1048–1058 1056

where ϕ̄(t1, t2, t3) := max
i∈{1,2,··· ,m}

ϕi(t1, t2, t3). The conclusion follows again by Theorem 2.3 applied for

TF .

Let us consider now the case of multivalued Kannan operators. We will follow the method introduced
in [8]. For the beginning, we recall the following concepts, see [8].

Definition 3.3. Let (X, d) be a metric space, Y ∈ Pb,cl (X) and F : Y → Pcp(Y ) be a multivalued α-Kannan
operator, i.e., α ∈ [0, 12 [ and

H(F (x), F (y)) ≤ α(D(x, F (x)) +D(y, F (y))), for each x, y ∈ X.

Suppose that that F is u.s.c. Then, we define:

1. the maximal displacement functional corresponding to F , EF : Pb (Y )→ R+ ∪ {+∞} by

EF (A) := sup {D (x, F (x)) | x ∈ A} .

2. the maximal displacement functional corresponding to the multivalued fractal operator F̂ given by
EF̂ : Pb (Pb(Y ))→ R+ ∪ {+∞}

EF̂ (U) := sup{EF (A) | A ∈ U}, for U ⊂ Pb(Y ).

We recall first the following auxiliary result, see [8].

Lemma 3.4. Let (X, d) be a metric space, Y ∈ Pb,cl (X) and F : Y → Pcp(Y ) be a multivalued α-Kannan
operator, Suppose that that F is u.s.c. Then:

(a) H(F (A), F (B)) ≤ α(EF (A) + EF (B)), for all A,B ∈ Pcp(Y );

(b) EF (F (A)) ≤ α
1−αEF (A), for all A ∈ Pcp(Y );

(c) EF̂ (F̂ (U)) ≤ α
1−αEF̂ (U), for all U ⊂ Pcp(Y );

(d) δH(F̂ (U)) ≤ 2αEF̂ (U), for all U ⊂ Pcp(Y ),

We have the following result.

Theorem 3.5. Let (X, d) be a complete metric space, Y ⊂ X be a nonempty bounded, closed subset and
F : Y → Pcp(Y ) be a multivalued u.s.c. and α-Kannan operator. Then, there exists a unique A∗ ∈ Pcp(Y )
such that F̂ (A∗) = A∗.

Proof. Consider the following known construction in nonlinear analysis: U1 := T̂ (Pcp(Y )), U2 := T̂ (U1), ...,

Un+1 := T̂ (Un), for n ∈ N∗. Then Un+1 ⊂ Un and Un 6= ∅, for each n ∈ N∗.
Then, by Lemma 3.4, we have:

δH(Un+1) = δH(T̂ (Un)) ≤ 2αET̂ (Un) = 2αET̂ (T̂ (Un−1))

≤ 2α
α

1− α
ET̂ (Un−1) ≤ · · · ≤ 2α

(
α

1− α

)n
ET̂ (Pcp(Y ))→ 0 as n→ +∞.

By Cantor’s Intersection Theorem

U∞ :=
⋂
n∈N∗

Un 6= ∅ and δ(U∞) = 0.

As a consequence, U∞ = {A∗}.

A fractal existence theorem for α-Kannan operators is the following.
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Theorem 3.6. Let (X, d) be a complete metric space, Y ⊂ X be a nonempty bounded, closed subset and
Fi : Y → Pcp(Y ) (i ∈ {1, 2, · · · ,m}) be upper semicontinuous multivalued operators. Suppose that, for each
i ∈ {1, 2, · · · ,m}, there exist αi ∈ [0, 12 [ such that

H(Fi(x), Fi(y)) ≤ αi(D(x, F (x)) +D(y, F (y))), for all x, y ∈ Y.

Then the multivalued fractal operator TF : Pcp (Y ) → Pcp (Y ) generated by IMS F := (F1, ..., Fm) has a
unique fixed point, i.e., there exists a unique A∗ ∈ Pcp(Y ) such that TF (A∗) = A∗.

Proof. We will consider again the construction from the previous theorem.
We denote U1 := TF (Pcp(Y )), U2 := TF (U1), ..., Un+1 := TF (Un), for n ∈ N∗.
Notice that Un+1 ⊂ Un and Un 6= ∅ for each n ∈ N∗, since Tn+1

F (xn) ∈ Un, for n ∈ N∗. Then, by a
similar approach as above, we have

δH(Un+1) = δH(TF (Un)) = δH(TF (Un)) = max
1≤i≤m

δH(Ti(Un))

≤ 2α

(
α

1− α

)n
max
1≤i≤m

ETi(Pcp(Y ))→ 0 as n→ +∞.

