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Abstract

In this paper, we present some new fixed point theorems for probabilistic contractions with a gauge function ϕ
in generalized probabilistic metric spaces proposed by Zhou et al. Our theorems not only are generalizations
of the corresponding results of Ćirić [L. Ćirić, Nonlinear Anal., 72 (2010), 2009–2018] and Jachymski [J.
Jachymski, Nonlinear Anal., 73 (2010), 2199–2203], but also improve and extend the recent results given by
Zhou et al. [C. Zhou, S. Wang, L. Ćirić, S. M. Alsulami, Fixed Point Theory Appl. 2014 (2014), 15 pages].
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1. Introduction and Preliminaries

Suppose that R = (−∞,+∞), R+ = [0,+∞), R = R ∪ {−∞,+∞}, and let Z+ be the set of all positive
integers. A function F : R→ [0, 1] is called a distribution function if it is nondecreasing and left-continuous
with F (−∞) = 0 and F (+∞) = 1. The set of all probability distribution functions is denoted by D∞.
Suppose that D = {F ∈ D∞ : inft∈R F (t) = 0, supt∈R F (t) = 1}, D+

∞ = {F ∈ D∞ : F (0) = 0}, and
D+ = D ∩D+

∞.

Definition 1.1 ([15]). A mapping T : [0, 1]× [0, 1]→ [0, 1] is a continuous t-norm if T satisfies the following
conditions:
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(1) T is commutative and associative, i.e., T (a, b) = T (b, a) and T (a, T (b, c)) = T (T (a, b), c), for all
a, b, c ∈ [0, 1];

(2) T is continuous;

(3) T (a, 1) = a for all a ∈ [0, 1];

(4) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

From the definition of T it follows that T (a, b) ≤ min{a, b} for all a, b ∈ [0, 1].
Two typical examples of continuous t-norms are TM (a, b) = min{a, b} and Tp(a, b) = ab for all a, b ∈ [0, 1].

Definition 1.2 ([6]). A t-norm T is said to be of H-type (Hadžić type) if the family of functions {Tn(t)}+∞n=1

is equicontinuous at t = 1, that is, for any ε ∈ (0, 1), there exists δ ∈ (0, 1) such that

t > 1− δ ⇒ Tn(t) > 1− ε, ∀ n ≥ 1,

where Tn : [0, 1]→ [0, 1] is defined as follows:

T 1(t) = T (t, t), T 2(t) = T (t, T 1(t)), · · · , Tn(t) = T (t, Tn−1(t)), · · · .

Obviously, Tn(t) ≤ t for all n ∈ Z+ and t ∈ [0, 1].

TM is a trivial example of t-norm of Hadžić-type [7].

Definition 1.3. If ϕ : R+ → R+ is a function such that ϕ(0) = 0, then ϕ is called a gauge function. If
t ∈ R+, then ϕn(t) denotes the nth iteration of ϕ(t) and ϕ−1({0}) = {t ∈ R+ : ϕ(t) = 0}.

In 1942, Menger [11] introduced the concept of Menger probabilistic metric space (abbreviated, Menger
PM-space) as follows.

Definition 1.4 ([11]). A Menger PM-space is a triple (X,F, T ), whereX is a nonempty set, T is a continuous
t-norm and F is a mapping from X ×X to D+

∞(Fx,y denotes the value of F at the pair (x, y)) satisfying the
following conditions:

(PM-1) Fx,y(t) = 1 for all t > 0 if and only if x = y;

(PM-2) Fx,y(t) = Fy,x(t) for all x, y ∈ X and t > 0;

(PM-3) Fx,z(t+ s) ≥ T (Fx,y(t), Fy,z(s)) for all x, y, z ∈ X and all s, t > 0.

It is well known that Menger PM-spaces are a very important generalization of metric spaces, and
are considered to be of interest in the investigation of physical quantities and physiological thresholds.
They are also of fundamental importance in probabilistic functional analysis [14]. Many results regarding
generalizations of the notion of Menger PM-space or the existence and uniqueness of fixed points under
various types of conditions in Menger PM-spaces have been obtained (see [1], [2], [3], [5], [9], [10], [14]).

In 2006, Mustafa and Sims [12] established the following interesting result.

Definition 1.5 ([12]). Let X be a nonempty set and G : X × X × X → R+ be a function satisfying the
following properties:

(G1) G(x, y, z) = 0 if and only if x = y = z,
(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y,
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . for all x, y, z ∈ X (symmetry in all three variables),
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

Then the function G is called a generalized metric or, more specifically, a G-metric on X, and the pair
(X,G) is called a G-metric space.
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In 2014, Zhou et al. [16] presented a probabilistic version of G-metric spaces, called Menger probabilistic
G-metric spaces (briefly, Menger PGM-spaces). The authors discussed the topological properties of these
spaces and proved two important fixed point theorems under a probabilistic λ-contractive condition in this
setting. Now we recall some definitions and results on Menger PGM-spaces which are used later on in the
paper. For more details, we refer the reader to [16].

Definition 1.6 ([16]). A Menger PGM-space is a triple (X,G∗, T ), where X is a nonempty set, T is a
continuous t-norm and G∗ is a mapping from X ×X ×X into D+

∞ (G∗x,y,z denotes the value of G∗ at the
point (x, y, z)) satisfying the following conditions:

(PGM-1) G∗x,y,z(t) = 1 for all t > 0 if and only if x = y = z;
(PGM-2) G∗x,x,y(t) ≥ G∗x,y,z(t) for all x, y, z ∈ X with z 6= y and t > 0;
(PGM-3) G∗x,y,z(t) = G∗x,z,y(t) = G∗y,x,z(t) = . . . (symmetry in all three variables);
(PGM-4) G∗x,y,z(t+ s) ≥ T (G∗x,a,a(s), G

∗
a,y,z(t)) for all x, y, z, a ∈ X and all s, t > 0.

