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Abstract

In this paper, a new concept of the property G∗-(E.A) in Menger PGM -spaces is introduced. Based on this,
some common fixed point theorems under strict contractive conditions for mappings satisfying the property
G∗-(E.A) in Menger PGM -spaces and the corresponding results in G-metric spaces are obtained. Finally,
an example is given to exemplify our main results. c©2015 All rights reserved.
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1. Introduction

As a generalization of a metric space, the concept of a probabilistic metric space has been introduced by
Menger [17, 23]. Fixed point theory in a probabilistic metric space is an important branch of probabilistic
analysis and many results on the existence of fixed points or solutions of nonlinear equations under various
types of conditions in Menger PM -spaces have been extensively studied by many scholars (see e.g. [27, 28]).
In 2006, Mustafa and Sims [19] introduced the concept of a generalized metric space and other authors
obtained many fixed point theorems in generalized metric spaces (see [4, 5, 6, 7, 10, 11, 12]). Moreover, Zhou
et al. [26] defined the notion of a generalized probabilistic metric space or a PGM -space as a generalization
of a PM -space and a G-metric space.

Jungck [13] introduced the concept of compatible mappings in metric spaces and proved some common
fixed point theorems for such mappings. The concept of weakly compatible mappings was given by [14]. On
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the other hand, the concept of compatible mappings in Menger spaces was initiated by Mishra [18], and since
then many fixed point results for compatible mappings and weakly compatible mappings have been studied
[8, 16, 24, 25]. The concept of noncompatible mappings was introduced and studied by Pant [20, 21, 22]. In
2002, Aamri and Moutawakil [1] defined a new property for a pair of mappings, i.e., the so-called property
(E.A), which is a generalization of the concept of noncompatibility. In 2009, Fang [9] defined the property
(E.A) for two mappings in Menger PM -spaces and studied the existence of common fixed points in such
spaces.

The main purpose of this paper is to establish some common fixed point theorems under strict contractive
conditions for a pair of weakly compatible mappings satisfying the property G∗-(E.A) in Menger PGM -
spaces. We also obtain the corresponding results in G-metric spaces. Finally, an example is given to illustrate
our main results.

2. Preliminaries

Throughout this paper, let R = (−∞,+∞), R+ = [0,+∞) and Z+ be the set of all positive integers.
A mapping F : R → R+ is called a distribution function if it is nondecreasing left-continuous with

sup
t∈R

F (t) = 1 and inf
t∈R

F (t) = 0.

We shall denote by D the set of all distribution functions while H will always denote the specific
distribution function defined by

H(t) =

{
0, t ≤ 0,
1, t > 0.

A mapping ∆ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm (for short, a t-norm) if the following
conditions are satisfied:

(1) ∆(a, 1) = a;

(2) ∆(a, b) = ∆(b, a);

(3) a ≥ b, c ≥ d⇒ ∆(a, c) ≥ ∆(b, d);

(4) ∆(a,∆(b, c)) = ∆(∆(a, b), c).

A typical example of a t-norm is ∆m, where ∆m(a, b) = min{a, b}, for each a, b ∈ [0, 1].

Definition 2.1 ([19]). Let X be a nonempty set and G : X × X × X → R+ be a function satisfying the
following conditions:

(1) G(x, y, z) = 0 if x = y = z for all x, y, z ∈ X;

(2) G(x, x, y) > 0 for all x, y ∈ X with x 6= y;

(3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y;

(4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · for all x, y, z ∈ X;

(5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

Then G is called a generalized metric or a G-metric on X and the pair (X,G) is a G-metric space.

Definition 2.2 ([26]). A Menger probabilistic G-metric space (shortly, a PGM -space) is a triple (X,G∗,∆),
where X is a nonempty set, ∆ is a continuous t-norm and G∗ is a mapping from X × X × X into
D (G∗x,y,z denote the value of G∗ at the point (x, y, z)) satisfying the following conditions:

(1) G∗x,y,z(t) = 1 for all x, y, z ∈ X and t > 0 if and only if x = y = z;

(2) G∗x,x,y(t) ≥ G∗x,y,z(t) for all x, y, z ∈ X with z 6= y and t > 0;

(3) G∗x,y,z(t) = G∗x,z,y(t) = G∗y,x,z(t) = ...(symmetry in all three variables);

(4) G∗x,y,z(t+ s) ≥ ∆(G∗x,a,a(s), G
∗
a,y,z(t)) for all x, y, z, a ∈ X and s, t ≥ 0.

Example 2.3 ([26]). Let (X,G) be a G-metric space, where G(x, y, z) = |x− y|+ |y − z|+ |z − x|. Define
G∗x,y,z(t) = t

t+G(x,y,z) for all x, y, z ∈ X. Then (X,G∗,∆m) is a Menger PGM -space.
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Example 2.4. Let (X,G) be a G-metric space. Define a mapping G∗ : X ×X ×X → D by

G∗x,y,z(t) = H(t−G(x, y, z)), (2.1)

for x, y, z ∈ X and t > 0. Then (X,G∗,∆m) is a Menger PGM -space, called the induced Menger PGM -
space by (X,G).

Definition 2.5 ([26]). Let (X,G∗,∆) be a PGM -space, and {xn} is a sequence in X.

