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Abstract

In this paper, we introduce the concept of operator s-preinvex function, establish some new Hermite-
Hadamard type inequalities for operator s-preinvex functions, and provide the estimates of both sides
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1. Introduction and Preliminaries

Throughout this paper, let R = (−∞,∞) and R0 = [0,∞).
The following inequality holds for any convex function f defined on R and a, b ∈ R with a < b

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
. (1.1)

Both inequalities hold in the reversed direction if f is concave on [a, b]. The inequality (1.1) is well known
in the literature as Hermite-Hadamard’s inequality. We note that the Hermite-Hadamard’s inequality may
be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality.
The classical Hermite-Hadamard’s inequality provides estimates of the mean value of a continuous convex
function f : [a, b]→ R.

In [10], Hudzik and Maligranda considered s-convex function in the second sense. This class is defined
in the following way.
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Definition 1.1 ([10]). For some fixed s ∈ (0, 1], a function f : R0 → R is said to be s-convex in the second
sense if

f(λx+ (1− λ)y) ≤ λsf(x) + (1− λ)sf(y) (1.2)

holds for all x, y ∈ R0 and λ ∈ [0, 1]. If the inequality (1.2) reverses, then f is said to be s-concave in the
second sense on R0.

In [3], Dragomir and Fitzpatrick proved the following variant of Hadamard’s inequality which holds for
s-convex functions in the second sense.

Theorem 1.2 ([3]). Suppose that f : R0 → R0 is an s-convex function in the second sense, where s ∈ (0, 1]
and let a, b ∈ R0 with a < b. If f ∈ L([a, b]), then the following inequality holds

2s−1f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

s+ 1
. (1.3)

The constant k = 1
s+1 is the best possible in the second inequality in (1.3).

In [2], the authors obtained the estimate of the left-hand side of Hermite-Hadamard’s inequality for
s-convex functions.

Theorem 1.3 ([2]). Let f : I ⊆ R0 → R be a differentiable mapping on I◦, such that f ′ ∈ L([a, b]), where
a, b ∈ I with a < b. If |f ′| is s-convex on [a, b] for some fixed s ∈ (0, 1], then the following inequality holds∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣ ≤ b− a
2(s+ 1)

[
|f ′(a)|+2(s+ 1)

∣∣f ′(a+b
2

)∣∣+|f ′(b)|
2(s+ 2)

]
. (1.4)

In [12], Kirmaci et al. gave the estimate of the rift-hand side of Hermite-Hadamard’s inequality for
s-convex functions.

Theorem 1.4 ([12]). Let f : I ⊆ R0 → R be differentiable on I◦ and a, b ∈ I with a < b. If f ′ ∈ L([a, b])
and |f ′| is s-convex on [a, b] for some fixed s ∈ (0, 1], then∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣ ≤ (b− a)(2s+1 + 1)

2s(s+ 1)(s+ 2)

[
|f ′(a)|+|f ′(b)|

2

]
. (1.5)

Hermite-Hadamard’s inequality has several applications in nonlinear analysis and the geometry of Banach
spaces, see [11]. In recent years, several extensions and generalizations have been considered for classical
convexity. A significant generalization of convex functions is that of invex functions introduced by Hanson
in [9].

Let X be a vector space, x, y ∈ X, x 6= y. Define the segment

[x, y] := (1− t)x+ ty, t ∈ [0, 1].

We consider the function f : [x, y]→ R and the associated function

g(x, y) : [0, 1]→ R,
g(x, y)(t) := f((1− t)x+ ty), t ∈ [0, 1].

Note that f is convex on [x, y] if and only if g(x, y) is convex on [0, 1]. For any convex function defined
on a segment [x, y] ∈ X, we have the Hermite-Hadamard integral inequality (see [4], p.2 and [5], p.2)

f

(
x+ y

2

)
≤
∫ 1

0
f((1− t)x+ ty)dt ≤ f(x) + f(y)

2
, (1.6)
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which can be derived from the classical Hermite-Hadamard inequality (1.1) for the convex function
g(x, y) : [0; 1]→ R.

Now we review the operator order in B(H) which is the set of all bounded linear operators on a Hilbert
space (H; 〈., .〉), and the continuous functional calculus for a bounded self-adjoint operator. For self-adjoint
operators A,B ∈ B(H), we write A ≤ B if 〈Ax, x〉 ≤ 〈Bx, x〉 for every vector x ∈ H, we call it the operator
order.

