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Abstract

In this paper, we introduce the notion of G-rational Geraghty contractive mappings in the setup of ordered
generalized b-metric spaces and investigate the existence of fixed points for such mappings. We also provide
an example to illustrate the presented results and show that they are more general then some existing ones.
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1. Introduction and preliminaries

There is a great number of generalizations of Banach contraction principle by using different forms of
contractive conditions in various spaces. Some of such generalizations are obtained by contraction conditions
containing rational expressions.

Ran and Reurings initiated the studying of fixed point results on partially ordered sets in [18], where
they gave many useful results on matrix equations. Recently, many researchers have focused on different
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contractive conditions in complete metric spaces endowed with a partial order and obtained many fixed point
results in such spaces. For more details on fixed point results, their applications, comparison of different
contractive conditions and related results in ordered metric spaces we refer the reader to [16, 17].

In [5], the authors proved some unique fixed point results for an operator satisfying certain rational
contraction condition in a partially ordered metric space. In fact, their results generalize the main result of
Jaggi [12].

Czerwik introduced in [7] the concept of a b-metric space. Since then, several papers dealt with fixed
point theory for single-valued and multi-valued operators in b-metric spaces.

Definition 1.1 ([7]). Let X be a nonempty set and s ≥ 1 be a given real number. A mapping d : X×X →
R+ is a b-metric if, for all x, y, z ∈ X, the following conditions are satisfied:

(b1) d(x, y) = 0 iff x = y,

(b2) d(x, y) = d(y, x),

(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

The concept of generalized metric space, or a G-metric space, was introduced by Mustafa and Sims.

Definition 1.2 ([14]). Let X be a nonempty set and G : X ×X ×X → R+ be a mapping satisfying the
following properties:

(G1) G(x, y, z) = 0 iff x = y = z;
(G2) 0 < G(x, x, y), for all x, y ∈ X with x 6= y;
(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with y 6= z;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , (symmetry in all three variables);
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X (rectangle inequality).

Then, the function G is called a G-metric on X and the pair (X,G) is called a G-metric space.

References to the results in these two kinds of spaces can be found in [4]. Recently, Aghajani et al. in [1]
combined these two concepts and introduced the concept of generalized b-metric spaces (Gb-metric spaces)
and presented some of their basic properties.

Definition 1.3 ([1]). Let X be a nonempty set and s ≥ 1 be a given real number. Suppose that a mapping
G : X ×X ×X → R+ satisfies:

(Gb1) G(x, y, z) = 0 if x = y = z,

(Gb2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y,

(Gb3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z,

(Gb4) G(x, y, z) = G(p{x, y, z}), where p is a permutation of x, y, z (symmetry),

(Gb5) G(x, y, z) ≤ s[G(x, a, a) +G(a, y, z)] for all x, y, z, a ∈ X (rectangle inequality).

Then G is called a generalized b-metric and the pair (X,G) is called a generalized b-metric space or a
Gb-metric space.

Each G-metric space is a Gb-metric space with s = 1.

Example 1.4 ([1]). Let (X,G) be a G-metric space and G∗(x, y, z) = Gp(x, y, z), where p > 1 is a real
number. Then G∗ is a Gb-metric with s = 2p−1.
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Example 1.5 ([15]). Let X = R and d(x, y) = |x− y|2. We know that (X, d) is a b-metric space with
s = 2. Let G(x, y, z) = d(x, y) + d(y, z) + d(z, x). It is easy to see that (X,G) is not a Gb-metric space.
Indeed, (Gb3) is not true for x = 0, y = 2 and z = 1. However, G(x, y, z) = max{d(x, y), d(y, z), d(z, x)} is
a Gb-metric on R with s = 2.

Various fixed point results in Gb-metric spaces were subsequently obtained in [11, 13, 15, 19]. See also
[2, 6, 20].

Definition 1.6 ([1, 14]). A Gb-metric G is said to be symmetric if G(x, y, y) = G(y, x, x), for all x, y ∈ X.

Proposition 1.7 ([1]). Let X be a Gb-metric space. Then for each x, y, z, a ∈ X it follows that:
(1) if G(x, y, z) = 0 then x = y = z,
(2) G(x, y, z) ≤ s(G(x, x, y) +G(x, x, z)),
(3) G(x, y, y) ≤ 2sG(y, x, x),
(4) G(x, y, z) ≤ s(G(x, a, z) +G(a, y, z)).

Definition 1.8 ([1]). Let (X,G) be a Gb-metric space. A sequence {xn} in X is said to be:

(1) Gb-Cauchy if, for each ε > 0, there exists a positive integer n0 such that for all m,n, l ≥ n0,
G(xn, xm, xl) < ε;

(2) Gb-convergent to a point x ∈ X if, for each ε > 0, there exists a positive integer n0 such that for all
m,n ≥ n0, G(xn, xm, x) < ε.

The space (X,G) is said to be Gb-complete if every Gb-Cauchy sequence is Gb-convergent in X.

Proposition 1.9 ([1]). Let (X,G) be a Gb-metric space and {xn} be a sequence in X. Then the following
are equivalent:

(1) the sequence {xn} is Gb-Cauchy.
(2) for any ε > 0 there exists n0 ∈ N such that G(xn, xm, xm) < ε for all m,n ≥ n0.

Also, the following are equivalent:
(3) {xn} is Gb-convergent to x.
(4) G(xn, xn, x)→ 0, as n→∞.
(5) G(xn, x, x)→ 0, as n→∞.