Definition 1.7 ([16]). Let (X,G∗, T ) be a Menger PGM-space and x0 be a point in X. For any ε > 0 and
δ with 0 < δ < 1, an (ε, δ)-neighborhood of x0 is the set of all points y in X for which G∗x0,y,y(ε) > 1 − δ
and G∗y,x0,x0(ε) > 1− δ. We write

Nx0(ε, δ) = {y ∈ X : G∗x0,y,y(ε) > 1− δ,G∗y,x0,x0(ε) > 1− δ}.

Definition 1.8 ([16]). (1) A sequence {xn} in a Menger PGM-space (X,G∗, T ) is said to be convergent
to a point x ∈ X (written xn → x) if, for any ε > 0 and 0 < δ < 1, there exists a positive integer Mε,δ

such that xn ∈ Nx(ε, δ) whenever n > Mε,δ.

(2) A sequence {xn} in a Menger PGM-space (X,G∗, T ) is called a Cauchy sequence if, for any ε > 0 and
0 < δ < 1, there exists a positive integer Mε,δ such that G∗xn,xm,xl(ε) > 1− δ whenever m,n, l > Mε,δ.

(3) A Menger PGM-space (X,G∗, T ) is said to be complete if every Cauchy sequence in X converges to a
point in X.

Theorem 1.9 ([16]). Let (X,G∗, T ) be a Menger PGM-space. Let {xn}, {yn} and {zn} be sequences in X
and x, y, z ∈ X. If xn → x, yn → y and zn → z as n → ∞, then, for any t > 0, G∗xn,yn,zn(t) → G∗x,y,z(t) as
n→∞.

Lemma 1.10 ([8]). Suppose that F ∈ D+. For each n ∈ Z+, let Fn : R → [0, 1] be nondecreasing, and
gn : (0,+∞)→ (0,+∞) satisfy limn→∞ gn(t) = 0 for any t > 0. If

Fn(gn(t)) ≥ F (t)

for any t > 0, then limn→∞ Fn(t) = 1 for any t > 0.

Although probabilistic ϕ-contractions are a natural generalization of probabilistic λ-contractions, the
techniques used in the proofs of fixed point results for probabilistic λ-contractions are no longer usable
for probabilistic ϕ-contractions [4]. In 2009, Ćirić [4] presented a fixed point theorem for probabilistic ϕ-
contractions. Jachymski [8] found a counterexample to the key lemma in [4], and established a corrected
version of Ćirić’s theorem. Inspired by the works in [4] and [8], in this paper, we try to obtain some new
fixed point theorems under probabilistic ϕ-contractive conditions in Menger PGM-spaces. Our theorems
not only are generalizations of the corresponding results of Ćirić [4], Jachymski [8] and other authors, but
also improve and generalize the recent results given by Zhou et al. [16].

2. Fixed point results for probabilistic ϕ-contractions in generalized probabilistic metric spaces

Lemma 2.1. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let ϕ : R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t, and limn→∞ ϕ

n(t) = 0 for any t > 0. If

G∗x,y,z(ϕ(t)) = G∗x,y,z(t) (2.1)

for all t > 0, then x = y = z.
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Proof. On the one hand, from G∗x,y,z(ϕ(t)) = G∗x,y,z(t), we have

G∗x,y,z(ϕ
n(t)) = G∗x,y,z(t)

for all n ∈ Z+ and t > 0. Due to the fact that limt→+∞G
∗
x,y,z(t) = 1, for any ε ∈ (0, 1), there exists t0 > 0

such that G∗x,y,z(t0) > 1− ε.
On the other hand, by limn→∞ ϕ

n(t) = 0, for any δ > 0, there exists N(δ) ∈ Z+ such that ϕn(t0) ≤ δ
for all n ≥ N(δ).

Thus
G∗x,y,z(δ) ≥ G∗x,y,z(ϕn(t0)) = G∗x,y,z(t0) > 1− ε,

which implies that G∗x,y,z(t) = 1 for all t > 0.
Therefore, x = y = z.

Following the proof of Lemma 2.1, we can similarly obtain the next result.

Lemma 2.2. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let ϕ : R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t, and limn→∞ ϕ

n(t) = +∞ for any t > 0. If

G∗x,y,z(t) = G∗x,y,z(ϕ(t)) (2.2)

for all t > 0, then x = y = z.

Lemma 2.3. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let ϕ : R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t, and limn→∞ ϕ

n(t) = 0 for any t > 0. If g1, g2, . . . , gn :
R→ [0, 1], and

G∗x,y,z(ϕ(t)) ≥ min{g1(t), g2(t), . . . , gn(t), G∗x,y,z(t)} (2.3)

for all t > 0, then
G∗x,y,z(ϕ(t)) ≥ min{g1(t), g2(t), . . . , gn(t)},

for all t > 0.

Proof. When min{g1(t), g2(t), . . . , gn(t), G∗x,y,z(t)} < G∗x,y,z(t), Lemma 2.3 obviously holds.
Suppose now that min{g1(t), g2(t), . . . , gn(t), G∗x,y,z(t)} = G∗x,y,z(t). From (2.3) we have

G∗x,y,z(ϕ(t)) ≥ G∗x,y,z(t).

However, since and ϕ(t) < t,
G∗x,y,z(t) ≥ G∗x,y,z(ϕ(t)).

Therefore G∗x,y,z(ϕ(t)) = G∗x,y,z(t) for all t > 0. Then from Lemma 2.1, we obtain that

G∗x,y,z(t) = 1

for all t > 0. Thus g1(t) = g2(t) = . . . = gn(t) = 1 for all t > 0. Consequently, G∗x,y,z(ϕ(t)) ≥
min{g1(t), g2(t), . . . , gn(t)} for all t > 0, and the proof of Lemma 2.3 is completed.

In the same way as stated above, we can prove that the following lemma holds.