As before, the conclusion follows again follows by Cantor’s Intersection Theorem.

The above result is just an existence theorem which do not gives the possibility to approximate the
fractal (i.e., to construct pre-fractals) by successive approximations, for example. The following theorem
is an existence, uniqueness and approximation result for a fractal via an iterated multi-function system of
Kannan type operators, under a more restrictive assumption.

Theorem 3.7. Let (X, d) be a complete metric space, Y ⊂ X be a nonempty closed subset and
F : Y → Pcp(Y ) be a upper semicontinuous and α-Kannan multivalued operator with α ∈ [0, 13 [. Then,

there exists a unique A∗ ∈ Pcp(Y ) such that F̂ (A∗) = A∗ and, for any A ∈ Pcp(Y ), the sequence (F̂n(A))n∈N
converges to A∗, as n→ +∞.

Proof. We will prove that F̂ satisfies all the assumptions of Hardy-Rogers’ Theorem, see Theorem 2.2. More
precisely, we will prove that

H(F̂ (A), F̂ (B)) ≤ 2αH(A,B) + α(H(A, F̂ (B)) +H(B, F̂ (A))), for all A,B ∈ Pcp (X) .

Indeed we have:

ρ(F̂ (A), F̂ (B)) = sup
a∈A

ρ(F (a), F̂ (B))

= sup
a∈A

( inf
b∈B

ρ(F (a), F (b)))

≤ sup
a∈A

( inf
b∈B

H(F (a), F (b)))

≤ sup
a∈A

inf
b∈B

α(D(a, F (a)) +D(b, F (b))).

Notice now that
D(a, F (a)) ≤ d(a, b) +D(b, F (A)) +H(F (A), F (a))

and

D(b, F (b)) ≤ d(b, a) +D(a, F (B)) +H(F (B), F (b)).
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Then, we have:

sup
a∈A

inf
b∈B

α(D(a, F (a)) +D(b, F (b)))

≤ α sup
a∈A

inf
b∈B

[2d(a, b) +D(b, F (A)) +D(a, F (B)) +H(F (A), F (a)) +H(F (B), F (b))]

≤ α sup
a∈A

[2 inf
b∈B

d(a, b) + sup
b∈B

(D(b, F (A)) +D(a, F (B)) +H(F (A), F (a)) +H(F (B), F (b)))]

≤ α sup
a∈A

[2D(a,B) + ρ(B,F (A)) +D(a, F (B)) +H(F (A), F (a)) +H(F (B), F (B))]

≤ α[2ρ(A,B) + ρ(B,F (A)) + ρ(A,F (B)) +H(F (A), F (A))]

≤ α[2H(A,B) +H(B,F (A)) +H(A,F (B))] = 2αH(A,B) + α(H(F̂ (A), B) +H(A, F̂ (B))).

By the above inequality and the similar one for ρ(F̂ (B), F̂ (A)), we obtain that

H(F̂ (A), F̂ (B)) ≤ 2αH(A,B) + α(H(B, F̂ (A)) +H(A, F̂ (B))).

As a consequence, by Theorem 2.2, applied for F̂ , we get that F̂ has a unique fixed point A∗ ∈ Pcp(X) and,
for any A ∈ Pcp(Y ), the sequence (F̂n(A))n∈N converges to A∗, as n→ +∞.

Moreover, for an iterated multi-function system we have:

Theorem 3.8. Let (X, d) be a complete metric space, Y ⊂ X be a nonempty closed subset and
Fi : Y → Pcp(Y ) (i ∈ {1, 2, · · · ,m}) be upper semicontinuous multivalued operators. Suppose that, for
each i ∈ {1, 2, · · · ,m}, there exist αi ∈ [0, 13 [ such that

H(Fi(x), Fi(y)) ≤ αi(D(x, F (x)) +D(y, F (y))), for all x, y ∈ Y.

Then the multivalued fractal operator TF : Pcp (Y ) → Pcp (Y ) generated by IMS F := (F1, ..., Fm) has a
unique fixed point, i.e., there exists a unique A∗ ∈ Pcp(Y ) such that TF (A∗) = A∗ and, for any A ∈ Pcp(Y ),
the sequence (TnF (A))n∈N converges to A∗, as n→ +∞.

Proof. The proof runs in a similar way to the proof of Theorem 3.2, taking into account the conclusion of
Theorem 3.7.
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[7] A. Petruşel, G. Petruşel, Multivalued Picard operator, J. Nonlinear Convex Anal., 13 (2012), 157–171.2
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