Let A be a bounded self-adjoint linear operator on a complex Hilbert space (H; 〈., .〉). The Gelfand map
establishes a ∗-isometrically isomorphism Φ between the set C(Sp(A)) of all continuous complex-valued
functions defined on the spectrum of A, denoted Sp(A), the C∗-algebra C∗(A) generated by A and the
identity operator 1H on H as follows (see for instance [6], p.3). For any f, g ∈ C(Sp(A)) and any α, β ∈ C,
we have

(i) Φ(αf + βg) = αΦ(f) + βΦ(g);

(ii) Φ(fg) = Φ(f)Φ(g) and Φ(f∗) = Φ(f)∗;

(iii) ‖Φ(f) ‖=‖ f‖ := supt∈Sp(A) | f(t) |;

(iv) Φ(f0) = 1H and Φ(f1) = A, where f0(t) = 1 and f1(t) = t for t ∈ Sp(A).

With this notation, we define

f(A) := Φ(f) for all f ∈ C(Sp(A)) (1.7)

and we call it the continuous functional calculus for a bounded self-adjoint operator A.
If A is a bounded self-adjoint operator and f is a real-valued continuous function on Sp(A), then f(t) ≥ 0

for any t ∈ Sp(A) implies that f(A) ≥ 0, i.e. f(A) is a positive operator on H. Moreover, if both f and
g are real-valued functions on Sp(A) such that f(t) ≤ g(t) for any t ∈ Sp(A), then f(A) ≤ g(A) in the
operator order in B(H).

A real valued continuous function f on an interval I ⊆ R is said to be operator convex (operator concave)
if

f((1− λ)A+ λB) ≤ (≥)(1− λ)f(A) + λf(B)

in the operator order in B(H), for all λ ∈ [0, 1] and for every bounded self-adjoint operators A and B in
B(H) whose spectra are contained in I.

For some fundamental results on operator convex (operator concave) and operator monotone functions,
see [6] and the references therein.

In [7], Ghazanfari et al. gave the concept of operator preinvex function and obtained Hermite-Hadamard
type inequality for operator preinvex function.

Definition 1.5 ([7]). Let X be a real vector space, a set S ⊆ X is said to be invex with respect to the map
η : S × S → X, if for every x, y ∈ S and t ∈ [0, 1],

x+ tη(x, y) ∈ S. (1.8)

It is obvious that every convex set is invex with respect to the map η(x, y) = x− y, but there exist invex
sets which are not convex (see [1]).

Let S ⊆ X be an invex set with respect to η : S × S → X. For every x, y ∈ S, the η-path Pxv joining
the points x and v := x+ η(y, x) is defined as follows

Pxv := {z : z = x+ tη(y, x), t ∈ [0, 1]}.

The mapping η is said to satisfy the condition (C) if for every x, y ∈ S and t ∈ [0, 1],

η(y, y + tη(x, y)) = −tη(x, y), η(x, y + tη(x, y)) = (1− t)η(x, y). (C)
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Note that for every x, y ∈ S and every t1, t2 ∈ [0, 1] from condition (C) we have

η(y + t2η(x, y), y + t1η(x, y)) = (t2 − t1)η(x, y), (1.9)

see [13], [16] for details.
Let A be a C∗-algebra, denote by Asa the set of all self-adjoint elements in A.

Definition 1.6 ([7]). Let S ⊆ B(H)sa be an invex set with respect to η : S × S → B(H)sa. Then, the
continuous function f : R→ R is said to be operator preinvex with respect to η on S, if for every A,B ∈ S
and t ∈ [0, 1],

f(A+ tη(B,A)) ≤ (1− t)f(A) + tf(B) (1.10)

in the operator order in B(H).

Every operator convex function is operator preinvex with respect to the map η(A,B) = A−B, but the
converse does not hold (see [7]).

Theorem 1.7 ([7]). Let S ⊆ B(H)sa be an invex set with respect to η : S × S → B(H)sa and η satisfies
condition (C). If for every A,B ∈ S and V = A+ η(B,A) the function f : I ⊆ R→ R is operator preinvex
with respect to η on η-path PAV with spectra of A and spectra of V in the interval I. Then we have the
inequality

f

(
A+ V

2

)
≤
∫ 1

0
f((A+ tη(B,A))dt ≤ f(A) + f(B)

2
. (1.11)

In [8], Ghazanfari defined the operator s-convex function and proved Hermite-Hadamard type inequality
for operator s-convex function as follows.

We denote by B(H)+ the set of all positive operators in B(H) and

C(H) := {A ∈ B(H)+ : AB +BA ≥ 0 for all B ∈ B(H)+}. (1.12)

It is obvious that C(H) is a closed convex cone in B(H).