(1) {xn} is said to be convergent to a point x ∈ X (write xn → x), if for any ε > 0 and 0 < δ < 1, there
exists a positive integer Mε,δ such that xn ∈ Nx0(ε, δ) whenever n > Mε,δ;

(2) {xn} is called a Cauchy sequence, if for any ε > 0 and 0 < δ < 1, there exists a positive integer Mε,δ

such that G∗xn,xm,xl(ε) > 1− δ whenever n,m, l > Mε,δ;

(3) (X,G∗,∆) is said to be complete, if every Cauchy sequence in X converges to a point in X.

Remark 2.6. Let (X,G∗,∆) be a Menger PGM -space, {xn} is a sequence in X. Then the following are
equivalent:

(1) {xn} is convergent to a point x ∈ X;

(2) G∗xn,xn,x(t)→ 1 as n→∞, for all t > 0;

(3) G∗xn,x,x(t)→ 1 as n→∞, for all t > 0.

Remark 2.7. If G∗xn,xn,u(t)→ 1 and G∗yn,yn,u(t)→ 1, or G∗xn,u,u(t)→ 1 and G∗yn,u,u(t)→ 1 as n→∞ for all
t > 0, then it is easy to obtain from (PGM-4) that G∗xn,yn,u(t)→ 1 as n→∞ for all t > 0.

We can analogously prove the following lemma in Menger PM -spaces.

Lemma 2.8. Let (X,G∗,∆) be a Menger PGM -space with ∆ a continuous t-norm, {xn}, {yn} and {zn}
be sequences in X and x, y, z ∈ X, if {xn} → x, {yn} → x and {zn} → x as n→∞. Then

(1) lim inf
n→∞

G∗xn,yn,zn(t) ≥ G∗x,y,z(t) for all t > 0;

(2) G∗x,y,z(t+ o) ≥ lim sup
n→∞

G∗xn,yn,zn(t) for all t > 0.

Particularly, if t0 is a continuous point of Gx,y,z(·), then lim
n→∞

Gxn,yn,zn(t0) = Gx,y,z(t0).

Lemma 2.9 ([29]). Let (X,G∗,∆) be a Menger PGM -space. For each λ ∈ (0, 1], define a function G∗λ by

G∗λ(x, y, z) = inf
t
{t ≥ 0 : G∗x,y,z(t) > 1− λ},

for x, y, z ∈ X , then

(1) G∗λ(x, y, z) < t if and only if G∗x,y,z(t) > 1− λ;

(2) G∗λ(x, y, z) = 0 for all λ ∈ (0, 1] if and only if x = y = z;

(3) G∗λ(x, y, z) = G∗λ(y, x, z) = G∗λ(y, z, x) = ...;

(4) if ∆ = ∆m, then for every λ ∈ (0, 1], G∗λ(x, y, z) ≤ G∗λ(x, a, a) +G∗λ(a, y, z).

Lemma 2.10 ([22]). Let (X,G∗,∆) be a Menger PGM -space and ∆ be a continuous t-norm. Then the
following statements are equivalent:

(i) the sequence {xn} is a Cauchy sequence;

(ii) for any ε > 0 and 0 < λ < 1, there exists M ∈ Z+ such that G∗xn,xm,xm(ε) > 1− λ, for all n,m > M .

Definition 2.11 ([14, 15]). A pair of self-mappings S and T on X are said to be weakly compatible (or
coincidentally commuting) if they commute at their coincidence point, i.e., if Tu = Su for some u ∈ X
implies that TSu = STu.
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Definition 2.12 ([2]). Let X be a G-metric space. The mappings f, g : X → X are called

(i) G-weakly commuting if for all x ∈ X

G(fgx, fgx, gfx) ≤ G(fx, fx, gx);

(ii) G-R-weakly commuting if there exists a positive real number R, such that

G(fgx, fgx, gfx) ≤ R ·G(fx, fx, gx),

holds for each x ∈ X;

(iii) G-compatible if, whenever a sequence {xn} in X is such that {fxn} and {gxn} are G-convergent to
some u ∈ X, then lim

n→∞
G(fgxn, fgxn, gfxn) = 0;

(iv) G-incompatible if there exists at least one sequence {xn} in X such that the sequences {fxn} and
{gxn} are G-convergent to some u ∈ X, but lim

n→∞
G(fgxn, fgxn, gfxn) is either nonzero or does not

exist.

Definition 2.13 ([3]). Let (X,G) be a G-metric space. Self-mappings f and g on X are satisfy the G-(E.A)
property if there exists a sequence {xn} in X such that {fxn} and {gxn} are G-convergent to some u ∈ X.

Definition 2.14 ([9]). Let F1, F2 ∈ D. The algebraic sum F1 ⊕ F2 of F1 and F2 is defined by

(F1 ⊕ F2)(t) = sup
t1+t2=t

min{F1(t1), F2(t2)}

for all t ∈ R.

Definition 2.15 ([9]). Let f and g be two functions defined on R with positive values. The notation f > g
means that f ≥ g for all t ∈ R and there exists at least one t0 ∈ R such that f(t0) > g(t0).

3. Main results

In this section, we will establish some new common fixed point theorems in Menger PGM -spaces. To
this end, we first introduce the concepts of weakly compatible mappings and G∗-(E.A) property in Menger
PGM -spaces.

Definition 3.1. Let S and T be two self-mappings of a Menger PGM -space (X,G∗,∆). S and T are said
to be weakly compatible (or coincidentally commuting) if they commute at their coincidence points, i.e., if
Tu = Su for some u ∈ X implies that TSu = STu.

Definition 3.2. Let S and T be two self-mappings of a Menger PGM -space (X,G∗,∆). S and T are said to
satisfy the G∗-(E.A) property, if there exists a sequence {xn} in X and u ∈ X, such that G∗Txn,Txn,u(t)→ 1
and G∗Sxn,Sxn,u(t)→ 1 for all t > 0.

