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Abstract

In this paper, we use the viscosity approximation method to establish strong convergence theorems for a
finite family of nonexpansive multi-valued nonself mappings and equilibrium problems in a Hilbert space
under some suitable conditions. As applications, we provide an example and numerical results. c©2015 All
rights reserved.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let D be a nonempty subset of
H and let F : D×D → R be a bifunction, where R is the set of real numbers. The equilibrium problem for
F is to find u ∈ D such that

F (u, y) ≥ 0 ∀y ∈ D. (1.1)

The set of solutions of (1.1) is denoted by EP (F ). Given a mapping S : D → H, let F (x, y) = 〈Sx, y − x〉
for all x, y ∈ D. Then z ∈ EP (F ) if and only if F (z, y) = 〈Sz, y − z〉 for all y ∈ D, i.e., z is a solution
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of the variational inequality. The equilibrium problem (1.1) includes as special cases numerous problems in
physics, optimization and economics. Methods for solving the equilibrium problem have been studied by
many authors (see, for example, [4, 5, 6, 8, 13, 19]).

The set D is called proximinal if for each x ∈ H, there exists an element y ∈ D such that
‖x − y‖ = d(x,D), where d(x,D) = inf{‖x − z‖ : z ∈ D}. Let CB(D),K(D) and P (D) be the fami-
lies of nonempty closed bounded subsets, nonempty compact subsets, and nonempty proximinal bounded
subsets of D respectively. The Hausdorff metric on CB(D) is defined by

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
for A,B ∈ CB(D). A single-valued mapping T : D → D is called nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for
all x, y ∈ D. A multi-valued mapping T : D → CB(D) is said to be nonexpansive if H(Tx, Ty) ≤ ‖x − y‖
for all x, y ∈ D. An element p ∈ D is called a fixed point of T : D → D (resp. T : D → CB(D)) if p = Tp
(p ∈ Tp, respectively). The set of fixed points of T is denoted by F (T ).

For single-valued nonexpansive mappings, in 2000, Moudafi [11] proved the following strong convergence
theorem:

Theorem M ([11]). Let D be a nonempty, closed and convex subset of a Hilbert space H and let T be a
nonexpansive mapping of D into itself such that F (T ) is nonempty. Let f be a contraction of D into itself
and let {xn} be a sequence defined as follows: x1 ∈ D and

xn+1 =
1

1 + εn
Txn +

εn
1 + εn

f(xn)

for all n ∈ N, where {εn} ⊂ (0, 1) satisfies

lim
n→∞

εn = 0,
∞∑
n=1

εn =∞ and lim
n→∞

∣∣∣∣ 1

εn+1
− 1

εn

∣∣∣∣ = 0.

Then {xn} converges strongly to z ∈ F (T ), where z = PF (T )f(z) and PF (T ) is the metric projection of H
onto F (T ).

Such a method is called the viscosity approximation method. Recently, Takahashi-Takahashi [20] in-
troduced an iterative scheme by the viscosity approximation method for finding a common element of the
solutions set of (1.1) and the fixed points set of a nonexpansive mapping in a Hilbert space, and proved the
following strong convergence theorem.

Theorem TT ([20]). Let D be a nonempty, closed and convex subset of a Hilbert space H. Let F : D×D →
R be a bifunction satisfying the following assumptions:

(A1) F (x, x) = 0 for all x ∈ D;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ D;

(A3) for each x, y, z ∈ D,
lim
t↓0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ D, y 7→ F (x, y) is convex and lower semicontinuous.

Let T : D → H be a nonexpansive mapping such that F (T ) ∩ EP (F ) 6= ∅, f : H → H be a contraction,
and {xn} and {un} be sequences generated by x1 ∈ H and{

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ D,

xn+1 = αnf(xn) + (1− αn)Tun, n ≥ 1,
(1.2)

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy limn→∞ αn = 0,
∑∞

n=1 αn = ∞,
∑∞

n=1 |αn+1 − αn| < ∞,
lim infn→∞ rn > 0 and

∑∞
n=1 |rn+1 − rn| <∞.

Then {xn} and {un} converge strongly to z ∈ F (T ) ∩ EP (F ), where z = PF (T )∩EP (F )f(z).
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In recent years, fixed point theory for nonlinear multi-valued mappings in various spaces has been studied
by many authors (see, for example, [3, 14, 16, 18] and the references therein).