Definition 1.8 ([8]). Let I be an interval in R0 and S be a convex subset of B(H)+. A continuous function
f : I → R is said to be operator s-convex on I for operators in S if

f(λA+ (1− λ)B) ≤ λsf(A) + (1− λ)sf(B) (1.13)

in the operator order in B(H), for all λ ∈ [0, 1] and for every positive operators A and B in S whose spectra
are contained in I and for some fixed s ∈ (0, 1].

Theorem 1.9 ([8]). Let f : I ⊆ R0 → R be an operator s-convex function on the interval I for operators
in S ⊆ B(H)+ and for some fixed s ∈ (0, 1]. Then for all positive operators A and B in S with spectra in I
we have the inequality

2s−1f

(
A+B

2

)
≤
∫ 1

0
f((1− t)A+ tB)dt ≤ f(A) + f(B)

s+ 1
. (1.14)

Motivated by the above results we investigate in this paper the operator version of the Hermite-Hadamard
inequality for operator s-preinvex functions.
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2. Main results

In order to verify our main results, the following preliminary definition and lemmas are necessary.

Definition 2.1. Let I be an interval in R0 and S ⊆ B(H)+sa be an invex set with respect to η : S × S →
B(H)+sa. Then, the continuous function f : I → R is said to be operator s-preinvex with respect to η on I
for operators in S, if

f(A+ tη(B,A)) ≤ (1− t)sf(A) + tsf(B) (2.1)

in the operator order in B(H), for all t ∈ [0, 1] and every positive operators A and B in S whose spectra
are contained in I and for some fixed s ∈ (0, 1].

It is obvious that every operator 1-preinvex function is operator preinvex, and every operator s-convex
function is operator s-preinvex with respect to the map η(A,B) = A−B.

Lemma 2.2 ([14]). Let A,B ∈ B(H)+. Then AB +BA is positive if and only if f(A+B) ≤ f(A) + f(B)
for all non-negative operator monotone functions f on R0.

Now, we give an example of operator s-preinvex function.

Example 2.3. Suppose that 1H is the identity operator on a Hilbert space H, and

S := (1H , 5 · 1H) = {A ∈ B(H)+sa : 1H < A < 5 · 1H}.

The map η : S × S → B(H)+sa is defined by η(A,B) = A − B for all A > B ≥ 0 in the operator order in
B(H). Clearly η satisfies condition (C) and S is an invex set with respect to η. From Lemma 2.2 and (1.12),
the continuous function f(t) = ts(0 < s ≤ 1) is operator s-preinvex with respect to η on S for operators in
C(H).

The following lemma is a generalization of Proposition 1 in [7].

Lemma 2.4. Let S ⊆ B(H)+sa be an invex set with respect to η : S × S → B(H)+sa and f : I ⊆ R0 → R
be a continuous function on the interval I. Suppose that η satisfies condition (C) on S. Then for every
A,B ∈ S and V = A + η(B,A) and for some fixed s ∈ (0, 1], the function f is operator s-preinvex with
respect to η on η-path PAV with spectra of A and with spectra of V in the interval I if and only if the function
ϕx,A,B : [0, 1]→ R defined by

ϕx,A,B(t) := 〈f(A+ tη(B,A))x, x〉 (2.2)

is s-convex on [0, 1] for every x ∈ H with ‖x‖ = 1.

Proof. Suppose that x ∈ H with ‖x‖ = 1 and ϕx,A,B : [0, 1]→ R is s-convex on [0, 1] for some fixed s ∈ (0, 1].
For every C1 := A+ t1η(B,A) ∈ PAV , C2 := A+ t2η(B,A) ∈ PAV , fix λ ∈ [0, 1], by (2.2) we have

〈f(C1 + λη(C2, C1))x, x〉 = 〈f(A+ ((1− λ)t1 + λt2)η(B,A))x, x〉
= ϕx,A,B((1− λ)t1 + λt2)

≤ (1− λ)sϕx,A,B(t1) + λsϕx,A,B(t2)

= (1− λ)s〈f(C1)x, x〉+ λs〈f(C2)x, x〉. (2.3)

Hence, f is operator s-preinvex with respect to η on η-path PAV .
Conversely, let A,B ∈ S and f be operator s-preinvex with respect to η on η-path PAV for some fixed

s ∈ (0, 1]. Suppose that t1, t2 ∈ [0, 1]. Then for every λ ∈ [0, 1] and x ∈ H with ‖x‖ = 1, we have

ϕx,A,B((1− λ)t1 + λt2) = 〈f(A+ t1η(B,A) + λη(A+ t2η(B,A), A+ t1η(B,A)))x, x〉
≤ (1− λ)s〈f(A+ t1η(B,A))x, x〉+ λs〈f(A+ t2η(B,A))x, x〉
= (1− λ)sϕx,A,B(t1) + λsϕx,A,B(t2). (2.4)

Therefore, ϕx,A,B is s-convex on [0, 1]. The proof of Lemma 2.4 is complete.
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The following theorem is the generalization of Hermite-Hadamard’s inequality for operator s-preinvex
functions.