Lemma 2.4. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let ϕ : R+ → R+

be a gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t, and limn→∞ ϕ
n(t) = +∞ for any t > 0. If

g1, g2, . . . , gn : R→ [0, 1], and

G∗x,y,z(t) ≥ min{g1(ϕ(t)), g2(ϕ(t)), . . . , gn(ϕ(t)), G∗x,y,z(ϕ(t))} (2.4)

for all t > 0, then
G∗x,y,z(t) ≥ min{g1(ϕ(t)), g2(ϕ(t)), . . . , gn(ϕ(t))}

for all t > 0.
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Theorem 2.5. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let ϕ : R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t, and limn→∞ ϕ

n(t) = 0 for any t > 0. Let f : X → X be
a given mapping satisfying

G∗fx,fy,fz(ϕ(t)) ≥ min{G∗x,y,z(t), G∗y,fy,fy(t), G∗z,fz,fz(t)} (2.5)

for all x, y, z ∈ X and t > 0. Then f has a unique fixed point in X.

Proof. Let x0 ∈ X. We define a sequence {xn} in the following way:

xn+1 = fxn, n ∈ N.

From the assumption (2.5), for any t > 0, we find that

G∗xn+1,xn+2,xn+2
(ϕ(t)) = G∗fxn,fxn+1,fxn+1

(ϕ(t))

≥ min{G∗xn,xn+1,xn+1
(t), G∗xn+1,fxn+1,fxn+1

(t), G∗xn+1,fxn+1,fxn+1
(t)}

= min{G∗xn,xn+1,xn+1
(t), G∗xn+1,xn+2,xn+2

(t), G∗xn+1,xn+2,xn+2
(t)}

= min{G∗xn,xn+1,xn+1
(t), G∗xn+1,xn+2,xn+2

(t)}. (2.6)

From Lemma 2.3, for any t > 0, we have

G∗xn+1,xn+2,xn+2
(ϕ(t)) ≥ G∗xn,xn+1,xn+1

(t). (2.7)

Denote Pn(t) = G∗xn,xn+1,xn+1
(t). From (2.7), we have

Pn+1(ϕ(t)) ≥ Pn(t),

which implies that
Pn+1(ϕ

n+1(t)) ≥ Pn(ϕn(t)) ≥ . . . ≥ P1(ϕ(t)) ≥ P0(t). (2.8)

Since limn→∞ ϕ
n(t) = 0 for each t > 0, using Lemma 1.10 , we have

lim
n→∞

Pn(t) = 1,

that is
lim
n→∞

G∗xn,xn+1,xn+1
(t) = 1 (2.9)

for any t > 0.
For any k ∈ Z+ and t > 0, we shall show the following inequality by mathematical induction:

G∗xn,xn+k,xn+k
(t) ≥ T k(G∗xn,xn+1,xn+1

(t− ϕ(t))). (2.10)

If k = 1,

G∗xn,xn+1,xn+1
(t) ≥ G∗xn,xn+1,xn+1

(t− ϕ(t))

= T
(
G∗xn,xn+1,xn+1

(t− ϕ(t)), 1
)

≥ T
(
G∗xn,xn+1,xn+1

(t− ϕ(t)), G∗xn,xn+1,xn+1
(t− ϕ(t))

)
= T 1

(
G∗xn,xn+1,xn+1

(t− ϕ(t))
)
.

Thus (2.10) holds in this case.
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Now we assume (2.10) holds for 1 ≤ k ≤ p. When k = p+ 1, by (PGM-4) we have

G∗xn,xn+p+1,xn+p+1
(t) = G∗xn,xn+p+1,xn+p+1

(t− ϕ(t) + ϕ(t))

≥ T
(
G∗xn,xn+1,xn+1

(t− ϕ(t)), G∗xn+1,xn+p+1,xn+p+1
(ϕ(t))

)
. (2.11)

Following (2.5), it is easy to find that

G∗xn+1,xn+2,xn+2
(t) ≥ G∗xn,xn+1,xn+1

(t)

for all n. In fact, if we suppose

G∗xn+1,xn+2,xn+2
(t) < G∗xn,xn+1,xn+1

(t),

then from ϕ(t) < t, we have
G∗xn+1,xn+2,xn+2

(t) ≥ G∗xn+1,xn+2,xn+2
(ϕ(t)).

Therefore, by (2.7) we obtain that

G∗xn+1,xn+2,xn+2
(t) ≥ G∗xn,xn+1,xn+1

(t),

which is a contradiction. So, for all n we have

G∗xn+1,xn+2,xn+2
(t) ≥ G∗xn,xn+1,xn+1

(t).

Thus
G∗xn+p,xn+p+1,xn+p+1

(t) ≥ G∗xn,xn+1,xn+1
(t). (2.12)

From (2.5), (2.12), the induction hypothesis and the monotony of G∗, we obtain that

G∗xn+1,xn+p+1,xn+p+1
(ϕ(t)) = G∗fxn,fxn+p,fxn+p

(ϕ(t))

≥ min{G∗xn,xn+p,xn+p
(t), G∗xn+p,fxn+p,fxn+p

(t), G∗xn+p,fxn+p,fxn+p
(t)}

= min{G∗xn,xn+p,xn+p
(t), G∗xn+p,xn+p+1,xn+p+1

(t)}
≥ min{G∗xn,xn+p,xn+p

(t), G∗xn,xn+1,xn+1
(t)}

≥ min{T p(G∗xn,xn+1,xn+1
(t− ϕ(t))), G∗xn,xn+1,xn+1

(t− ϕ(t))}
= T p(G∗xn,xn+1,xn+1

(t− ϕ(t))). (2.13)

Then from (2.11) and (2.13), for k = p+ 1 we have

G∗xn,xn+p+1,xn+p+1
(t) ≥ T

(
G∗xn,xn+1,xn+1

(t− ϕ(t)), T p(G∗xn,xn+1,xn+1
(t− ϕ(t)))

)
= T p+1(G∗xn,xn+1,xn+1

(t− ϕ(t))).

Thus
G∗xn,xn+k,xn+k

(t) ≥ T k(G∗xn,xn+1,xn+1
(t− ϕ(t)))

for all k ≥ 1.
Next, we shall prove that {xn} is a Cauchy sequence, i.e., limm,n,l→∞G

∗
xn,xm,xl

(t) = 1 for any t > 0.
To this end, first we show that limm,n,→∞G

∗
xn,xm,xm(t) = 1 for any t > 0. Suppose that ε ∈ (0, 1] is given.