We are now ready to give our main results.

Theorem 3.3. Let (X,G∗,∆) be a Menger PGM -space with a continuous t-norm ∆ on [0, 1]× [0, 1], and
S and T be two weakly compatible self-mappings on (X,G∗,∆) satisfying the following conditions:

(1) S and T satisfy the property G∗-(E.A);

(2) for any x, y ∈ X, x 6= y, t > 0,

G∗Tx,Tx,Ty(t) > min{G∗Sx,Sx,Sy(t), [G∗Tx,Tx,Sx ⊕G∗Ty,Ty,Sy](
2t

k
), [G∗Ty,Ty,Sx ⊕G∗Tx,Tx,Sy](2t)} (3.1)

and

G∗Tx,Ty,Ty(t) > min{G∗Sx,Sy,Sy(t), [G∗Tx,Sx,Sx ⊕G∗Ty,Sy,Sy](
2t

k
), [G∗Ty,Sx,Sx ⊕G∗Tx,Sy,Sy](2t)}, (3.2)

for some k, 1 ≤ k < 2;
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(3) T (X) ⊂ S(X);

(4) S(X) or T (X) is a closed subset of X.

Then S and T have a unique common fixed point in X.

Proof. Since S and T satisfy the property G∗-(E.A), there exists a sequence {xn} in X and u ∈ X, such
that G∗Txn,Txn,u(t)→ 1 and G∗Sxn,Sxn,u(t)→ 1, then we have G∗Txn,Sxn,u(t)→ 1 for all t > 0.
• Suppose that S(X) is a closed subset of X. Since {Sxn} ⊂ S(X) and Sxn → u, we have u ∈ S(X) and
there exists a ∈ X such that Sa = u. So, we obtain

lim
n→∞

G∗Txn,Sxn,Sa(t) = 1, (3.3)

for all t > 0.
• Suppose that T (X) is a subset of X. Since {Txn} ⊂ T (X) and Txn → u, we have u ∈ T (X) ⊂ S(X), and
so there exists a ∈ X such that Sa = u. Therefore, (3.3) still holds.

Now we show that Ta = Sa. Suppose that Ta 6= Sa. It is not difficult to prove that there exists t0 > 0
such that

G∗Ta,Ta,Sa(
2t0
k

) > G∗Ta,Ta,Sa(t0). (3.4)

In fact, if not, then we have G∗Ta,Ta,Sa(t) = G∗Ta,Ta,Sa(
2t
k ) for all t > 0. Repeatedly using this equality, we

obtain

G∗Ta,Ta,Sa(t) = G∗Ta,Ta,Sa(
2t

k
) = · · · = G∗Ta,Ta,Sa((

2

k
)nt)→ 1 (n→∞).

This shows that G∗Ta,Ta,Sa(t) = 1 for all t > 0, which contradicts Ta 6= Sa, and so (3.4) is proved.
Without loss of generality, we assume that t0 in (3.4) is a continuous point of GTa,Ta,Sa(·). By the

left-continuity of distribution function, there exists δ > 0 such that

G∗Ta,Ta,Sa(
2t

k
) > G∗Ta,Ta,Sa(t),

for all t ∈ (t0−δ, t0]. Since GTa,Ta,Sa(·) is nondecreasing, the set of all discontinuous points of GTa,Ta,Sa(·) is
a countable set at most. Thus, when t0 is a discontinuous point of GTa,Ta,Sa(·), we can choose a continuous
point t1 of GTa,Ta,Sa(·) in (t0 − δ, t0] to replace t0.

Because of Ta 6= Sa and lim
n→∞

Txn = Sa, there exists n0 ∈ Z+ such that Txn 6= Ta for all n ≥ n0. By

(3.1), we have

G∗Txn,Txn,Ta(t0) > min{G∗Sxn,Sxn,Sa(t0), [G
∗
Txn,Txn,Sxn ⊕G

∗
Ta,Ta,Sa](

2t0
k

), [G∗Ta,Ta,Sxn ⊕G
∗
Txn,Txn,Sa](2t0)}

(3.5)

for all n ≥ n0. In addition, it is easy to verify that

lim inf
n→∞

[G∗Txn,Txn,Sxn ⊕G
∗
Ta,Ta,Sa](

2t0
k

) ≥ G∗Ta,Ta,Sa(
2t0
k

). (3.6)

In fact, for any δ ∈ (0, 2t0k ), we have

[G∗Txn,Txn,Sxn ⊕G
∗
Ta,Ta,Sa](

2t0
k

) ≥ min{G∗Txn,Txn,Sxn(δ), G∗Ta,Ta,Sa(
2t0
k
− δ)}.