Theorem 2.5. Let S ⊆ B(H)+sa be an invex set with respect to η : S × S → B(H)+sa and η satisfy condition
(C) on S. If for every A,B ∈ S and V = A+ η(B,A) and for some fixed s ∈ (0, 1], the continuous function
f : I ⊆ R0 → R is operator s-preinvex with respect to η on η-path PAV with spectra of A and with spectra of
V in the interval I. Then we have the inequality

2s−1f

(
A+ V

2

)
≤
∫ 1

0
f(A+ tη(B,A))dt ≤ f(A) + f(B)

s+ 1
. (2.5)

Proof. For x ∈ H with ‖x‖ = 1 and t ∈ [0, 1], we have

〈(A+ tη(B,A))x, x〉 = 〈Ax, x〉+ t〈η(B,A)x, x〉 ∈ I, (2.6)

since 〈Ax, x〉 ∈ Sp(A) ⊆ I and 〈V x, x〉 ∈ Sp(V ) ⊆ I.
Continuity of f and (2.6) imply that the operator valued integral

∫ 1
0 f(A+ tη(B,A))dt exists.

Since η satisfies condition (C) and f is s-preinvex with respect to η, for every t ∈ [0, 1], we have

f

(
A+

1

2
η(B,A)

)
≤ 1

2s
f(A+ tη(B,A)) +

1

2s
f(A+ (1− t)η(B,A))

≤ 1

2s
[(1− t)s + ts][f(A) + f(B)]. (2.7)

Integrating the inequality (2.7) over t ∈ [0, 1] and taking into account that∫ 1

0
f(A+ tη(B,A))dt =

∫ 1

0
f(A+ (1− t)η(B,A))dt, (2.8)

we obtain the inequality (2.5), which completes the proof of Theorem 2.5.

Remark 2.6. Choosing s = 1 and η(B,A) = B −A respectively, we obtain Theorem 1.7 and Theorem 1.9.

Now we establish the estimates of both sides of Hermite-Hadamard type inequality in which some
operator s-preinvex functions of selfadjoint operators in Hilbert spaces are involved.

Theorem 2.7. Let the function f : I ⊆ R0 → R0 be continuous, S ⊆ B(H)+sa be an invex set with respect
to η : S × S → B(H)+sa, and η satisfy condition (C) on S. If for every A,B ∈ S and V = A+ η(B,A) and
for some fixed s ∈ (0, 1], the function f is operator s-preinvex with respect to η on η-path PAV with spectra
of A and with spectra of V in the interval I. Then for every a, b ∈ (0, 1) with a < b and every x ∈ H with
‖x‖ = 1, the following inequality holds,∣∣∣∣∣

〈∫ (a+b)/2

0
f(A+ uη(B,A))du x, x

〉
− 1

b− a

∫ b

a

〈∫ t

0
f(A+ uη(B,A))du x, x

〉
dt

∣∣∣∣∣
≤ b− a

4(s+ 1)(s+ 2)

[
〈f(A+ aη(B,A))x, x〉

+ 2(s+ 1)

〈
f

(
A+

a+ b

2
η(B,A)

)
x, x

〉
+ 〈f(A+ bη(B,A))x, x〉

]
. (2.9)

Moreover, we have∥∥∥∥∥
∫ (a+b)/2

0
f(A+ uη(B,A))du− 1

b− a

∫ b

a

∫ t

0
f(A+ uη(B,A))dudt

∥∥∥∥∥
≤ b− a

2(s+ 1)

[
‖f(A+ aη(B,A))‖+ 2(s+ 1)

∥∥f(A+ a+b
2 η(B,A)

)∥∥+ ‖f(A+ bη(B,A))‖
2(s+ 2)

]
. (2.10)
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Proof. Let A,B ∈ S and a, b ∈ (0, 1) with a < b. For x ∈ H with ‖x‖ = 1, we define the function
ϕ : [a, b] ⊆ [0, 1]→ R0 by

ϕ(t) :=

〈∫ t

0
f(A+ uη(B,A))du x, x

〉
.