Since T is a t-norm of H-type, there exists δ > 0, such that

Tn(s) > 1− ε, ∀ n ∈ Z+, (2.14)

when 1− δ < s ≤ 1.
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On the other hand, by (2.9), we have

lim
n→∞

G∗xn,xn+1,xn+1
(t− ϕ(t)) = 1,

which implies that there exists n0 ∈ N such that G∗xn,xn+1,xn+1
(t − ϕ(t)) > 1 − δ for all n ≥ n0. Hence,

from (2.10) and (2.14), we get G∗xn,xn+k,xn+k
(t) > 1 − ε for k ∈ Z+ and n ≥ n0. This shows that

limm,n→∞G
∗
xn,xm,xm(t) = 1 for any t > 0.

From (PGM-4), it follows that, for all t > 0,

G∗xn,xm,xl(t) ≥ T
(
G∗xn,xn,xm

( t
2

)
, G∗xn,xn,xl

( t
2

))
,

G∗xn,xn,xm

( t
2

)
≥ T

(
G∗xn,xm,xm

( t
4

)
, G∗xn,xm,xm

( t
4

))
and

G∗xn,xn,xl

( t
2

)
≥ T

(
G∗xn,xl,xl

( t
4

)
, G∗xn,xl,xl

( t
4

))
.

Therefore, by the continuity of T , we have

lim
m,n,l→∞

G∗xn,xm,xl(t) = 1

for any t > 0. This implies that {xn} is a Cauchy sequence.
Since X is complete, there exists some x ∈ X such that limn→∞ xn = x.
Now we show that x is a fixed point of X. Since ϕ(t) < t, by the monotony of G∗ and from (2.5) we

have

G∗fx,fxn,fxn(t) ≥ G∗fx,fxn,fxn(ϕ(t))

≥ min{G∗x,xn,xn(t), G∗xn,fxn,fxn(t), G∗xn,fxn,fxn(t)}
= min{G∗x,xn,xn(t), G∗xn,xn+1,xn+1

(t)}. (2.15)

Since {xn+1} is a subsequence of {xn}, fxn = xn+1 → x as n → ∞. Letting n → ∞ on both sides of
inequality (2.15), we get

G∗fx,x,x(t) ≥ G∗x,x,x(t) = 1

for all t > 0, hence, by (PGM-1),
x = fx.

Thus we have proved that f has a fixed point. Now, we shall show that x is the unique fixed point of f .
Suppose that y is another fixed point of f . We define a sequence {yn} in the following way:

yn = y, n ∈ N.

From (2.5), we have

G∗x,x,yn(ϕ(t)) = G∗x,x,y(ϕ(t)) = G∗fx,fx,fy(ϕ(t))

≥ min{G∗x,x,y(t), G∗x,fx,fx(t), G∗y,fy,fy(t)}
= G∗x,x,y(t) = G∗x,x,yn−1

(t). (2.16)

Denote Qn(t) = G∗x,x,yn(t) (t > 0). By (2.16), we have Qn(ϕ(t)) ≥ Qn−1(t), and hence for all t > 0,

Qn(ϕn(t)) ≥ Qn−1(ϕn−1(t)) ≥ . . . ≥ Q1(ϕ(t)) ≥ Q0(t).
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Since limn→∞ ϕ
n(t) = 0, by Lemma 1.10 we have

lim
n→∞

Qn(t) = 1,

that is
lim
n→∞

G∗x,x,yn(t) = 1.

It follows that G∗x,x,y(t) = 1 for any t > 0, which implies that x = y. Therefore, f has a unique fixed point
in X. This completes the proof.

If we take ϕ(t) = λt, λ ∈ (0, 1), then from Theorem 2.5 we obtain the following consequence.

Corollary 2.6. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type and λ ∈ (0, 1). Let
f : X → X be a given mapping satisfying

G∗fx,fy,fz(λt) ≥ min{G∗x,y,z(t), G∗y,fy,fy(t), G∗z,fz,fz(t)} (2.17)

for all x, y, z ∈ X, t > 0. Then f has a unique fixed point in X.

Theorem 2.7. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let ϕ : R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t, and limn→∞ ϕ

n(t) = 0 for any t > 0. Let f : X → X be
a given mapping satisfying

G∗fx,fy,fz(ϕ(t)) ≥ G∗x,y,z(t) (2.18)

for all x, y, z ∈ X and t > 0. Then f has a unique fixed point in X.

Proof. Due to
G∗fx,fy,fz(ϕ(t)) ≥ G∗x,y,z(t) ≥ min{G∗x,y,z(t), G∗y,fy,fy(t), G∗z,fz,fz(t)},

we obtain the conclusion from Theorem 2.5.

Taking y = z in Theorem 2.7, we obtain the following result.

Corollary 2.8. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let ϕ : R+ → R+ be a
gauge function such that ϕ−1(0) = {0}, ϕ(t) < t, and limn→∞ ϕ

n(t) = 0 for any t > 0. Let f : X → X be a
given mapping satisfying

G∗fx,fy,fy(ϕ(t)) ≥ G∗x,y,y(t) (2.19)

for all x, y ∈ X and t > 0. Then f has a unique fixed point in X.

Moreover, if we take ϕ(t) = λt, λ ∈ (0, 1), then from Theorem 2.7 we obtain the following corollary.

Corollary 2.9 ([16]). Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type and λ ∈ (0, 1).
Let f : X → X be a given mapping satisfying

G∗fx,fy,fz(λt) ≥ G∗x,y,z(t) (2.20)

for all x, y, z ∈ X, t > 0. Then f has a unique fixed point in X.