Definition 1.10. Let (X,G) be a Gb-metric space. A mapping F : X ×X → X is said to be continuous
if for any two Gb-convergent sequences {xn} and {yn} converging to x and y, respectively, {F (xn, yn)} is
Gb-convergent to F (x, y).

Proposition 1.11 ([1]). Let (X,G) and (X ′, G′) be two Gb-metric spaces. Then a function f : X → X ′ is
Gb-continuous at a point x ∈ X if and only if it is Gb-sequentially continuous at x, that is, whenever {xn}
is Gb-convergent to x, {f(xn)} is G′b-convergent to f(x).

In general, a Gb-metric function G(x, y, z) for s > 1 is not jointly continuous in all of its variables. The
following is an example of a discontinuous Gb-metric.

Example 1.12 ([10, 15]). Let X = N ∪ {∞} and let D : X ×X → R be defined by

D(m,n) =


0, if m = n,∣∣ 1
m −

1
n

∣∣ , if one of m,n is even and the other is even or ∞,
5, if one of m,n is odd and the other is odd (and m 6= n) or ∞,
2, otherwise.

Then it is easy to see that for all m,n, p ∈ X, we have

D(m, p) ≤ 5

2
(D(m,n) +D(n, p)).
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Thus, (X,D) is a b-metric space with s = 5
2 (see [10]).

Let G(x, y, z) = max{D(x, y), D(y, z), D(z, x)}. It is easy to see that G is a Gb-metric with s = 5
2 which

is not a continuous function.

We shall need the following simple lemma about the Gb-convergent sequences in the proof of our main
result.

Lemma 1.13 ([15]). Let (X,G) be a Gb-metric space with s > 1 and suppose that {xn}, {yn} and {zn} are
Gb-convergent to x, y and z, respectively. Then we have

1

s3
G(x, y, z) ≤ lim inf

n→∞
G(xn, yn, zn) ≤ lim sup

n→∞
G(xn, yn, zn) ≤ s3G(x, y, z).

In particular, if x = y = z, then we have limn→∞G(xn, yn, zn) = 0.

Let F denote the class of all real functions β : [0,∞)→ [0, 1) satisfying the condition

β(tn)→ 1 implies that tn → 0, as n→∞.

In order to generalize the Banach contraction principle, in 1973, Geraghty proved the following

Theorem 1.14 ([9]). Let (X, d) be a complete metric space, and let f : X → X be a self-map. Suppose that
there exists β ∈ F such that

d(fx, fy) ≤ β(d(x, y))d(x, y)

holds for all x, y ∈ X. Then f has a unique fixed point z ∈ X and for each x ∈ X the Picard sequence
{fnx} converges to z.

In 2010, Amini-Harandi and Emami extended the result of Geraghty to the framework of partially
ordered complete metric spaces in the following way:

Theorem 1.15 ([3]). Let (X, d,�) be a complete partially ordered metric space. Let f : X → X be an
increasing self-map such that there exists x0 ∈ X with x0 � fx0. Suppose that there exists β ∈ F such that

d(fx, fy) ≤ β(d(x, y))d(x, y)

holds for all x, y ∈ X with y � x. Assume that either f is continuous or X is such that if an increasing
sequence {xn} in X converges to x ∈ X, then xn � x for all n. Then f has a fixed point in X. Moreover,
if for each x, y ∈ X there exists z ∈ X comparable with x and y, then the fixed point of f is unique.

In [8], -Dukić et al. proved some fixed point theorems for mappings satisfying Geraghty-type contractive
conditions in various generalized metric spaces. As in [8], we will consider the class of functions Fs, where
β ∈ Fs if β : [0,∞)→ [0, 1/s) and has the property

β(tn)→ 1

s
implies that tn → 0, as n→∞.

Theorem 1.16 ([8]). Let (X, d) be a complete b-metric space with parameter s ≥ 1. Suppose that a mapping
f : X → X satisfies the condition

d(fx, fy) ≤ β(d(x, y))d(x, y)

for some β ∈ Fs and all x, y ∈ X. Then f has a unique fixed point z ∈ X, and for each x ∈ X the Picard
sequence {fnx} converges to z in (X, d).

By unification of the recent results by Zabihi and Razani there is the following result.
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Theorem 1.17 ([21]). Let (X, d,�) be a partially ordered b-complete b-metric space (with parameter s > 1).
Let f : X → X be an increasing mapping with respect to � such that there exists an element x0 ∈ X with
x0 � f(x0). Suppose that there exists β ∈ Fs such that

sd(fx, fy) ≤ β(d(x, y))M(x, y) + LN(x, y)

for all comparable elements x, y ∈ X, where L ≥ 0,

M(x, y) = max

{
d(x, y),

d(x, fx)d(y, fy)

1 + d(fx, fy)

}
and

N(x, y) = min{d(x, fx), d(x, fy), d(y, fx), d(y, fy)}.

If f is continuous, or, whenever {xn} is a nondecreasing sequence in X such that xn → u ∈ X, one has
xn � u for all n ∈ N, then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and
only if f has one and only one fixed point.

The aim of this paper is to present some fixed point theorems for mappings in partially ordered Gb-metric
spaces satisfying several versions of rational Geraghty-type contractive conditions. Our results extend some
existing results in the literature. An example is presented showing the usefulness of these results and they
are indeed more general than some known ones.

2. Main results

Further, let Fs denote the class of all functions β : [0,∞)→ [0, 1s ) satisfying the following condition:

lim sup
n→∞

β(tn) =
1

s
implies that tn → 0, as n→∞.

In the rest of the paper we shall always assume that the parameter s > 1. The case s = 1 (i.e., when we
deal with a G-metric space) can be handled easily.