One way of approximating the fixed points of nonlinear multi-valued mappings is to use the concept of
the best approximation operator PT defined by PTx = {y ∈ Tx : ‖y − x‖ = d(x, Tx)}. In 2003, Hussain-
Khan [9] used the best approximation operator PT to study the fixed points of a *-nonexpansive multi-valued
mapping and the strong convergence of its iterates to a fixed point defined on a closed and convex subset
of a Hilbert space. By using the concept of best approximation operator, many authors have found fixed
point results for multi-valued nonself mappings (see, for example, [10, 15, 21]).

In 2010, Zegeye-Shahzad [21] studied the convergence of the viscosity approximation process for nonex-
pansive nonself multi-valued mappings in Banach spaces.

Theorem ZS ([21]). Let E be a uniformly convex Banach space having a uniformly Gâteaux differen-
tiable norm, D a nonempty closed convex subset of E, and T : D → K(D) a multimap such that PT is
nonexpansive. For given x0 ∈ D, y0 ∈ PTx0, let {xn} be generated by the algorithm{

xn+1 = αnf(xn) + (1− αn)yn,
yn ∈ PT (xn) such that ‖yn−1 − yn‖ = d(yn−1, PT (xn)), n ≥ 1

(see, e.g.,[18]), where f : D → D is a contraction and {αn} is a real sequence which satisfies the following
conditions:

(i) limn→∞ αn = 0;

(ii)
∑∞

n=1 αn =∞ and

(iii) limn→∞
|αn−αn−1|

αn
= 0.

If F (T ) 6= ∅, then {xn} converges strongly to a fixed point of T .

In 2011, Song-Cho [17] gave an example of a multi-valued mapping T which is not necessary nonexpansive
but PT is nonexpansive. It is an interesting problem to study the convergence of multi-valued mappings by
using the best approximation operator.

Let H be a Hilbert space and D be a subset of H. A multi-valued mapping T : D → CB(H) is said
to satisfy the condition (A) if ‖x − p‖ = d(x, Tp) for all x ∈ H and p ∈ F (T ). We see that T satisfies the
condition (A) if and only if Tp = {p} for all p ∈ F (T ). It is known that the best approximation operator
PT also satisfies the condition (A).

Motivated by Takahashi-Takahashi [20] and Zegeye-Shahzad [21], we introduce the viscosity approxima-
tion method for solving the equilibrium problem and the fixed points problem of a finite family of multi-
valued nonself mappings in a Hilbert space. In the last section, we also give an example and numerical
results for supporting our method.

2. Preliminaries and lemmas

Let D be a nonempty, closed and convex subset of a Hilbert space H. For every point x ∈ H, there
exists a unique nearest point in D, denoted by PDx, such that

‖x− PDx‖ ≤ ‖x− y‖, ∀y ∈ D.

PD is called the metric projection of H onto D. It is known that PD is a nonexpansive mapping of H onto
D. We also recall the following facts regarding real Hilbert spaces.

Lemma 2.1. Let D be a nonempty, closed and convex subset of a real Hilbert space H and let PD be the
metric projection of H onto D. Let x ∈ H and z ∈ D. Then z = PDx if and only if

〈x− z, y − z〉 ≤ 0, ∀y ∈ D.
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Lemma 2.2. Let H be a real Hilbert space. Then the following relations hold:

(i) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, ∀x, y ∈ H;

(ii) ‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2, ∀t ∈ [0, 1] and x, y ∈ H;

(iii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H.

By using Lemma 2.2 (ii), we can deduce the next result.

Lemma 2.3. Let H be a real Hilbert space. Then for each m ∈ N

‖
m∑
i=1

tixi‖2 =
m∑
i=1

ti‖xi‖2 −
m∑

i=1,i 6=j
titj‖xi − xj‖2,

where xi ∈ H, ti, tj ∈ [0, 1] for all i, j = 1, 2, ...,m, and
∑m

i=1 ti = 1.