Theorem 2.10. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let ϕ : R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t, and limn→∞ ϕ

n(t) = +∞ for any t > 0. Let f : X → X
be a given mapping satisfying

G∗fx,fy,fz(t) ≥ min{G∗x,y,z(ϕ(t)), G∗y,fy,fy(ϕ(t)), G∗z,fz,fz(ϕ(t))} (2.21)

for all x, y, z ∈ X, t > 0. Then f has a unique fixed point in X.
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Proof. Let x0 ∈ X be arbitrary. Put xn+1 = fxn, n ∈ N. From the assumption (2.21), for any t > 0, we
have

G∗xn+1,xn+2,xn+2
(t) = G∗fxn,fxn+1,fxn+1

(t)

≥ min{G∗xn,xn+1,xn+1
(ϕ(t)), G∗xn+1,fxn+1,fxn+1

(ϕ(t)), G∗xn+1,fxn+1,fxn+1
(ϕ(t))}

= min{G∗xn,xn+1,xn+1
(ϕ(t)), G∗xn+1,xn+2,xn+2

(ϕ(t))}. (2.22)

Hence from Lemma 2.4, for any t > 0, we obtain

G∗xn+1,xn+2,xn+2
(t) ≥ G∗xn,xn+1,xn+1

(ϕ(t)). (2.23)

Denote En(t) = G∗xn,xn+1,xn+1
(t). From (2.23), we have

En+1(t) ≥ En(ϕ(t)),

which implies that
En+1(t) ≥ En(ϕ(t)) ≥ En−1(ϕ2(t)) ≥ . . . ≥ E1(ϕ

n(t)). (2.24)

Since limt→+∞E1(t) = limt→+∞G
∗
x1,x2,x2(t) = 1 and limn→∞ ϕ

n(t) = +∞ for each t > 0, we have
limn→∞E1(ϕ

n(t)) = 1. Moreover, by (2.24), we have En+1(t) ≥ E1(ϕ
n(t)). Hence,

lim
n→∞

En(t) = 1,

that is
lim
n→∞

G∗xn,xn+1,xn+1
(t) = 1, t > 0. (2.25)

In the next step we shall show by induction that for any k ∈ Z+,

G∗xn,xn+k,xn+k
(ϕ(t)) ≥ T k(G∗xn,xn+1,xn+1

(ϕ(t)− t)). (2.26)

For k = 1, from the monotony of G∗ and the property (3) of T in Definition 1.1 we have

G∗xn,xn+1,xn+1
(ϕ(t)) ≥ G∗xn,xn+1,xn+1

(ϕ(t)− t)

= T
(
G∗xn,xn+1,xn+1

(ϕ(t)− t), 1
)

≥ T
(
G∗xn,xn+1,xn+1

(ϕ(t)− t), G∗xn,xn+1,xn+1
(ϕ(t)− t)

)
= T 1

(
G∗xn,xn+1,xn+1

(ϕ(t)− t)
)
.

This means that (2.26) holds for k = 1.
Now we assume (2.26) holds for k = p (p ≥ 1). When k = p+ 1, by (PGM-4) we have

G∗xn,xn+p+1,xn+p+1
(ϕ(t)) = G∗xn,xn+p+1,xn+p+1

(ϕ(t)− t+ t)

≥ T
(
G∗xn,xn+1,xn+1

(ϕ(t)− t), G∗xn+1,xn+p+1,xn+p+1
(t)
)
. (2.27)

Since ϕ(t) > t, by the monotony of G∗ and from (2.23) we have

G∗xn+1,xn+2,xn+2
(ϕ(t)) ≥ G∗xn,xn+1,xn+1

(ϕ(t))

for all n. Thus
G∗xn+p,xn+p+1,xn+p+1

(ϕ(t)) ≥ G∗xn,xn+1,xn+1
(ϕ(t)). (2.28)
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Hence, from (2.21), (2.28) and the induction hypothesis, we obtain

G∗xn+1,xn+p+1,xn+p+1
(t) = G∗fxn,fxn+p,fxn+p

(t)

≥ min{G∗xn,xn+p,xn+p
(ϕ(t)), G∗xn+p,fxn+p,fxn+p

(ϕ(t)), G∗xn+p,fxn+p,fxn+p
(ϕ(t))}

= min{G∗xn,xn+p,xn+p
(ϕ(t)), G∗xn+p,xn+p+1,xn+p+1

(ϕ(t))}
≥ min{G∗xn,xn+p,xn+p

(ϕ(t)), G∗xn,xn+1,xn+1
(ϕ(t))}

≥ min{T p(G∗xn,xn+1,xn+1
(ϕ(t)− t)), G∗xn,xn+1,xn+1

(ϕ(t)− t)}
= T p(G∗xn,xn+1,xn+1

(ϕ(t)− t)). (2.29)

From (2.27) and (2.29), we have

G∗xn,xn+p+1,xn+p+1
(ϕ(t)) ≥ T

(
G∗xn,xn+1,xn+1

(ϕ(t)− t), T p(G∗xn,xn+1,xn+1
(ϕ(t)− t))

)
= T p+1(G∗xn,xn+1,xn+1

(ϕ(t)− t)).

Thus, by induction we obtain

G∗xn,xn+k,xn+k
(ϕ(t)) ≥ T k(G∗xn,xn+1,xn+1

(ϕ(t)− t))

for all k ∈ Z+.
By the same method as in Theorem 2.5, we can infer that {xn} is a Cauchy sequence. Since X is

complete, there exists x ∈ X such that xn → x as n→∞. By (2.21), it follows that

G∗fx,fxn,fxn(t) ≥ min{G∗x,xn,xn(ϕ(t)), G∗xn,fxn,fxn(ϕ(t))}. (2.30)

As {xn+1} is a subsequence of {xn}, fxn = xn+1 → x as n→∞. Letting n→∞ on both sides of inequality
(2.30), we obtain that

G∗fx,x,x(t) ≥ G∗x,x,x(ϕ(t)) = 1

for any t > 0. Hence x = fx.
Now we shall prove that x is the unique fixed point of f . Suppose that y is another fixed point of f . We

define a sequence {yn} in the following way:

yn = y, n ∈ N.