Definition 2.1. Let (X,G,�) be an ordered Gb-metric space. A mapping f : X → X is called a G-rational
Geraghty contraction of type A if there exists β ∈ Fs such that

G(fx, fy, fz) ≤ β(MA(x, y, z))MA(x, y, z) (2.1)

for all comparable elements x, y, z ∈ X, where

MA(x, y, z) = max

{
G(x, y, z),

G(x, fx, fy)G(y, fy, fz)G(z, fz, fx)

1 +G(x, y, z)G(fx, fy, fz)
,

G(x, fx, fy)G(y, fy, fz)G(z, fz, fx)

1 +G2(fx, fy, fz)

}
. (2.2)

Theorem 2.2. Let (X,G,�) be an ordered Gb-complete Gb-metric space. Let f : X → X be an increasing
mapping with respect to � such that there exists an element x0 ∈ X with x0 � fx0. Suppose that f is a
G-rational Geraghty contraction of type A. If
(I) f is continuous, or
(II) whenever {xn} is a nondecreasing sequence in X such that xn → u ∈ X, one has xn � u for all n ∈ N,
then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f has one and
only one fixed point.
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Proof. Put xn = fnx0. Since x0 � fx0 and f is increasing, we obtain by induction that

x0 � fx0 � f2x0 � · · · � fnx0 � fn+1x0 � · · · .

We will do the proof in the following steps.
Step 1. We will show that lim

n→∞
G(xn, xn+1, xn+1) = 0. Without any loss of generality, we may assume

that xn 6= xn+1, for all n ∈ N. Since xn � xn+1 for each n ∈ N, then by (2.1) we have

G(xn, xn+1, xn+2) = G(fxn−1, fxn, fxn+1) ≤ β(MA(xn−1, xn, xn+1))MA(xn−1, xn, xn+1), (2.3)

where

MA(xn−1, xn, xn+1)

= max

{
G(xn−1, xn, xn+1),

G(xn−1, fxn−1, fxn)G(xn, fxn, fxn+1)G(xn+1, fxn+1, fxn−1)

1 +G(xn−1, xn, xn+1)G(fxn−1, fxn, fxn+1)
,

G(xn−1, fxn−1, fxn)G(xn, fxn, fxn+1)G(xn+1, fxn+1, fxn−1)

1 +G2(fxn−1, fxn, fxn+1)

}
= max

{
G(xn−1, xn, xn+1),

G(xn−1, xn, xn+1)G(xn, xn+1, xn+2)G(xn+1, xn+2, xn)

1 +G(xn−1, xn, xn+1)G(xn, xn+1, xn+2)
,

G(xn−1, xn, xn+1)G(xn, xn+1, xn+2)G(xn+1, xn+2, xn)

1 +G2(xn, xn+1, xn+2)

}
≤ max {G(xn−1, xn, xn+1), G(xn, xn+1, xn+2)} .

If max{G(xn−1, xn, xn+1), G(xn, xn+1, xn+2)} = G(xn, xn+1, xn+2), then from (2.3) we have

G(xn, xn+1, xn+2) ≤ β(MA(xn−1, xn, xn+1))G(xn, xn+1, xn+2)

<
1

s
G(xn, xn+1, xn+2)

< G(xn, xn+1, xn+2),

which is a contradiction. Hence, max{G(xn−1, xn, xn+1), G(xn, xn+1, xn+2)} = G(xn−1, xn, xn+1). So, from
(2.3),

G(xn, xn+1, xn+2) ≤ β(MA(xn−1, xn, xn+1))G(xn−1, xn, xn+1) <
1

s
G(xn−1, xn, xn+1).

Continuing by induction, we get that

G(xn, xn+1, xn+2) <
1

sn
G(x0, x1, x2)→ 0 as n→∞.

Hence, limn→∞G(xn, xn+1, xn+2) = 0. Consequently, using (Gb3), we get that

lim
n→∞

G(xn, xn+1, xn+1) = 0. (2.4)

Step 2. Now, we prove that the sequence {xn} is a Gb-Cauchy sequence. Suppose the contrary. Then
there exists ε > 0 for which we can find two subsequences {xmi} and {xni} of {xn} such that ni is the
smallest index for which

ni > mi > i and G(xmi , xni , xni) ≥ ε. (2.5)

This means that
G(xmi , xni−1, xni−1) < ε.

From the rectangular inequality, we get

ε ≤ G(xmi , xni , xni) ≤ sG(xmi , xmi+1, xmi+1) + sG(xmi+1, xni , xni).

By taking the upper limit as i→∞ and by (2.4), we get
ε

s
≤ lim sup

i→∞
G(xmi+1, xni , xni).

From the definition of MA(x, y, z) and the above limits,
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lim sup
i→∞

MA(xmi ,xni−1, xni−1)

= lim sup
i→∞

max{G(xmi , xni−1, xni−1),

G(xmi , fxmi , fxni−1)G(xni−1, fxni−1, fxni−1)G(xni−1, fxni−1, fxmi)

1 +G(xmi , xni−1, xni−1)G(fxmi , fxni−1, fxni−1)
,

G(xmi , fxmi , fxni−1)G(xni−1, fxni−1, fxni−1)G(xni−1, fxni−1, fxmi)

1 +G2(fxmi , fxni−1, fxni−1)
}

= lim sup
i→∞

max{G(xmi , xni−1, xni−1),

G(xmi , xmi+1, xni)G(xni−1, xni , xni)G(xni−1, xni , xmi+1)

1 +G(xmi , xni−1, xni−1)G(xmi+1, xni , xni)
,

G(xmi , xmi+1, xni)G(xni−1, xni , xni)G(xni−1, xni , xmi+1)

1 +G2(xmi+1, xni , xni)
}

≤ ε.