Since lim
n→∞

Txn = lim
n→∞

Sxn = Sa, by Lemma 2.8 the above inequality implies that

lim inf
n→∞

[G∗Txn,Txn,Sxn ⊕G
∗
Ta,Ta,Sa](

2t0
k

) ≥ G∗Ta,Ta,Sa(
2t0
k
− δ).
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Letting δ → 0, by the left-continuity of distribution function, (3.6) is proved. In the same way, we can prove
that

lim inf
n→∞

[G∗Ta,Ta,Sxn ⊕G
∗
Txn,Txn,Sa](2t0) ≥ G

∗
Ta,Ta,Sa(2t0). (3.7)

Notice that t0 is a continuous point of GTa,Ta,Sa(·), by Lemma 2.8, we have
lim
n→∞

GTxn,Txn,Ta(t0) = GSa,Sa,Ta(t0). Letting n→∞ in (3.5) and using (3.6) and (3.7), we get

G∗Sa,Sa,Ta(t0) ≥ min{1, G∗Ta,Ta,Sa(
2t0
k

), G∗Ta,Ta,Sa(2t0)} = G∗Ta,Ta,Sa(
2t0
k

). (3.8)

Again by (3.2) and the same way above, we can obtain

G∗Sa,Ta,Ta(t0) ≥ min{1, G∗Ta,Sa,Sa(
2t0
k

), G∗Ta,Sa,Sa(2t0)} = G∗Ta,Sa,Sa(
2t0
k

). (3.9)

By (3.8) and (3.9), we have

G∗Sa,Ta,Ta(t0) ≥ G∗Ta,Sa,Sa(
2t0
k

) ≥ G∗Ta,Sa,Sa(t0) ≥ G∗Ta,Ta,Sa(
2t0
k

),

which is in contradiction to (3.4). Therefore Ta = Sa. Since S and T are weakly compatible, we have
TTa = TSa = STa = SSa. We now show that Ta is a common fixed point of S and T . Suppose that
Ta 6= TTa, then a 6= Ta. From (3.1), there exists some t∗ > 0 such that

G∗Ta,Ta,TTa(t∗) > min{G∗Sa,Sa,STa(t∗), [G∗Ta,Ta,Sa ⊕G∗TTa,TTa,STa](
2t∗
k

), [G∗TTa,TTa,Sa ⊕G∗Ta,Ta,STa](2t∗)}

= min{G∗Ta,Ta,TTa(t∗), [G∗TTa,TTa,Ta ⊕G∗Ta,Ta,TTa](2t∗)}. (3.10)

IfG∗Ta,Ta,TTa(t∗) ≤ [G∗TTa,TTa,Ta⊕G∗Ta,Ta,TTa](2t∗)], it follows from (3.10) thatG∗Ta,Ta,TTa(t∗) > G∗Ta,Ta,TTa(t∗),
which is a contradiction. Then we have

G∗Ta,Ta,TTa(t∗) > [G∗TTa,TTa,Ta ⊕G∗Ta,Ta,TTa](2t∗).

Similary, by (3.2), we can also obtain

G∗Ta,TTa,TTa(t∗) > [G∗TTa,Ta,Ta ⊕G∗Ta,TTa,TTa](2t∗).

So, we have
min{G∗Ta,Ta,TTa(t∗), G∗Ta,TTa,TTa(t∗)} > [G∗Ta,Ta,Ta ⊕G∗Ta,TTa,TTa](2t∗). (3.11)

On the other hand, it follows from Definition 2.14 that

[G∗TTa,TTa,Ta ⊕G∗Ta,Ta,TTa](2t∗) = sup
t1+t2=2t∗

min{G∗TTa,TTa,Ta(t1), G∗Ta,Ta,TTa(t2)}

≥ min{G∗TTa,TTa,Ta(t∗), G∗Ta,Ta,TTa(t∗)). (3.12)

Combining (3.11) with (3.12) yields

min{G∗Ta,Ta,TTa(t∗), G∗Ta,TTa,TTa(t∗)} > min{G∗Ta,Ta,TTa(t∗), G∗Ta,TTa,TTa(t∗)},

which is a contradiction. Therefore Ta = TTa, and so STa = TTa = Ta. This shows that Ta is a common
fixed point of S and T .

Finally, we prove the uniqueness. Suppose that p and q are two common fixed points of S and T , i.e.,
Sp = Tp = p and Sq = Tq = q. If p 6= q, then by (3.1) and (3.2), there exists some t1 > 0 such that
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G∗Tp,Tp,Tq(t1) > min{G∗Sp,Sp,Sq(t1), [G∗Tp,Tp,Sp ⊕G∗Tq,Tq,Sq](
2t1
k

), [G∗Tq,Tq,Sp ⊕G∗Tp,Tp,Sq](2t1)}

= min{G∗p,p,q(t1), 1, [G∗q,q,p ⊕G∗p,p,q](2t1)}
≥ min{G∗p,p,q(t1), 1, G∗p,p,q(t1), G∗p,q,q(t1)}
= min{G∗p,p,q(t1), G∗p,q,q(t1)},

and

G∗Tp,Tq,T q(t1) > min{G∗Sp,Sq,Sq(t1), [G∗Tp,Sp,Sp ⊕G∗Tq,Sq,Sq](
2t1
k

), [G∗Tq,Sp,Sp ⊕G∗Tp,Sq,Sq](2t1)}

= min{G∗p,p,q(t1), G∗p,q,q(t1)}.

Then, we have
min{G∗p,p,q(t1), G∗p,q,q(t1)} > min{G∗p,p,q(t1), G∗p,q,q(t1)},

which is a contradiction. Therefore, the common fixed points of S and T is unique.

Taking k = 1 in Theorem 3.3, we get the following result.