From (2.21), we have

G∗x,x,yn(t) = G∗x,x,y(t) = G∗fx,fx,fy(t)

≥ min{G∗x,x,y(ϕ(t)), G∗x,fx,fx(ϕ(t)), G∗y,fy,fy(ϕ(t))}
= min{G∗x,x,y(ϕ(t)), G∗x,x,x(ϕ(t)), G∗y,y,y(ϕ(t))}
= G∗x,x,y(ϕ(t))

= G∗x,x,yn−1
(ϕ(t)). (2.31)

Suppose that Qn(t) = G∗x,x,yn(t) (t > 0). By (2.31), we have Qn(t) ≥ Qn−1(ϕ(t)), and then

Qn(t) ≥ Qn−1(ϕ(t)) ≥ . . . ≥ Q0(ϕ
n(t)). (2.32)

Since limn→∞ ϕ
n(t) = +∞, we have

lim
n→∞

Q0(ϕ
n(t)) = lim

n→∞
G∗x,x,y0(ϕn(t)) = 1. (2.33)
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From (2.33) and (2.32), we obtain

lim
n→∞

Qn(t) = lim
n→∞

G∗x,x,yn(t) ≥ 1,

which implies
G∗x,x,y(t) = 1

for any t > 0. Hence we conclude that x = y. Therefore, f has a unique fixed point in X. The proof of
Theorem 2.10 is completed.

Theorem 2.11. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let ϕ : R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t, and limn→∞ ϕ

n(t) = +∞ for any t > 0. Let f : X → X
be a given mapping satisfying

G∗fx,fy,fz(t) ≥ G∗x,y,z(ϕ(t)) (2.34)

for all x, y, z ∈ X and t > 0. Then the operator f has a unique fixed point in X.

Proof. Similarly as in the proof of Theorem 2.7, but using Theorem 2.10 in place of Theorem 2.5, we
immediately obtain that Theorem 2.11 holds.

Theorem 2.12. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let ϕ : R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t, and limn→∞ ϕ

n(t) = 0 for any t > 0. Let f : X → X be
a given mapping satisfying

G∗fx,fy,fz(ϕ(t)) ≥ a1G∗x,y,z(t) + a2G
∗
x,fx,fx(t) + a3G

∗
y,fy,fy(t)

+a4G
∗
z,fz,fz(t) + a5G

∗
y,fz,fz(t) + a6G

∗
z,fy,fy(t) (2.35)

for all x, y, z ∈ X and t > 0, where ai ≥ 0 (i = 1, 2, . . . , 6), a1 + a2 > 0 and
∑6

i=1 ai = 1. Then f has a
unique fixed point in X.

Proof. Let x0 in X be an arbitrary point. We define a sequence {xn} in the following way:

xn+1 = fxn, n ∈ N.

Due to (2.35), for any t > 0, we have

G∗xn,xn+1,xn+1
(ϕ(t)) = G∗fxn−1,fxn,fxn(ϕ(t))

≥ a1G∗xn−1,xn,xn(t) + a2G
∗
xn−1,fxn−1,fxn−1

(t) + a3G
∗
xn,fxn,fxn(t)

+ a4G
∗
xn,fxn,fxn(t) + a5G

∗
xn,fxn,fxn(t) + a6G

∗
xn,fxn,fxn(t)

= (a1 + a2)G
∗
xn−1,xn,xn(t) + (a3 + a4 + a5 + a6)G

∗
xn,fxn,fxn(t)

≥ (a1 + a2)G
∗
xn−1,xn,xn(t) + (a3 + a4 + a5 + a6)G

∗
xn,xn+1,xn+1

(ϕ(t)), (2.36)

which implies
G∗xn,xn+1,xn+1

(ϕ(t)) ≥ G∗xn−1,xn,xn(t) (2.37)

for all n. Thus, for any k ∈ Z+, we have

G∗xn+k,xn+k+1,xn+k+1
(ϕ(t)) ≥ G∗xn,xn+1,xn+1

(t). (2.38)

Denote Pn(t) = G∗xn,xn+1,xn+1
(t). From the inequality (2.37), we have

Pn(ϕ(t)) ≥ Pn−1(t),

which implies that
Pn(ϕn(t)) ≥ Pn−1(ϕn−1(t)) ≥ . . . ≥ P1(ϕ(t)) ≥ P0(t). (2.39)
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Since limn→∞ ϕ
n(t) = 0 for all t > 0, we obtain using Lemma 1.10 that

lim
n→∞

Pn(t) = 1,

that is
lim
n→∞

G∗xn,xn+1,xn+1
(t) = 1, (2.40)

for all t > 0. Next we shall prove by induction that for all k ∈ Z+ and t > 0,

G∗xn,xn+k,xn+k
(t) ≥ T k(G∗xn,xn+1,xn+1

(t− ϕ(t))). (2.41)

In fact, as k = 1, from the monotony of G∗ and the property (3) of T in Definition 1.1 we have

G∗xn,xn+1,xn+1
(t) ≥ G∗xn,xn+1,xn+1

(t− ϕ(t))

= T
(
G∗xn,xn+1,xn+1

(t− ϕ(t)), 1
)

≥ T
(
G∗xn,xn+1,xn+1

(t− ϕ(t)), G∗xn,xn+1,xn+1
(t− ϕ(t))

)
= T 1

(
G∗xn,xn+1,xn+1

(t− ϕ(t))
)
.