Utilizing the continuity of f , the continuity property of the inner product, and the properties of the
integral of operator-valued functions, we have〈∫ t

0
f(A+ uη(B,A))du x, x

〉
=

∫ t

0
〈f(A+ uη(B,A))x, x〉du.

Since f(A+ uη(B,A)) ≥ 0, ϕ(t) ≥ 0 for all t ∈ [a, b]. Obviously for every t ∈ [a, b], we have

ϕ′(t) = 〈f(A+ tη(B,A))x, x〉 ≥ 0,

hence, |ϕ′(t)|= ϕ′(t).
Since f is operator s-preinvex with respect to η on η-path PAV for some fixed s ∈ (0, 1], by Lemma 2.4

ϕ′ is s-convex. Applying Theorem 1.3 to the function ϕ implies that∣∣∣∣ϕ(a+ b

2

)
− 1

b− a

∫ b

a
ϕ(t)dt

∣∣∣∣ ≤ b− a
4(s+ 1)(s+ 2)

[
ϕ′(a) + 2(s+ 1)ϕ′

(
a+ b

2

)
+ ϕ′(b)

]
, (2.11)

and we know that the inequality (2.9) holds. Taking supremum over both sides of inequality (2.9) for all x
with ‖x‖ = 1, we deduce that the inequality (2.10) holds. Theorem 2.7 is thus proved.

Corollary 2.8. Under the assumptions of Theorem 2.7, it turns out that∣∣∣∣∣
〈∫ (a+b)/2

0
f(A+ uη(B,A))du x, x

〉
− 1

b− a

∫ b

a

〈∫ t

0
f(A+ uη(B,A))du x, x

〉
dt

∣∣∣∣∣
≤ (22−s + 1)(b− a)

2(s+ 1)(s+ 2)

[
〈f(A+ aη(B,A))x, x〉+ 〈f(A+ bη(B,A))x, x〉

2

]
. (2.12)

Furthermore, we have∥∥∥∥∥
∫ (a+b)/2

0
f(A+ uη(B,A))du− 1

b− a

∫ b

a

∫ t

0
f(A+ uη(B,A))dudt

∥∥∥∥∥
≤ (22−s + 1)(b− a)

2(s+ 1)(s+ 2)

[
‖f(A+ aη(B,A))‖+ ‖f(A+ bη(B,A))‖

2

]
. (2.13)

Proof. As the proof of Theorem 2.7, employing s-convexity of ϕ and (2.11) yield the results of Corollary
2.8.

Corollary 2.9. With the conditions of Theorem 2.7, if s = 1, then∣∣∣∣∣
〈∫ (a+b)/2

0
f(A+ uη(B,A))du x, x

〉
− 1

b− a

∫ b

a

〈∫ t

0
f(A+ uη(B,A))du x, x

〉
dt

∣∣∣∣∣
≤ b− a

4

[〈f(A+ aη(B,A))x, x〉+ 4
〈
f
(
A+ a+b

2 η(B,A)
)
x, x

〉
+ 〈f(A+ bη(B,A))x, x〉

6

]
. (2.14)

In addition, we have∥∥∥∥∥
∫ (a+b)/2

0
f(A+ uη(B,A))du− 1

b− a

∫ b

a

∫ t

0
f(A+ uη(B,A))dudt

∥∥∥∥∥
≤ b− a

4

[‖f(A+ aη(B,A))‖+ 4
∥∥f(A+ a+b

2 η(B,A)
)∥∥+ ‖f(A+ bη(B,A))‖

6

]
. (2.15)
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Corollary 2.10. Under the assumptions of Theorem 2.7, if η(B,A) = B −A, then∣∣∣∣∣
〈∫ (a+b)/2

0
f((1− u)A+ uB)du x, x

〉
− 1

b− a

∫ b

a

〈∫ t

0
f((1− u)A+ uB)du x, x

〉
dt

∣∣∣∣∣
≤ b− a

4(s+ 1)(s+ 2)

[
〈f((1− a)A+ aB)x, x〉

+ 2(s+ 1)

〈
f

(
2− a− b

2
A+

a+ b

2
B

)
x, x

〉
+ 〈f((1− b)A+ bB)x, x〉

]
. (2.16)

Moreover, we have∥∥∥∥∥
∫ (a+b)/2

0
f((1− u)A+ uB)du− 1

b− a

∫ b

a

∫ t

0
f((1− u)A+ uB)dudt

∥∥∥∥∥
≤ b− a

2(s+ 1)

[
‖f((1− a)A+ aB)‖+ 2(s+ 1)

∥∥f(2−a−b2 A+ a+b
2 B

)∥∥+ ‖f((1− b)A+ bB)‖
2(s+ 2)

]
. (2.17)

Remark 2.11. Corollaries 2.8, 2.9 and 2.10 are generalizations of Theorem 5 in [2] and Theorem 2.2 in [15],
respectively.