Corollary 3.4. Let (X,G∗,∆) be a Menger PGM -space with a continuous t-norm ∆ on [0, 1]× [0, 1], and
let S and T be two weakly compatible self-mappings on (X,G∗,∆) satisfying the following conditions:

(1) S and T satisfy the property G∗-(E.A);

(2) ′ for any x, y ∈ X, x 6= y, t > 0,

G∗Tx,Tx,Ty(t) > min{G∗Sx,Sx,Sy(t), [G∗Tx,Tx,Sx ⊕G∗Ty,Ty,Sy](2t), [G∗Ty,Ty,Sx ⊕G∗Tx,Tx,Sy](2t)}

and

G∗Tx,Ty,Ty(t) > min{G∗Sx,Sy,Sy(t), [G∗Tx,Sx,Sx ⊕G∗Ty,Sy,Sy](2t), [G∗Ty,Sx,Sx ⊕G∗Tx,Sy,Sy](2t)};

(3) T (X) ⊂ S(X);

(4) S(X) or T (X) is a closed subset of X.

Then S and T have a unique common fixed point in X.

Theorem 3.5. Let (X,G∗,∆) be a Menger PGM -space with a continuous t-norm ∆ on [0, 1]× [0, 1], and
let S and T be two weakly compatible self-mappings on (X,G∗,∆) satisfying the following conditions:

(1)′ there exists a mapping φ : X → R+ such that

G∗Sx,Sy,Tz(t) ≥ H(t− (φ(Sx) + φ(Sy)− 2φ(Tz))), (3.13)

for all x, y, z ∈ X, t ∈ R;

(2) for any x, y ∈ X, x 6= y, t > 0,

G∗Tx,Tx,Ty(t) > min{G∗Sx,Sx,Sy(t), [G∗Tx,Tx,Sx ⊕G∗Ty,Ty,Sy](
2t

k
), [G∗Ty,Ty,Sx ⊕G∗Tx,Tx,Sy](2t)}

and

G∗Tx,Ty,Ty(t) > min{G∗Sx,Sy,Sy(t), [G∗Tx,Sx,Sx ⊕G∗Ty,Sy,Sy](
2t

k
), [G∗Ty,Sx,Sx ⊕G∗Tx,Sy,Sy](2t)},

for some k, 1 ≤ k < 2;

(3) T (X) ⊂ S(X);

(4)′ S(X) or T (X) is a complete subspace of X.
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Then S and T have a unique common fixed point in X.

Proof. From Theorem 3.3, we only need to show that S and T satisfy the property G∗-(E.A), i.e., condition
(1) in Theorem 3.3.

Taking x0 ∈ X, by condition (3), we can choose x1 ∈ X such that Tx0 = Sx1. Choose x2 ∈ X such that
Tx1 = Sx2. In general, choosing xn ∈ X such that Txn−1 = Sxn. Then, by (3.13) we get

G∗Sxn,Sxn,Sxn+1
(t) = G∗Sxn,Sxn,Txn(t) ≥ H(t− 2(φ(Sxn)− φ(Txn))) = H(t− 2(φ(Sxn)− φ(Sxn+1))).

Hence G∗Sxn,Sn,Sn+1
(t) = 1, where t > 2(φ(Sxn) − φ(Sxn+1)). So, by Lemma 2.9 , we have

G∗λ(Sxn, Sxn, Sxn+1) < t for all λ ∈ (0, 1]. Letting t→ 2(φ(Sxn)− φ(Sxn+1)), we obtain

0 ≤ Gλ(Sxn, Sxn, Sxn+1) ≤ 2(φ(Sxn)− φ(Sxn+1)).

It is not difficult to see that the sequence {φ(Sxn)} is nonincreasing and bounded below, hence it is a
convergent sequence.

On the other hand, from (3.13) we can also obtain

G∗Sxn,Sxn,Sxn+m
(t) ≥ H(t− 2(φ(Sxn)− φ(Sxn+m))).

Let n → ∞, then G∗Sxn,Sxn,Sn+m
(t) → 1 for all t > 0 and m ∈ Z+. By Lemma 2.10, {Sxn} is a Cauchy

sequence in S(X). As Sxn = Txn−1 ∈ T (X), {Sxn} is also a Cauchy sequence in T (X). And then,
by condition (4)′, there exist u ∈ S(X) or u ∈ T (X) such that lim

n→∞
Sxn = u. Obviously, we also have

lim
n→∞

Txn = u. This shows that S and T satisfy the property G∗-(E.A). Moreover, it is evident that

condition (4)′ ⇒ (4). Therefore the conclusion follows from Theorem 3.3 immediately.

Remark 3.6. In Theorem 3.5, if we replace condition (2) by condition (2)′ of Corollary 3.4, then the conclusion
of the theorem still holds.

Taking S = IX (the identity mapping on X) and k = 1 in Theorem 3.5, we get the following result.

Corollary 3.7. Let (X,G∗,∆) be a Menger PGM -space with a continuous t-norm ∆ on [0, 1]× [0, 1], and
let T be a weakly compatible self-mapping on (X,G∗,∆) satisfying the following conditions:

(1)′ there exists a mapping φ : X → R+ such that

G∗x,y,Tz(t) ≥ H(t− (φ(x) + φ(y)− 2φ(Tz))),

for all x, y, z ∈ X, t ∈ R;

(2) for any x, y ∈ X, x 6= y, t > 0,

G∗Tx,Tx,Ty(t) > min{G∗x,x,y(t), [G∗Tx,Tx,x ⊕G∗Ty,Ty,y](2t), [G∗Ty,Ty,x ⊕G∗Tx,Tx,y](2t)}

and
G∗Tx,Ty,Ty(t) > min{G∗x,y,y(t), [G∗Tx,x,x ⊕G∗Ty,y,y](2t), [G∗Ty,x,x ⊕G∗Tx,y,y](2t)}.

Then T has a unique fixed point in X.

Also, we have the following corollary.