Therefore, (2.41) holds for k = 1.
Suppose now that G∗xn,xn+k,xn+k

(t) ≥ T k(G∗xn,xn+1,xn+1
(t−ϕ(t))) holds for some fixed k ≥ 1. From (2.35),

the monotony of G∗, (2.38) and the induction hypothesis we have

G∗xn+1,xn+k+1,xn+k+1
(ϕ(t)) = G∗fxn,fxn+k,fxn+k

(ϕ(t))

≥ a1G
∗
xn,xn+k,xn+k

(t) + a2G
∗
xn,fxn,fxn(t) + a3G

∗
xn+k,fxn+k,fxn+k

(t) + a4G
∗
xn+k,fxn+k,fxn+k

(t)

+a5G
∗
xn+k,fxn+k,fxn+k

(t) + a6G
∗
xn+k,fxn+k,fxn+k

(t)

= a1G
∗
xn,xn+k,xn+k

(t) + a2G
∗
xn,xn+1,xn+1

(t) + (a3 + a4 + a5 + a6)G
∗
xn+k,xn+k+1,xn+k+1

(t)

≥ a1G
∗
xn,xn+k,xn+k

(t) + a2G
∗
xn,xn+1,xn+1

(t) + (a3 + a4 + a5 + a6)G
∗
xn+k,xn+k+1,xn+k+1

(ϕ(t))

≥ a1G
∗
xn,xn+k,xn+k

(t) + (a2 + a3 + . . .+ a6)G
∗
xn,xn+1,xn+1

(t)

≥ a1T
k(G∗xn,xn+1,xn+1

(t− ϕ(t))) + (a2 + a3 + . . .+ a6)G
∗
xn,xn+1,xn+1

(t)

≥ a1T
k(G∗xn,xn+1,xn+1

(t− ϕ(t))) + (a2 + a3 + . . .+ a6)G
∗
xn,xn+1,xn+1

(t− ϕ(t))

≥ a1T
k(G∗xn,xn+1,xn+1

(t− ϕ(t))) + (a2 + a3 + . . .+ a6)T
k(G∗xn,xn+1,xn+1

(t− ϕ(t)))

= T k(G∗xn,xn+1,xn+1
(t− ϕ(t))). (2.42)

Hence, by (PGM-4) and (2.42), we obtain

G∗xn,xn+k+1,xn+k+1
(t) = G∗xn,xn+k+1,xn+k+1

(t− ϕ(t) + ϕ(t))

≥ T (G∗xn,xn+1,xn+1
(t− ϕ(t)), G∗xn+1,xn+k+1,xn+k+1

(ϕ(t)))

≥ T
(
G∗xn,xn+1,xn+1

(t− ϕ(t)), T k(G∗xn,xn+1,xn+1
(t− ϕ(t)))

)
= T k+1(G∗xn,xn+1,xn+1

(t− ϕ(t))).

Thus we have proved that if inequality (2.41) holds for some k ≥ 1, then it must also hold for k + 1. By
mathematical induction we conclude that inequality (2.41) holds for all k ∈ Z+ and t > 0.

As in the proof of the Theorem 2.5, it follows that the sequence {xn} is Cauchy.
Since X is complete, there exists x ∈ X such that xn → x as n → ∞. Next we show that x is a fixed

point of f .
By (2.35) we have
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G∗xn+1,fx,fx(ϕ(t)) = G∗fxn,fx,fx(ϕ(t))

≥ a1G
∗
xn,x,x(t) + a2G

∗
xn,fxn,fxn(t) + a3G

∗
x,fx,fx(t) + a4G

∗
x,fx,fx(t) + a5G

∗
x,fx,fx(t) + a6G

∗
x,fx,fx(t)

= a1G
∗
xn,x,x(t) + a2G

∗
xn,xn+1,xn+1

(t) + (a3 + a4 + a5 + a6)G
∗
x,fx,fx(t)

≥ a1G
∗
xn,x,x(t) + a2G

∗
xn,xn+1,xn+1

(t) + (a3 + a4 + a5 + a6)G
∗
x,fx,fx(ϕ(t)). (2.43)

Now, since xn → x and fxn = xn+1 → x as n → ∞, letting n → ∞ on both sides of inequality (2.43),
we get, for any t > 0,

G∗x,fx,fx(ϕ(t)) ≥ (a1 + a2)G
∗
x,x,x(t) + (a3 + a4 + a5 + a6)G

∗
x,fx,fx(ϕ(t)),

which implies
G∗x,fx,fx(ϕ(t)) ≥ G∗x,x,x(t) = 1.

Therefore x = fx.
Finally, we shall show that x is the unique fixed point of f . Suppose that, contrary to our claim, there

exists another fixed point y ∈ X. From (2.35), we have, for any t > 0,

G∗x,y,y(ϕ(t)) = G∗fx,fy,fy(ϕ(t))

≥ a1G∗x,y,y(t) + a2G
∗
x,fx,fx(t) + a3G

∗
y,fy,fy(t) + a4G

∗
y,fy,fy(t) + a5G

∗
y,fy,fy(t) + a6G

∗
y,fy,fy(t)

≥ a1G∗x,y,y(ϕ(t)) + a2G
∗
x,x,x(t) + (a3 + . . .+ a6)G

∗
y,y,y(t)

= a1G
∗
x,y,y(ϕ(t)) + a2 + . . .+ a6.

This implies that
G∗x,y,y(ϕ(t)) ≥ 1

for all t > 0, so x = y. Therefore, f has a unique fixed point in X. The proof of Theorem 2.12 is
completed.

Taking a5 = a6 = 0 in Theorem 2.12, we obtain the following result.

Corollary 2.13. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let ϕ : R+ → R+ be
a gauge function such that ϕ−1(0) = {0}, ϕ(t) < t, and limn→∞ ϕ

n(t) = 0 for any t > 0. Let f : X → X be
a given mapping satisfying

G∗fx,fy,fz(t) ≥ a1G∗x,y,z(ϕ(t)) + a2G
∗
x,fx,fx(ϕ(t)) + a3G

∗
y,fy,fy(ϕ(t)) + a4G

∗
z,fz,fz(ϕ(t)) (2.44)

for all x, y, z ∈ X and t > 0, where ai ≥ 0 (i = 1, 2, 3, 4), a1 +a2 > 0 and
∑4

i=1 ai = 1. Then f has a unique
fixed point in X.