Theorem 2.12. Let the function f : I ⊆ R0 → R0 be continuous, S ⊆ B(H)+sa be an invex set with respect
to η : S × S → B(H)+sa, and η satisfy condition (C) on S. If for every A,B ∈ S and V = A+ η(B,A) and
for some fixed s ∈ (0, 1], the function f is operator s-preinvex with respect to η on η-path PAV with spectra
of A and with spectra of V in the interval I. Then for every a, b ∈ (0, 1) with a < b and every x ∈ H with
‖x‖ = 1, the following inequality holds,∣∣∣∣∣12

〈∫ a

0
f(A+ uη(B,A))du x, x

〉
+

1

2

〈∫ b

0
f(A+ uη(B,A))du x, x

〉

− 1

b− a

∫ b

a

〈∫ t

0
f(A+ uη(B,A))du x, x

〉
dt

∣∣∣∣∣
≤ (b− a)(2s+1 + 1)

2s(s+ 1)(s+ 2)

[
〈f(A+ aη(B,A))x, x〉+ 〈f(A+ bη(B,A))x, x〉

2

]
. (2.18)

Furthermore, we have∥∥∥∥∥1

2

∫ a

0
f(A+ uη(B,A))du+

1

2

∫ b

0
f(A+ uη(B,A))du− 1

b− a

∫ b

a

∫ t

0
f(A+ uη(B,A))dudt

∥∥∥∥∥
≤ (b− a)(2s+1 + 1)

2s(s+ 1)(s+ 2)

[
‖f(A+ aη(B,A))‖+ ‖f(A+ bη(B,A))‖

2

]
. (2.19)

Proof. With the inequality (1.5) and the similar approach of the proof of Theorem 2.7, it is a simple
verification. We omit the routine details.

Corollary 2.13. With the conditions of Theorem 2.12, if s = 1, then∣∣∣∣∣12
〈∫ a

0
f(A+ uη(B,A))du x, x

〉
+

1

2

〈∫ b

0
f(A+ uη(B,A))du x, x

〉

− 1

b− a

∫ b

a

〈∫ t

0
f(A+ uη(B,A))du x, x

〉
dt

∣∣∣∣∣
≤ 5(b− a)

12

[
〈f(A+ aη(B,A))x, x〉+ 〈f(A+ bη(B,A))x, x〉

2

]
. (2.20)



Shu-Hong Wang, Xi-Min Liu, J. Nonlinear Sci. Appl. 8 (2015), 1070–1081 1078

Moreover, we have∥∥∥∥∥1

2

∫ a

0
f(A+ uη(B,A))du+

1

2

∫ b

0
f(A+ uη(B,A))du− 1

b− a

∫ b

a

∫ t

0
f(A+ uη(B,A))dudt

∥∥∥∥∥
≤ 5(b− a)

12

[
‖f(A+ aη(B,A))‖+ ‖f(A+ bη(B,A))‖

2

]
. (2.21)

Corollary 2.14. Under the assumptions of Theorem 2.12, if η(B,A) = B −A, then∣∣∣∣∣12
〈∫ a

0
f((1− u)A+ uB)du x, x

〉
+

1

2

〈∫ b

0
f((1− u)A+ uB)du x, x

〉

− 1

b− a

∫ b

a

〈∫ t

0
f((1− u)A+ uB)du x, x

〉
dt

∣∣∣∣∣
≤ (b− a)(2s+1 + 1)

2s(s+ 1)(s+ 2)

[
〈f((1− a)A+ aB)x, x〉+ 〈f((1− b)A+ bB)x, x〉

2

]
. (2.22)

In addition, we have∥∥∥∥∥1

2

∫ a

0
f((1− u)A+ uB)du+

1

2

∫ b

0
f((1− u)A+ uB)du− 1

b− a

∫ b

a

∫ t

0
f((1− u)A+ uB)dudt

∥∥∥∥∥
≤ (b− a)(2s+1 + 1)

2s(s+ 1)(s+ 2)

[
‖f((1− a)A+ aB)‖+ ‖f((1− b)A+ bB)‖

2

]
. (2.23)

Remark 2.15. Corollaries 2.13 and 2.14 are generalizations of Theorem 1.4 and Theorem 4 in [12], respec-
tively.