Corollary 3.8. Let (X,G∗,∆) be a compact Menger PGM -space with a continuous t-norm ∆ on
[0, 1]× [0, 1], T be a self-mapping on (X,G∗,∆) satisfying the following conditions:

(i) there exists an x0 ∈ X, such that G∗Tnx0,Tn+1x0,Tn+1x0
(t)→ 1 (n→∞) for all t > 0;
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(ii) for any x, y ∈ X, x 6= y, t > 0,

G∗Tx,Tx,Ty(t) > min{G∗x,x,y(t), [G∗Tx,Tx,x ⊕G∗Ty,Ty,y](2t), [G∗Ty,Ty,x ⊕G∗Tx,Tx,y](2t)}

and
G∗Tx,Ty,Ty(t) > min{G∗x,y,y(t), [G∗Tx,x,x ⊕G∗Ty,y,y](2t), [G∗Ty,x,x ⊕G∗Tx,y,y](2t)}.

Then T has a unique fixed point in X.

Proof. Taking S = IX , it is evident that S and T are weakly compatible mappings and satisfy condition
(2)-(4). In the following, we need to show that S and T satisfy the property G∗-(E.A). By (i), putting
xn = Tn(x0), we have G∗xn,Txn,Txn(t) → 1 (n → ∞) for all t > 0. Since X is compact, there exists
subsequences {xnk

} of {xn} and Txnk
of Txn such that xnk

→ x ∈ X and Txnk
→ y ∈ X. Thus, we have

G∗xnk
,y,y(t) ≥ ∆(G∗xnk

,Txnk
,Txnk

(
t

2
), G∗Txnk

,y,y(
t

2
))→ 1 (k →∞)

for all t > 0, which implies that lim
k→∞

Sxnk
= lim

k→∞
Txnk

= y, i.e., S and T satisfy the property G∗-(E.A).

This shows that all the conditions of Theorem 3.3 are satisfied, and so the conclusion follows from Theorem
3.3 immediately.

4. Common fixed point theorems in G-metric spaces

In this section, we shall apply the results obtained in Section 3 to establish the corresponding common
fixed point theorems under strict contractive conditions in G-metric spaces.

Theorem 4.1. Let S and T be two weakly compatible self-mappings of a G-metric space (X,G). If the
following conditions are satisfied:

(i) S and T satisfy the property G-(E.A);

(ii) for any x, y ∈ X, x 6= y,

G(Tx, Tx, Ty) < max{G(Sx, Sx, Sy), k[G(Tx,Tx,Sx)+G(Ty,Ty,Sy)]
2 , [G(Ty,Ty,Sx)+G(Tx,Tx,Sy)]

2 } (4.1)

and

G(Tx, Ty, Ty) < max{G(Sx, Sy, Sy), k[G(Tx,Sx,Sx)+G(Ty,Sy,Sy)]
2 , [G(Ty,Sx,Sx)+G(Tx,Sy,Sy)]

2 }, (4.2)

for some k, 1 ≤ k < 2;

(iii) T (X) ⊂ S(X);

(iv) S(X) or T (X) is a closed subset of X.

Then S and T have a unique common fixed point in X.

Proof. Let (X,G∗,∆m) be the PGM -space induced by (X,G), where G∗ is defined by (2.1). It is easy to
see that condition (i), (iii), (iv) of Theorem 4.1 imply condition (1), (3), (4) of Theorem 3.3, respectively.
It remains to be proved that condition (ii) of Theorem 4.1 implies condition (2) of Theorem 3.3.

For any x, y ∈ X, x 6= y and t > 0, we first verify that

G∗Tx,Ty,Ty(t) ≥ min{G∗Sx,Sy,Sy(t), [G∗Tx,Sx,Sx ⊕G∗Ty,Sy,Sy](
2t

k
), [G∗Ty,Sx,Sx ⊕G∗Tx,Sy,Sy](2t)}. (4.3)

If t > G(Tx, Ty, Ty), then G∗Tx,Ty,Ty(t) = 1. It is clear that (4.3) holds. If t ≤ G(Tx, Ty, Ty), we can
consider the following three cases:

Case(a): t < G(Sx, Sy, Sy), we have G∗Sx,Sy,Sy(t) = 0, and so (4.3) holds.
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Case(b): t < k[G(Tx,Sx,Sx)+G(Ty,Sy,Sy)]
2 , i.e., 2

k < [G(Tx, Sx, Sx)+G(Ty, Sy, Sy)]. Thus, for any t1, t2 > 0
with t1 + t2 = 2t

k , we have G(Tx, Sx, Sx) > t1 or G(Ty, Sy, Sy) > t2, i.e., at least one of G∗Tx,Sx,Sx(t1) = 0
and G∗Ty,Sy,Sy(t2) = 0 holds. Hence,

[G∗Tx,Sx,Sx ⊕G∗Ty,Sy,Sy](
2t

k
) = sup

t1+t2=
2t
k

min{G∗Tx,Sx,Sx(t1), G
∗
Ty,Sy,Sy(t2)} = 0,

and so (4.3) holds.
Case(c): t < [G∗Ty,Sx,Sx ⊕ G∗Tx,Sy,Sy](2t). By using the same way as (b), it is not difficult to show that

[G∗Ty,Sx,Sx⊕G∗Tx,Sy,Sy](2t) = 0, and so (4.3) holds. In view of the above discussions, we conclude that (4.3)
is true. Next, by (4.2), we can choose a t0 > 0 such that

G(Tx, Ty, Ty) < t0 < max{G(Sx, Sy, Sy),

k[G(Tx, Sx, Sx) +G(Ty, Sy, Sy)]

2
,
[G(Ty, Sx, Sx) +G(Tx, Sy, Sy)]

2
},

which implies that G∗Tx,Ty,Ty(t0) = 1 and

min{G∗Sx,Sy,Sy(t), [G∗Tx,Sx,Sx ⊕G∗Ty,Sy,Sy](
2t

k
), [G∗Ty,Sx,Sx ⊕G∗Tx,Sy,Sy](2t)} = 0.