Now, from (2.1) and the above inequalities, we have

ε

s
≤ lim sup

i→∞
G(xmi+1, xni , xni)

≤ lim sup
i→∞

β(MA(xmi , xni−1, xni−1)) lim sup
i→∞

MA(xmi , xni−1, xni−1)

≤ ε lim sup
i→∞

β(MA(xmi , xni−1, xni−1))

which implies that 1
s ≤ lim sup

i→∞
β(MA(xmi , xni−1, xni−1)). Now, as β ∈ Fs we conclude that

MA(xmi , xni−1, xni−1)→ 0 which yields that G(xmi , xni−1, xni−1)→ 0. Consequently,

G(xmi , xni , xni) ≤ sG(xmi , xni−1, xni−1) + sG(xni−1, xni , xni)→ 0,

a contradiction to (2.5). Therefore, {xn} is a Gb-Cauchy sequence. Gb-completeness of X yields that {xn}
Gb-converges to a point u ∈ X.

Step 3. u is a fixed point of f .
First of all, if f is continuous, then we have

u = lim
n→∞

xn+1 = lim
n→∞

fxn = fu.

Now, let (II) hold. Using the assumption on X we have xn � u for n ∈ N. Now, we show that u = fu.
By Lemma 1.13,

1

s3
G(u, u, fu) ≤ lim sup

n→∞
G(xn+1, xn+1, fu)

≤ lim sup
n→∞

β(MA(xn, xn, u)) lim sup
n→∞

MA(xn, xn, u),

where

lim
n→∞

MA(xn, xn, u) = lim
n→∞

max{G(xn, xn, u),
G(xn, fxn, fxn)G(xn, fxn, fu)G(u, fu, fxn)

1 +G(xn, xn, u)G(fxn, fxn, fu)
,

G(xn, fxn, fxn)G(xn, fxn, fu)G(u, fu, fxn)

1 +G2(fxn, fxn, fu)
} = 0.

Therefore, we deduce that G(u, u, fu) = 0, so u = fu.
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Finally, suppose that the set of fixed points of f is well ordered. Assume, to the contrary, that u and v
are two distinct fixed points of f . Then by (2.1), we have

G(u, v, v) = G(fu, fv, fv) ≤ β(MA(u, v, v))MA(u, v, v) = β(G(u, v, v))G(u, v, v) <
1

s
G(u, v, v), (2.6)

because

MA(u, v, v) = max

{
G(u, v, v),

G(u, u, v)G(v, v, v)G(v, v, u)

1 +G2(u, v, v)

}
= G(u, v, v).

So, we get G(u, v, v) < 1
sG(u, v, v), a contradiction. Hence u = v, and f has a unique fixed point. Conversely,

if f has a unique fixed point, then the set of fixed points of f is a singleton and so it is well ordered.

Definition 2.3. Let (X,G,�) be an ordered Gb-metric space. A mapping f : X → X is called a G-rational
Geraghty contraction of type B if, there exists β ∈ Fs such that,

G(fx, fy, fz) ≤ β(MB(x, y, z))MB(x, y, z) (2.7)

for all comparable elements x, y, z ∈ X, where

MB(x, y, z)

= max

{
G(x, y, z),

G(x, x, fx)G(x, x, fy) +G(y, y, fy)G(y, y, fx)

1 + s[G(x, x, fx) +G(y, y, fy)]
,

G(y, y, fy)G(y, y, fz) +G(z, z, fz)G(z, z, fy)

1 + s[G(y, y, fy) +G(z, z, fz)]
,
G(x, x, fx)G(x, x, fy) +G(y, y, fy)G(y, y, fx)

1 +G(x, x, fy) +G(y, y, fx)
,

G(y, y, fy)G(y, y, fz) +G(z, z, fz)G(z, z, fy)

1 +G(y, y, fz) +G(z, z, fy)

}
. (2.8)

Theorem 2.4. Let (X,G,�) be an ordered Gb-complete Gb-metric space. Let f : X → X be an increasing
mapping with respect to � such that there exists an element x0 ∈ X with x0 � fx0. Suppose that f is a
G-rational Geraghty contractive mapping of type B. If
(I) f is continuous, or
(II) whenever {xn} is a nondecreasing sequence in X such that xn → u ∈ X, one has xn � u for all n ∈ N,
then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f has one and
only one fixed point.

Proof. Put xn = fnx0. Since x0 � fx0 and f is an increasing function, we obtain by induction that

x0 � fx0 � f2x0 � · · · � fnx0 � fn+1x0 � · · · .

We will make the proof in the following steps.
Step I: We will show that lim

n→∞
G(xn, xn+1, xn+1) = 0. Without any loss of generality, we may assume

that xn 6= xn+1, for all n ∈ N. Since xn � xn+1 for each n ∈ N, then by (2.7) we have

G(xn, xn+1, xn+2) = G(fxn−1, fxn, fxn+1) ≤ β(MB(xn−1, xn, xn+1))MB(xn−1, xn, xn+1)

≤ β(MB(xn−1, xn, xn+1))G(xn−1, xn, xn+1) <
1

s
G(xn−1, xn, xn+1), (2.9)

because

MB(xn−1, xn, xn+1) = max{G(xn−1, xn, xn+1),

G(xn−1, xn−1, fxn−1)G(xn−1, xn−1, fxn) +G(xn, xn, fxn)G(xn, xn, fxn−1)