If we set a1 = 0 in Corollary 2.13, then we obtain:

Corollary 2.14. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let ϕ : R+ → R+ be
a gauge function such that ϕ−1(0) = {0}, ϕ(t) < t, and limn→∞ ϕ

n(t) = 0 for any t > 0. Let f : X → X be
a given mapping satisfying

G∗fx,fy,fz(t) ≥ a1G∗x,fx,fx(ϕ(t)) + a2G
∗
y,fy,fy(ϕ(t)) + a3G

∗
z,fz,fz(ϕ(t)) (2.45)

for all x, y, z ∈ X and t > 0, where a1 > 0, a2, a3 ≥ 0 and a1 + a2 + a3 = 1. Then f has a unique fixed point
in X.

In particular, if we set ϕ(t) = λt, λ ∈ (0, 1), and a1 = a2 = a3 = 1
3 , then Corollary 2.14 becomes:
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Corollary 2.15 ([16]). Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let f : X → X
be a given mapping satisfying

G∗fx,fy,fz(λt) ≥
1

3
[G∗x,fx,fx(t) +G∗y,fy,fy(t) +G∗z,fz,fz(t)] (2.46)

for all x, y, z ∈ X and t > 0, where λ ∈ (0, 1). Then f has a unique fixed point in X.

Following the proof of Theorem 2.12, we can show that the next result also holds.

Theorem 2.16. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let ϕ : R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t, and limn→∞ ϕ

n(t) = +∞ for any t > 0. Let f : X → X
be a given mapping satisfying

G∗fx,fy,fz(t) ≥ a1G∗x,y,z(ϕ(t)) + a2G
∗
x,fx,fx(ϕ(t)) + a3G

∗
y,fy,fy(ϕ(t))

+a4G
∗
z,fz,fz(ϕ(t)) + a5G

∗
y,fz,fz(ϕ(t)) + a6G

∗
z,fy,fy(ϕ(t)) (2.47)

for all x, y, z ∈ X and t > 0, where ai ≥ 0 (i = 1, 2, . . . , 6), a1 + a2 > 0 and
∑6

i=1 ai = 1. Then f has a
unique fixed point in X.

Taking a5 = a6 = 0 in Theorem 2.16, we obtain

Corollary 2.17. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let ϕ : R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t, and limn→∞ ϕ

n(t) = +∞ for any t > 0. Let f : X → X
be a given mapping satisfying

G∗fx,fy,fz(t) ≥ a1G∗x,y,z(ϕ(t)) + a2G
∗
x,fx,fx(ϕ(t)) + a3G

∗
y,fy,fy(ϕ(t)) + a4G

∗
z,fz,fz(ϕ(t)) (2.48)

for all x, y, z ∈ X and t > 0, where ai ≥ 0 (i = 1, 2, 3, 4), a1 +a2 > 0 and
∑4

i=1 ai = 1. Then f has a unique
fixed point in X.

In particular, if we set a1 = 0 in Corollary 2.17, then we have

Corollary 2.18. Let (X,G∗, T ) be a complete Menger PGM-space with T of H-type. Let ϕ : R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t, and limn→∞ ϕ

n(t) = +∞ for any t > 0. Let f : X → X
be a given mapping satisfying

G∗fx,fy,fz(t) ≥ a1G∗x,fx,fx(ϕ(t)) + a2G
∗
y,fy,fy(ϕ(t)) + a3G

∗
z,fz,fz(ϕ(t)) (2.49)

for all x, y, z ∈ X, t > 0, where a1 > 0, a2, a3 ≥ 0 and a1 + a2 + a3 = 1. Then f has a unique fixed point in
X.

Finally, we give the following example to illustrate Theorem 2.12.

Example 2.19. Let X = [0,∞), T (a, b) = min{a, b} for all a, b ∈ [0, 1] and define the mappings H :
[0,∞)→ [0,∞) and G∗ : X3 × [0,∞)→ [0,∞) by

H(t) =

{
0, t = 0,
1, t > 0.

and

G∗x,y,z(t) =

{
H(t), x = y = z,

αt
αt+G(x,y,z) , otherwise.

(2.50)

for all x, y, z ∈ X, where α > 0, G(x, y, z) = |x − y| + |y − z| + |z − x|. Then G is a G-metric
(see [13]). It is easy to check that G∗ satisfies (PGM-1)-(PGM-3). Next we show G∗(x, y, z)(s + t) ≥
T (G∗(x, a, a)(s), G∗(a, y, y)(t)) for all x, y, z, a ∈ X and all s, t > 0. When x = y = z, it is easy
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to see that G∗ satisfies (PGM-4). When at least one of x, y, z is not equal to the other two, since
G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X, we have

αt+ αs

αs+ αt+G(x, y, z)
≥ αt+ αs

αs+ αt+G(x, a, a) +G(a, y, z)

≥ min

{
αs

αs+G(x, a, a)
,

αt

αt+G(a, y, z)

}
.

This shows that G∗ satisfies (PGM-4). Hence (X,G∗, TM ) is a Menger PGM-space. Let ϕ(t) = λt, λ ∈ (0, 1).
Define a mapping f : X → X by f(x) = 1 for all x ∈ X, and let ai ≥ 0 (i = 1, 2, . . . , 6) be such that
a1 + a2 > 0 and

∑6
i=1 ai = 1. For all x, y, z ∈ X and t > 0, since

G∗fx,fy,fz(ϕ(t)) = G∗1,1,1(λt) = 1

and

a1G
∗
x,y,z(t) + a2G

∗
x,fx,fx(t) + a3G

∗
y,fy,fy(t) + a4G

∗
z,fz,fz(t) + a5G

∗
y,fz,fz(t) + a6G

∗
z,fy,fy(t) ≤

6∑
i=1

ai = 1,

we obtain that

G∗fx,fy,fz(ϕ(t)) ≥ a1G∗x,y,z(t) + a2G
∗
x,fx,fx(t) + a3G

∗
y,fy,fy(t) + a4G

∗
z,fz,fz(t) + a5G

∗
y,fz,fz(t) + a6G

∗
z,fy,fy(t).

Thus all conditions of Theorem 2.12 are satisfied. Therefore, we conclude that f has a fixed point in X. In
fact, the fixed point is x = 1.
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