Hence,

G∗Tx,Ty,Ty(t0) > min{G∗Sx,Sy,Sy(t0), [G∗Tx,Sx,Sx ⊕G∗Ty,Sy,Sy](
2t0
k

), [G∗Ty,Sx,Sx ⊕G∗Tx,Sy,Sy](2t0)}. (4.4)

Similarly, we can verify that,

G∗Tx,Tx,Ty(t) ≥ min{G∗Sx,Sx,Sy(t), [G∗Tx,Tx,Sx ⊕G∗Ty,Ty,Sy](
2t

k
), [G∗Ty,Ty,Sx ⊕G∗Tx,Tx,Sy](2t)} (4.5)

for any x, y ∈ X, x 6= y and t > 0, and there exists a t1 > 0 such that

G∗Tx,Tx,Ty(t1) > min{G∗Sx,Sx,Sy(t1), [G∗Tx,Tx,Sx ⊕G∗Ty,Ty,Sy](
2t1
k

), [G∗Ty,Ty,Sx ⊕G∗Tx,Tx,Sy](2t1)}. (4.6)

By (4.3)-(4.6) and Definition 2.15, we know that (3.1) and (3.2) hold. Therefore, all the conditions of
Theorem 3.3 are satisfied and the conclusion follows from it immediately.

Similarly, from Corollary 3.4 we get the following corollary.

Corollary 4.2. Let S and T be two weakly compatible self-mappings of a G-metric space (X,G). If condi-
tions (i), (iii), (iv) of Theorem 4.1 and the following condition (ii)′ are satisfied:

(ii)′ for any x, y ∈ X, x 6= y

G(Tx, Tx, Ty) < max{G(Sx, Sx, Sy), [G(Tx,Tx,Sx)+G(Ty,Ty,Sy)]
2 , [G(Ty,Ty,Sx)+G(Tx,Tx,Sy)]

2 }

and

G(Tx, Ty, Ty) < max{G(Sx, Sy, Sy), [G(Tx,Sx,Sx)+G(Ty,Sy,Sy)]
2 , [G(Ty,Sx,Sx)+G(Tx,Sy,Sy)]

2 },

for some k, 1 ≤ k < 2.

Then S and T have a unique common fixed point in X.

From Theorem 3.5 we can also obtain the following corollary.

Corollary 4.3. Let S and T be two weakly compatible self-mappings of a G-metric space (X,G) satisfy the
following conditions:
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(i)′ there exist a mapping φ : X → R+ such that

G(Sx, Sy, Tz) ≤ φ(Sx) + φ(Sy)− 2φ(Tz), (4.7)

for all x, y, z ∈ X;

(ii) for any x, y ∈ X, x 6= y

G(Tx, Tx, Ty) < max{G(Sx, Sx, Sy), k[G(Tx,Tx,Sx)+G(Ty,Ty,Sy)]
2 , [G(Ty,Ty,Sx)+G(Tx,Tx,Sy)]

2 } (4.8)

and

G(Tx, Ty, Ty) < max{G(Sx, Sy, Sy), k[G(Tx,Sx,Sx)+G(Ty,Sy,Sy)]
2 , [G(Ty,Sx,Sx)+G(Tx,Sy,Sy)]

2 }, (4.9)

for some k, 1 ≤ k < 2;

(iii) T (X) ⊂ S(X);

(iv)′ S(X) or T (X) is a complete subspace of X.

Then S and T have a unique common fixed point.

Proof. Let (X,G∗,∆m) be PGM -space induced by (X,G). Obviously, conditions (ii), (iii) and (iv)′ imply
conditions (2), (3) and (4)′ of Theorem 3.5 respectively. In addition, it is not difficult to prove that (4.7)
implies (3.13).

In fact, if t > G(Sx, Sx, Tx), then G∗Sx,Sx,Tx(t) = 1, and so (3.13) holds. If t ≤ G(Sx, Sx, Tx), then it
follows from (4.7) that t ≤ φ(Sx) + φ(Sy)− 2φ(Tz) for all x ∈ X. Hence

G∗Sx,Sx,Tx(t) = 0 = H(t− (φ(Sx) + φ(Sy)− 2φ(Tz))),

and so (3.13) holds. Therefore, all conditions of Theorem 3.5 are satisfied and the conclusion follows from
Theorem 3.5 immediately.

Remark 4.4. If we replace condition (ii) in Corollary 4.3 by condition (ii)′ of Corollary 4.2, then the conclusion
of Corollary 4.3 still holds.

Taking S = IX and k = 1 in Corollary 4.3, we get the following result.