1 + s[G(xn−1, xn−1, fxn−1) +G(xn, xn, fxn)]
,
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G(xn, xn, fxn)G(xn, xn, fxn+1) +G(xn+1, xn+1, fxn+1)G(xn+1, xn+1, fxn)

1 + s[G(xn, xn, fxn) +G(xn+1, xn+1, fxn+1)]
,

G(xn−1, xn−1, fxn−1)G(xn−1, xn−1, fxn) +G(xn, xn, fxn)G(xn, xn, fxn−1)

1 +G(xn−1, xn−1, fxn) +G(xn, xn, fxn−1)
,

G(xn, xn, fxn)G(xn, xn, fxn+1) +G(xn+1, xn+1, fxn+1)G(xn+1, xn+1, fxn)

1 +G(xn, xn, fxn+1) +G(xn+1, xn+1, fxn)
}

= max{G(xn−1, xn, xn+1),

G(xn−1, xn−1, xn)G(xn−1, xn−1, xn+1) +G(xn, xn, xn+1)G(xn, xn, xn)

1 + s[G(xn−1, xn−1, xn) +G(xn, xn, xn+1)]
,

G(xn, xn, xn+1)G(xn, xn, xn+2) +G(xn+1, xn+1, xn+2)G(xn+1, xn+1, xn+1)

1 + s[G(xn, xn, xn+1) +G(xn+1, xn+1, xn+2)]
,

G(xn−1, xn−1, xn)G(xn−1, xn−1, xn+1) +G(xn, xn, xn+1)G(xn, xn, xn)

1 +G(xn−1, xn−1, xn+1) +G(xn, xn, xn)
,

G(xn, xn, xn+1)G(xn, xn, xn+2) +G(xn+1, xn+1, xn+2)G(xn+1, xn+1, xn+1)

1 +G(xn, xn, xn+2) +G(xn+1, xn+1, xn+1)
}

≤ max{G(xn−1, xn, xn+1),

G(xn−1, xn−1, xn)s[G(xn−1, xn−1, xn) +G(xn, xn, xn+1)]

1 + s[G(xn−1, xn−1, xn) +G(xn, xn, xn+1)]
,

G(xn, xn, xn+1)s[G(xn, xn, xn+1) +G(xn+1, xn+1, xn+2)]

1 + s[G(xn, xn, xn+1) +G(xn+1, xn+1, xn+2)]
,

G(xn−1, xn−1, xn)G(xn−1, xn−1, xn+1)

1 +G(xn−1, xn−1, xn+1) +G(xn, xn, xn)
,

G(xn, xn, xn+1)G(xn, xn, xn+2)

1 +G(xn, xn, xn+2) +G(xn+1, xn+1, xn+1)
}

≤ max{G(xn−1, xn, xn+1), G(xn−1, xn−1, xn), G(xn, xn, xn+1)}
≤ max{G(xn−1, xn, xn+1), G(xn, xn+1, xn+2)},

and it is easy to see that max{G(xn−1, xn, xn+1), G(xn, xn+1, xn+2)} = G(xn−1, xn, xn+1). Hence, in the
same way as in the proof of the preceding theorem, we obtain from (2.9) that

lim
n→∞

G(xn, xn+1, xn+1) = 0

is true.
Step 2. Now, we prove that the sequence {xn} is a Gb-Cauchy sequence. Suppose the contrary. Then

there exists ε > 0 for which we can find two subsequences {xmi} and {xni} of {xn} such that ni is the
smallest index for which

ni > mi > i and G(xmi , xni , xni) ≥ ε.

This means that
G(xmi , xni−1, xni−1) < ε.

As in the proof of Theorem 2.2, we have,

ε

s
≤ lim sup

i→∞
G(xmi+1, xni , xni).

From the definition of MB(x, y, z) and the above limits,
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lim sup
i→∞

MB(xmi , xni−1, xni−1)

= lim sup
i→∞

max{G(xmi , xni−1, xni−1),

G(xmi , xmi , fxmi)G(xmi , xmi , fxni−1) +G(xni−1, xni−1, fxni−1)G(xni−1, xni−1, fxmi)

1 + s[G(xmi , xmi , fxmi) +G(xni−1, xni−1, fxni−1)]
,

G(xni−1, xni−1, fxni−1)G(xni−1, xni−1, fxni−1) +G(xni−1, xni−1, fxni−1)G(xni−1, xni−1, fxni−1)

1 + s[G(xni−1, xni−1, fxni−1) +G(xni−1, xni−1, fxni−1)]
,

G(xmi , xmi , fxmi)G(xmi , xmi , fxni−1) +G(xni−1, xni−1, fxni−1)G(xni−1, xni−1, fxmi)

1 +G(xmi , xmi , fxni−1) +G(xni−1, xni−1, fxmi)
,

G(xni−1, xni−1, fxni−1)G(xni−1, xni−1, fxni−1) +G(xni−1, xni−1, fxni−1)G(xni−1, xni−1, fxni−1)

1 +G(xni−1, xni−1, fxni−1) +G(xni−1, xni−1, fxni−1)

}
≤ ε.

Now, from (2.7) and the above inequalities, we have

ε

s
≤ lim sup

i→∞
G(xmi+1, xni , xni)

≤ lim sup
i→∞

β(MB(xmi , xni−1, xni−1)) lim sup
i→∞

MB(xmi , xni−1, xni−1)

≤ ε lim sup
i→∞

β(MB(xmi , xni−1, xni−1))

which implies that 1
s ≤ lim sup

i→∞
β(MB(xmi , xni−1, xni−1)). Now, as β ∈ Fs we conclude that {xn} is a

Gb-Cauchy sequence. Gb-completeness of X yields that {xn} Gb-converges to a point u ∈ X.
Step 3. u is a fixed point of f . This step is proved in the same way as Step 3 of Theorem 2.2.