In what follows, Hermite-Hadamard type inequalities for the product of two operator s-preinvex functions
are established.

For some fixed s1, s2 ∈ (0, 1], let f : I ⊆ R0 → R be an operator s1-preinvex function and g : I → R be
an operator s2-preinvex function on the interval I. Then for all positive operators A and B on a Hilbert
space H with spectra in I, we define real functions M(A,B) and N(A,B) on H by

M(A,B)(x) = 〈f(A)x, x〉〈g(A)x, x〉+ 〈f(B)x, x〉〈g(B)x, x〉, x ∈ H,
N(A,B)(x) = 〈f(A)x, x〉〈g(B)x, x〉+ 〈f(B)x, x〉〈g(A)x, x〉, x ∈ H.

(2.24)

We note that, the Beta function is defined as follows:

β(x, y) =

∫ 1

0
tx−1(1− t)y−1dt, x > 0, y > 0. (2.25)

The following two theorems are the generalization of Theorem 3.1 and Theorem 3.2 in [8] respectively
for operator s-preinvex functions.

Theorem 2.16. Let S ⊆ B(H)+sa be an invex set with respect to η : S×S → B(H)+sa and η satisfy condition
(C) on S. If for every A,B ∈ S and V = A + η(B,A) and for some fixed s1, s2 ∈ (0, 1], the continuous
function f : I ⊆ R0 → R is an operator s1-preinvex function and g : I → R is an operator s2-preinvex
function on the interval I with respect to η on η-path PAV with spectra of A and with spectra of V in the
interval I. Then we have the inequality∫ 1

0
〈f(A+ tη(B,A))x,x〉〈g(A+ tη(B,A))x, x〉dt

≤ 1

s1 + s2 + 1

[
M(A,B)(x) + s1β(s1, s2 + 1)N(A,B)(x)

]
(2.26)

holds for any x ∈ H with ‖x‖ = 1, where M(A,B) and N(A,B) are defined in (2.24), and the Beta function
is defined in (2.25).
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Proof. For x ∈ H with ‖x‖ = 1 and t ∈ [0, 1], we have

〈(A+ tη(B,A))x, x〉 = 〈Ax, x〉+ t〈η(B,A)x, x〉 ∈ I,

since 〈Ax, x〉 ∈ Sp(A) ⊆ I and 〈V x, x〉 ∈ Sp(V ) ⊆ I.
From the continuity of f , g, it shows that the operator valued integral

∫ 1
0 f(A + tη(B,A))dt,∫ 1

0 g(A+ tη(B,A))dt, and
∫ 1
0 (fg)(A+ tη(B,A))dt exist.

Since f : I → R is operator s1-preinvex and g : I → R is operator s2-preinvex for some fixed s1, s2 ∈ (0, 1],
therefore for every t ∈ [0, 1] we derive

〈f(A+ tη(B,A))x, x〉〈g(A+ tη(B,A))x, x〉
≤ (1− t)s1+s2〈f(A)x, x〉〈g(A)x, x〉+ (1− t)s1ts2〈f(A)x, x〉〈g(B))x, x〉

+ ts1(1− t)s2〈f(B)x, x〉〈g(A)x, x〉+ ts1+s2〈f(B)x, x〉〈g(B))x, x〉. (2.27)

Integrating both sides of (2.27) over t ∈ [0, 1], we get the required inequality (2.26). The proof of
Theorem 2.16 is complete.

Corollary 2.17. Under the assumptions of Theorem 2.16, if s1 = s2 = s, then∫ 1

0
〈f(A+ tη(B,A))x, x〉〈g(A+ tη(B,A))x, x〉dt

≤ 1

2s+ 1

[
M(A,B)(x) + sβ(s, s+ 1)N(A,B)(x)

]
. (2.28)

Specially, if s1 = s2 = 1, then∫ 1

0
〈f(A+ tη(B,A))x, x〉〈g(A+ tη(B,A))x, x〉dt ≤ 2M(A,B)(x) +N(A,B)(x)

6
. (2.29)

Corollary 2.18. With the conditions of Theorem 2.16, if η(B,A) = B −A, then∫ 1

0
〈f((1− t)A+ tB)x,x〉〈g((1− t)A+ tB)x, x〉dt

≤ 1

s1 + s2 + 1

[
M(A,B)(x) + s1β(s1, s2 + 1)N(A,B)(x)

]
. (2.30)