Corollary 4.5. Let T be a weakly compatible self-mapping on a G-metric space (X,G) satisfying the fol-
lowing conditions:

(i) there exists a mapping φ : X → R+ such that

G(x, y, Tz) ≤ φ(x) + φ(y)− 2φ(Tz) (4.10)

for all x, y, z ∈ X;

(ii) for any x, y ∈ X, x 6= y,

G(Tx, Tx, Ty) < max{G(x, x, y), [G(Tx,Tx,x)+G(Ty,Ty,y)]
2 , [G(Ty,Ty,x)+G(Tx,Tx,y)]

2 }

and

G(Tx, Ty, Ty) < max{G(x, y, y), [G(Tx,x,x)+G(Ty,y,y)]
2 , [G(Ty,x,x)+G(Tx,y,y)]

2 }.

Then T has a unique fixed point in X.
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5. An application

In this section, we will provide an example to show the validity of Theorem 3.3 of this paper.

Example 5.1. Consider X = (−1, 1) and define G∗x,y,z = t
t+|x−y|+|y−z|+|z−x| for all x, y ∈ X with t > 0.

Then, by Example 2.1, (X,G∗,∆m) is a PGM -space . Define T, S : X → X as follows:

T (x) =

{
1
5 , x ∈ (−1,−1

2) ∪ (12 , 1),
1
3x, x ∈ [−1

2 ,
1
2 ].

S(x) =

{
1
3 , x ∈ (−1,−1

2) ∪ (12 , 1),
1
2x, x ∈ [−1

2 ,
1
2 ].

Consider the sequences {xn = 1
n+1} and {yn = − 1

n+1} in X, then

lim
n→∞

Txn = lim
n→∞

Sxn = 0,

which shows that T and S are two weakly compatible self-mappings and also satisfy the common property
G∗-(E.A). Also T and S are closed subsets of X. By a routine calculation, one can verify that (3.1) holds
for all x, y ∈ X, x 6= y, t > 0 and some 1 ≤ k < 2.

In fact, if x, y ∈ (−1,−1
2) ∪ (12 , 1), x 6= y, then for any t > 0, G∗Tx,Tx,Ty(t) = G∗1

5
, 1
5
, 1
5

(t) = 1,

[G∗Tx,Tx,Sx ⊕G∗Ty,Ty,Sy](
2t

k
) = sup

t1+t2=
2t
k

min{G∗Tx,Tx,Sx(t1), G
∗
Ty,Ty,Sy(t2)}

= sup
t1+t2=

2t
k

min{G∗1
5
, 1
5
, 1
3

(t1), G
∗
1
5
, 1
5
, 1
3

(t2)}

= sup
t1+t2=

2t
k

min{ t1

t1 + 2|13 −
1
5 |
,

t2

t2 + 2|13 −
1
5 |
} < 1.

So we have

G∗Tx,Tx,Ty(t) > min{G∗Sx,Sx,Sy(t), [G∗Tx,Tx,Sx ⊕G∗Ty,Ty,Sy](
2t

k
), [G∗Ty,Ty,Sx ⊕G∗Tx,Tx,Sy](2t)}.

If x, y ∈ [−1
2 ,

1
2 ], x 6= y, then for any t > 0,

G∗Tx,Tx,Ty(t) = 1,

and for any t1 + t2 = 2t
k , at least one of G∗Tx,Tx,Sx(t1) = t1

t1+
|x|
3

< 1 and G∗Ty,Ty,Sy(t2) = t2
t2+

|y|
3

< 1 holds.

Hence, [G∗Tx,Tx,Sx ⊕G∗Ty,Ty,Sy](
2t
k ) < 1. Then

G∗Tx,Tx,Ty(t) > [G∗Tx,Tx,Sx ⊕G∗Ty,Ty,Sy](
2t

k
) (5.1)

≥ min{G∗Sx,Sy,Sy(t), [G∗Tx,Sx,Sx ⊕G∗Ty,Sy,Sy](
2t

k
), [G∗Ty,Sx,Sx ⊕G∗Tx,Sy,Sy](2t)}.

If x ∈ (−1,−1
2) ∪ (12 , 1), y ∈ [−1

2 ,
1
2 ], x 6= y, then for any t > 0,

G∗Tx,Tx,Ty(t) =
t

t+ 2|15 −
y
3 |
>

t

t+ 2|13 −
y
2 |

= G∗Sx,Sx,Sy(t)

≥ min{G∗Sx,Sx,Sy(t), [G∗Tx,Tx,Sx ⊕G∗Ty,Ty,Sy](
2t

k
), [G∗Ty,Ty,Sx ⊕G∗Tx,Tx,Sy](2t)}.
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If y ∈ (−1,−1
2) ∪ (12 , 1), x ∈ [−1

2 ,
1
2 ], x 6= y, then for any t > 0,

G∗Tx,Tx,Ty(t) =
t

t+ 2|15 −
x
3 |
>

t

t+ 2|13 −
x
2 |

= G∗Sx,Sx,Sy(t)

≥ min{G∗Sx,Sx,Sy(t), [G∗Tx,Tx,Sx ⊕G∗Ty,Ty,Sy](
2t

k
), [G∗Ty,Ty,Sx ⊕G∗Tx,Tx,Sy](2t)}.

In view of the above discussions, we conclude that (3.1) is satisfied.
Similarly, we can verify that

G∗Tx,Ty,Ty(t) > min{G∗Sx,Sy,Sy(t), [G∗Tx,Sx,Sx ⊕G∗Ty,Sy,Sy](
2t

k
), [G∗Ty,Sx,Sx ⊕G∗Tx,Sy,Sy](2t)},

for any x, y ∈ X, x 6= y, t > 0.
Thus, all the conditions of Theorem 3.3 are satisfied, so T and S have a unique common fixed point in

X. In fact, 0 is the unique common fixed points of T and S.
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