Definition 2.5. Let (X,G,�) be an ordered Gb-metric space. A mapping f : X → X is called a G-rational
Geraghty contraction of type C if there exists β ∈ Fs such that,

2s3G(fx, fy, fz) ≤ β(MC(x, y, z))MC(x, y, z) (2.10)

for all comparable elements x, y, z ∈ X, where

MC(x, y, z) = max

{
G(x, y, z),

G(x, x, fx)G(y, y, fy)

1 + s[G(x, y, y) +G(x, x, fy) +G(y, y, fx)]
,

G(x, y, y)G(x, x, y)

1 +G(x, fx, fx) +G(y, y, fx) +G(y, fy, fy)
,

G(y, y, fy)G(z, z, fz)

1 + s[G(y, z, z) +G(y, y, fz) +G(z, z, fy)]
,

G(y, z, z)G(y, y, z)

1 +G(y, fy, fy) +G(z, z, fy) +G(z, fz, fz)

}
. (2.11)

Theorem 2.6. Let (X,G,�) be an ordered Gb-complete Gb-metric space. Let f : X → X be an increasing
mapping with respect to � such that there exists an element x0 ∈ X with x0 � fx0. Suppose that f is a
G-rational Geraghty contractive mapping of type C. If
(I) f is continuous, or,
(II) whenever {xn} is a nondecreasing sequence in X such that xn → u ∈ X, one has xn � u for all n ∈ N,
then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f has one and
only one fixed point.

Proof. Put xn = fnx0.
Step 1. We will show that lim

n→∞
G(xn, xn+1, xn+1) = 0. Without loss of generality, we may assume that

xn 6= xn+1, for all n ∈ N. Since xn � xn+1 for each n ∈ N, then by (2.10) we have
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G(xn, xn+1, xn+2) ≤ 2s3G(xn, xn+1, xn+2) = 2s3G(fxn−1, fxn, fxn+1)

≤ β(MC(xn−1, xn, xn+1))MC(xn−1, xn, xn+1)

≤ β(MC(xn−1, xn, xn+1))G(xn−1, xn, xn+1)

<
1

s
G(xn−1, xn, xn+1),

because

MC(xn−1, xn, xn+1)

= max{G(xn−1, xn, xn+1),

G(xn−1, xn−1, fxn−1)G(xn, xn, fxn)

1 + s[G(xn−1, xn, xn) +G(xn−1, xn−1, fxn) +G(xn, xn, fxn−1)]
,

G(xn−1, xn, xn)G(xn−1, xn−1, xn)

1 +G(xn−1, fxn−1, fxn−1) +G(xn, xn, fxn−1) +G(xn, fxn, fxn)
,

G(xn, xn, fxn)G(xn+1, xn+1, fxn+1)

1 + s[G(xn, xn+1, xn+1) +G(xn, xn, fxn+1) +G(xn+1, xn+1, fxn)]
,

G(xn, xn+1, xn+1)G(xn, xn, xn+1)

1 +G(xn, fxn, fxn) +G(xn+1, xn+1, fxn) +G(xn+1, fxn+1, fxn+1)

}
= max{G(xn−1, xn, xn+1),

G(xn−1, xn−1, xn)G(xn, xn, xn+1)

1 + s[G(xn−1, xn, xn) +G(xn−1, xn−1, xn+1) +G(xn, xn, xn)]
,

G(xn−1, xn, xn)G(xn−1, xn−1, xn)

1 +G(xn−1, xn, xn) +G(xn, xn, xn) +G(xn, xn+1, xn+1)
,

G(xn, xn, xn+1)G(xn+1, xn+1, xn+2)

1 + s[G(xn, xn+1, xn+1) +G(xn, xn, xn+2) +G(xn+1, xn+1, xn+1)]
,

G(xn, xn+1, xn+1)G(xn, xn, xn+1)

1 +G(xn, xn+1, xn+1) +G(xn+1, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

}
≤ max{G(xn−1, xn, xn+1),

G(xn−1, xn−1, xn)s[G(xn, xn, xn−1) +G(xn−1, xn−1, xn+1)]

1 + s[G(xn−1, xn, xn) +G(xn−1, xn−1, xn+1)]
,

G(xn−1, xn, xn)G(xn−1, xn−1, xn)

1 +G(xn−1, xn, xn) +G(xn, xn+1, xn+1)
,

G(xn, xn, xn+1)s[G(xn+1, xn+1, xn) +G(xn, xn, xn+2)]

1 + s[G(xn, xn+1, xn+1) +G(xn, xn, xn+2)]
,

G(xn, xn+1, xn+1)G(xn, xn, xn+1)

1 +G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

}
≤ max{G(xn−1, xn, xn+1), G(xn−1, xn−1, xn), G(xn, xn, xn+1)}
≤ max{G(xn−1, xn, xn+1), G(xn, xn+1, xn+2)}

and it is again easy to see that max{G(xn−1, xn, xn+1), G(xn, xn+1, xn+2)} = G(xn−1, xn, xn+1). Hence, in
the same way as in the proof of Theorems 2.2 and 2.4, we obtain that

lim
n→∞

G(xn, xn+1, xn+1) = 0 (2.12)

is true.
Step 2. Now, we prove that the sequence {xn} is a Gb-Cauchy sequence. Suppose the contrary. Then

there exists ε > 0 for which we can find two subsequences {xmi} and {xni} of {xn} such that ni is the
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smallest index for which
ni > mi > i and G(xmi , xni , xni) ≥ ε.