Theorem 2.19. Let S ⊆ B(H)+sa be an invex set with respect to η : S×S → B(H)+sa and η satisfy condition
(C) on S. If for every A,B ∈ S and V = A + η(B,A) and for some fixed s1, s2 ∈ (0, 1], the continuous
function f : I ⊆ R0 → R is an operator s1-preinvex function and g : I → R is an operator s2-preinvex
function on the interval I with respect to η on η-path PAV with spectra of A and with spectra of V in the
interval I. Then we have that the inequality

2s1+s2−1
〈
f

(
A+ V

2

)
x, x

〉〈
g

(
A+ V

2

)
x, x

〉
(2.31)

≤
∫ 1

0
〈f(A+ tη(B,A))x, x〉〈g(A+ tη(B,A))x, x〉dt

+
1

s1 + s2 + 1

[
N(A,B)(x) + s1β(s1, s2 + 1)M(A,B)(x)

]
(2.32)

holds for any x ∈ H with ‖x‖ = 1, where M(A,B) and N(A,B) are defined on H in (2.24) and the Beta
function is defined in (2.25).
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Proof. Since f : I → R is operator s1-preinvex and g : I → R be operator s2-preinvex for some fixed
s1, s2 ∈ (0, 1], therefore for every t ∈ [0, 1] we have〈

f

(
A+ V

2

)
x, x

〉〈
g

(
A+ V

2

)
x, x

〉
≤ 1

2s1
〈[f(A+ tη(B,A)) + f(A+ (1− t)η(B,A))]x, x〉

× 1

2s2
〈[g(A+ tη(B,A)) + g(A+ (1− t)η(B,A))]x, x〉

≤ 1

2s1+s2

[
〈f(A+ tη(B,A))x, x〉〈g(A+ tη(B,A))x, x〉

+ 〈f(A+ (1− t)η(B,A))x, x〉〈g(A+ (1− t)η(B,A))x, x〉
]

+
1

2s1+s2

{
[ts1+s2 + (1− t)s1+s2 ][〈f(A)x, x〉〈g(B)x, x〉+ 〈f(B)x, x〉〈g(A)x, x〉]

+ [ts1(1− t)s2 + ts2(1− t)s1 ][〈f(A)x, x〉〈g(A)x, x〉+ 〈f(B)x, x〉〈g(B)x, x〉]
}
. (2.33)

By integrating over t ∈ [0, 1] and taking into account that∫ 1

0
〈f(A+ tη(B,A))x, x〉〈g(A+ tη(B,A))x, x〉dt

=

∫ 1

0
〈f(A+ (1− t)η(B,A))x, x〉〈g(A+ (1− t)η(B,A))x, x〉dt,

we obtain the required inequality (2.31). Theorem 2.19 is thus proved.

Corollary 2.20. Under the assumptions of Theorem 2.19, if s1 = s2 = s, then

22s−1
〈
f

(
A+ V

2

)
x, x

〉〈
g

(
A+ V

2

)
x, x

〉
≤
∫ 1

0
〈f(A+ tη(B,A))x, x〉〈g(A+ tη(B,A))x, x〉dt

+
1

2s+ 1

[
N(A,B)(x) + sβ(s, s+ 1)M(A,B)(x)

]
. (2.34)

In particular, if s1 = s2 = 1, then

2

〈
f

(
A+ V

2

)
x, x

〉〈
g

(
A+ V

2

)
x, x

〉
≤
∫ 1

0
〈f(A+ tη(B,A))x, x〉〈g(A+ tη(B,A))x, x〉dt

+
2N(A,B)(x) +M(A,B)(x)

6
. (2.35)

Corollary 2.21. With the conditions of Theorem 2.19, if η(B,A) = B −A, then

2s1+s2−1
〈
f

(
A+B

2

)
x, x

〉〈
g

(
A+B

2

)
x, x

〉
≤
∫ 1

0
〈f((1− t)A+ tB)x, x〉〈g((1− t)A+ tB)x, x〉dt

+
1

s1 + s2 + 1

[
N(A,B)(x) + s1β(s1, s2 + 1)M(A,B)(x)

]
. (2.36)
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Corollary 2.22. With the assumptions of Theorem 2.16 and Theorem 2.19, we get

2s1+s2−1
〈
f

(
A+B

2

)
x, x

〉〈
g

(
A+B

2

)
x, x

〉
− 1

s1 + s2 + 1

[
N(A,B)(x) + s1β(s1, s2 + 1)M(A,B)(x)

]
≤
∫ 1

0
〈f((1− t)A+ tB)x, x〉〈g((1− t)A+ tB)x, x〉dt

≤ 1

s1 + s2 + 1

[
M(A,B)(x) + s1β(s1, s2 + 1)N(A,B)(x)

]
. (2.37)
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