This means that
G(xmi , xni−1, xni−1) < ε.

Hence,
G(xmi , xmi , xni−1) < 2sε.

From the rectangular inequality, we get

ε ≤ G(xmi , xni , xni) ≤ sG(xmi , xmi+1, xmi+1) + sG(xmi+1, xni , xni).

By taking the upper limit as i→∞, we get

ε

s
≤ lim sup

i→∞
G(xmi+1, xni , xni).

From (2.12) and using the rectangular inequality, we get

ε ≤ G(xmi , xni , xni) ≤ sG(xmi , xmi+1, xmi+1) + sG(xmi+1, xni , xni)

≤ sG(xmi , xmi+1, xmi+1) + s2G(xmi+1, xni−1, xni−1) + s2G(xni−1, xni , xni).

By taking the upper limit as i→∞, we get

ε

s2
≤ lim sup

i→∞
G(xmi+1, xni−1, xni−1).

From the definition of MC(x, y, z) and the above limits,

lim sup
i→∞

MC(xmi , xni−1, xni−1)

= lim sup
i→∞

max{G(xmi , xni−1, xni−1),

G(xmi , xmi , fxmi)G(xni−1, xni−1, fxni−1)

1 + s[G(xmi , xni−1, xni−1) +G(xmi , xmi , fxni−1) +G(xni−1, xni−1, fxmi)]
,

G(xmi , xni−1, xni−1)G(xmi , xmi , xni−1)

1 +G(xmi , fxmi , fxmi) +G(xni−1, xni−1, fxmi) +G(xni−1, fxni−1, fxni−1)
,

G(xni−1, xni−1, fxni−1)G(xni−1, xni−1, fxni−1)

1 + s[G(xni−1, xni−1, xni−1) +G(xni−1, xni−1, fxni−1) +G(xni−1, xni−1, fxni−1)]
,

G(xni−1, xni−1, xni−1)G(xni−1, xni−1, xni−1)

1 +G(xni−1, fxni−1, fxni−1) +G(xni−1, xni−1, fxni−1) +G(xni−1, fxni−1, fxni−1)

}
≤ ε · 2sε · s

2

ε
= 2s3ε.

Now, from (2.10) and the above inequalities, we have

2s3 · ε
s
≤ 2s3 · lim sup

i→∞
G(xmi+1, xni , xni)

≤ lim sup
i→∞

β(MC(xmi , xni−1, xni)) lim sup
i→∞

MC(xmi , xni−1, xni)

≤ 2s3ε lim sup
i→∞

β(MC(xmi , xni−1, xni−1))

which implies that 1
s ≤ lim sup

i→∞
β(MC(xmi , xni−1, xni−1)). Now, as β ∈ Fs we conclude that {xn} is a

Gb-Cauchy sequence. Gb-completeness of X yields that {xn} Gb-converges to a point u ∈ X.
Step 3. u is a fixed point of f .
When f is continuous, the proof is straightforward. Now, let (II) hold. We omit the proof as it is similar

to the proof of Step 3 of Theorem 2.2.
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If in the above theorems we take β(t) = r, where 0 ≤ r < 1
s , then we have the following corollary.

Corollary 2.7. Let (X,G,�) be a partially ordered Gb-complete Gb-metric space, and let f : X → X be an
increasing mapping with respect to � such that there exists an element x0 ∈ X with x0 � fx0. Suppose that

G(fx, fy, fz) ≤ rM(x, y, z)

for all comparable elements x, y, z ∈ X, where

M(x, y, z) = MA(x, y, z) or M(x, y, z) = MB(x, y, z)

(see (2.2), (2.8)), or
2s3G(fx, fy, fz) ≤ rMC(x, y, z)

(see (2.11)). If f is continuous, or, for any nondecreasing sequence {xn} in X such that xn → u ∈ X one
has xn � u for all n ∈ N , then f has a fixed point.

The following corollaries can also be easily deduced from the proved theorems.

Corollary 2.8. Let (X,G,�) be a partially ordered Gb-complete Gb-metric space, and let f : X → X be an
increasing mapping with respect to � such that there exists an element x0 ∈ X with x0 � fx0. Suppose that

G(fx, fy, fz) ≤ αG(x, y, z) + β
G(x, fx, fy)G(y, fy, fz)G(z, fz, fx)

1 +G(x, y, z)G(fx, fy, fz)

+ γ
G(x, fx, fy)G(y, fy, fz)G(z, fz, fx)

1 +G2(fx, fy, fz)
,

or

G(fx, fy, fz) ≤ aG(x, y, z) + b
G(x, x, fx)G(x, x, fy) +G(y, y, fy)G(y, y, fx)

1 + s[G(x, x, fx) +G(y, y, fy)]

+ c
G(y, y, fy)G(y, y, fz) +G(z, z, fz)G(z, z, fy)

1 + s[G(y, y, fy) +G(z, z, fz)]

+ d
G(x, x, fx)G(x, x, fy) +G(y, y, fy)G(y, y, fx)

1 +G(x, x, fy) +G(y, y, fx)

+ e
G(y, y, fy)G(y, y, fz) +G(z, z, fz)G(z, z, fy)

1 +G(y, y, fz) +G(z, z, fy)
,

or

2s3G(fx, fy, fz) ≤ aG(x, y, z) + b
G(x, x, fx)G(y, y, fy)

1 + s[G(x, y, y) +G(x, x, fy) +G(y, y, fx)]

+ c
G(x, y, y)G(x, x, y)

1 +G(x, fx, fx) +G(y, y, fx) +G(y, fy, fy)

+ d
G(y, y, fy)G(z, z, fz)

1 + s[G(y, z, z) +G(y, y, fz) +G(z, z, fy)]

+ e
G(y, z, z)G(y, y, z)

1 +G(y, fy, fy) +G(z, z, fy) +G(z, fz, fz)
,

for all comparable elements x, y, z ∈ X, where α, β, γ, a, b, c, d, e ≥ 0 and 0 ≤ α+ β + γ < 1
s and

0 ≤ a+ b+ c+ d+ e < 1
s .

If f is continuous, or, for any nondecreasing sequence {xn} in X such that xn → u ∈ X one has xn � u
for all n ∈ N , then f has a fixed point.
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Corollary 2.9. Let (X,G,�) be a partially ordered Gb-complete Gb-metric space, and let f : X → X be an
increasing mapping with respect to � such that there exists an element x0 ∈ X with x0 � fmx0 and

G(fmx, fmy, fmz) ≤ β(M(x, y, z))M(x, y, z)

for all comparable elements x, y, z ∈ X, where

M(x, y, z) = max

{
G(x, y, z),

G(x, fmx, fmy)G(y, fmy, fmz)G(z, fmz, fmx)

1 +G(x, y, z)G(fmx, fmy, fmz)
,

G(x, fmx, fmy)G(y, fmy, fmz)G(z, fmz, fmx)

1 +G2(fmx, fmy, fmz)

}
,

or

M(x, y, z)

= max

{
G(x, y, z),

G(x, x, fmx)G(x, x, fmy) +G(y, y, fmy)G(y, y, fmx)

1 + s[G(x, x, fmx) +G(y, y, fmy)]
,

G(y, y, fmy)G(y, y, fmz) +G(z, z, fmz)G(z, z, fmy)

1 + s[G(y, y, fmy) +G(z, z, fmz)]
,

G(x, x, fmx)G(x, x, fmy) +G(y, y, fmy)G(y, y, fmx)

1 +G(x, x, fmy) +G(y, y, fmx)
,

G(y, y, fmy)G(y, y, fmz) +G(z, z, fmz)G(z, z, fmy)

1 +G(y, y, fmz) +G(z, z, fmy)

}
,

or
2s3G(fmx, fmy, fmz) ≤ β(M(x, y, z))M(x, y, z),

where

M(x, y, z) = max

{
G(x, y, z),

G(x, x, fmx)G(y, y, fmy)

1 + s[G(x, y, y) +G(x, x, fmy) +G(y, y, fmx)]
,

G(x, y, y)G(x, x, y)

1 +G(x, fmx, fmx) +G(y, y, fmx) +G(y, fmy, fmy)
,

G(y, y, fmy)G(z, z, fmz)

1 + s[G(y, z, z) +G(y, y, fmz) +G(z, z, fmy)]
,

G(y, z, z)G(y, y, z)

1 +G(y, fmy, fmy) +G(z, z, fmy) +G(z, fmz, fmz)

}
.

for some positive integer m.
If fm is continuous, or, for any nondecreasing sequence {xn} in X such that xn → u ∈ X one has

xn � u for all n ∈ N , then f has a fixed point.

We illustrate a possible usage of Theorem 2.2 by the following example. It is clear that similar examples
can be constructed for Theorems 2.4 and 2.6.

Example 2.10. Let X = {a, b, c} and G : X3 → R+ be given as

G(x, y, z) =


0, if x = y = z,

1, if (x, y, z) ∈ {(a, a, b), (a, b, b), (a, c, c), (b, c, c)},
4, if (x, y, z) ∈ {(a, a, c), (b, b, c), (a, b, c)},

and extended by symmetry. Then it is easy to check that X is a Gb-metric space, with s = 2, which is
asymmetric since, e.g., G(a, a, c) 6= G(a, c, c) (this is important, since it is well-known that the results in
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symmetric G-metric (Gb-metric) spaces can usually be easily reduced to their standard metric (b-metric)
counterparts). Define a reflexive and transitive order relation � on X by c � b � a and a mapping
f : X → X by

f =

(
a b c
a a b

)
.

Then f is increasing, c � fc and the space (X,G,�) is Gb-complete. We will show that the contractive
condition (2.1) of Theorem 2.2 is fulfilled with β ∈ Fs given by

β(t) =
1

2
e−t/8 for t ∈ (0,∞) and β(0) ∈ [0, 1/2).

Consider the following possible cases.
1. If x = y = z or x, y, z ∈ {a, b}, then G(fx, fy, fz) = 0 and inequality (2.1) is trivial.
In all other cases G(fx, fy, fz) = 1.
2. If (x, y, z) ∈ {(a, a, c), (b, b, c), (a, b, c), . . . } (. . . stays for permutations), thenMA(x, y, z) = G(x, y, z) =

4. Thus, (2.1) is satisfied since it reduces to

1 ≤ 1

2
e−4/8 · 4, i.e., e1/2 ≤ 2.

3. If (x, y, z) ∈ {(a, c, c), (b, c, c), . . . } (. . . stays for permutations), then it is easy to check that
MA(x, y, z) = 8. Thus, (2.1) is again satisfied since it reduces to

1 ≤ 1

2
e−8/8 · 8, i.e., e ≤ 4.

All the assumptions of Theorem 2.2 are fulfilled and f has a unique fixed point (equal to a).
Note that simple non-rational Geraghty-type condition

G(fx, fy, fz) ≤ β(G(x, y, z))G(x, y, z)

is not satisfied. Indeed, e.g., for (x, y, z) = (a, c, c) it reduces to 1 ≤ 1
2e
−1/8 · 1 and does not hold.
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