Lemma 2.4 ([4]). Let D be a nonempty, closed and convex subset of a real Hilbert space H. Let F be a
bifunction from D ×D to R satisfying (A1)-(A4) and let r > 0 and x ∈ H. Then there exists z ∈ D such
that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, for all y ∈ D.

Lemma 2.5 ([8]). For r > 0 and x ∈ H, define the mapping Tr : H → D by

Tr(x) =

{
z ∈ D : F (z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ D

}
.

Then the following hold:

(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;

(iii) F (Tr) = EP (F );

(iv) EP (F ) is closed and convex.

Lemma 2.6 ([1]). Let D be a nonempty and weakly compact subset of a Hilbert space H and T : D → K(H)
be a nonexpansive mapping. Then I − T is demiclosed.

Lemma 2.7 ([2]). Let {sn} be a sequence of nonnegative real numbers, {αn} be a sequence in [0, 1] with∑∞
n=1 αn =∞, {βn} be a sequence of nonnegative real numbers with

∑∞
n=1 βn <∞, and {γn} be a sequence

of real numbers with lim supn→∞ γn ≤ 0. Suppose that

sn+1 = (1− αn)sn + αnγn + βn

for all n ∈ N. Then limn→∞ sn = 0.

Lemma 2.8 ([7]). Let D be a closed and convex subset of a real Hilbert space H. Let T : D → CB(D) be
a nonexpansive multi-valued map with F (T ) 6= ∅ and Tp = {p} for each p ∈ F (T ). Then F (T ) is a closed
and convex subset of D.

Using the above results, we study the convergence of the iteration (2.1) defined in the following. Let D
be a nonempty, closed and convex subset of a Hilbert space H. Let Ti : D → CB(H) be a multi-valued
nonself mapping for all i ∈ {1, 2, ..., N}, f : H → H be a contraction and F : D ×D → R be a bifunction.
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Let {α0,n} and {αi,n} be sequences in [0, 1] for all i ∈ {1, 2, ..., N} with
∑N

k=0 αk,n = 1, and {rn} be a
sequence in (0,∞). For a given x1 ∈ H, we find u1 ∈ D such that

F (u1, y) +
1

r1
〈y − u1, u1 − x1〉 ≥ 0, ∀y ∈ D.

Let zi,1 ∈ Tiu1 for all i ∈ {1, 2, ..., N} and compute x2 ∈ H by

x2 = α0,1f(x1) +

N∑
i=1

αi,1zi,1.

Find u2 ∈ D such that

F (u2, y) +
1

r2
〈y − u2, u2 − x2〉 ≥ 0, ∀y ∈ D.

From Nadler’s Theorem (see [12]), there exist zi,2 ∈ Tiu2 for all i ∈ {1, 2, ..., N} such that ‖zi,2 − zi,1‖ ≤
H(Tiu2, Tiu1) for all i ∈ {1, 2, ..., N}.

Inductively, we construct the sequence {xn} ⊂ H as follows:{
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ D,

xn+1 = α0,nf(xn) +
∑N

i=1 αi,nzi,n, ∀n ≥ 1,
(2.1)

where zi,n ∈ Tiun such that ‖zi,n+1 − zi,n‖ ≤ H(Tiun+1, Tiun) for all i ∈ {1, 2, ..., N}.

3. Main results

In this section, we prove a strong convergence theorem for the iteration (2.1) to find a common element of
the solutions set of an equilibrium problem and the common fixed points sets of a finite family of multi-valued
nonself mappings.

Theorem 3.1. Let D be a nonempty, and weakly compact subset of a Hilbert space H. Let F be a bifunction
from D × D to R satisfying (A1)-(A4) and {Ti}Ni=1 a family of nonexpansive multi-valued mappings of D
into K(H) such that ∩Ni=1F (Ti)

⋂
EP (F ) 6= ∅. Let f be a contraction of H into itself. Let {α0,n}, {αi,n} be

sequences in [0, 1] with
∑N

k=0 αk,n = 1 and {rn} ⊂ (0,∞) be a sequence such that the following hold:

(i) limn→∞ α0,n = 0,
∑∞

n=1 α0,n = ∞, lim infn→∞ αi,nαj,n > 0 for all i, j ∈ {1, 2, ..., N} and∑∞
n=1 |αk,n+1 − αk,n| <∞ for all k ∈ {0, 1, 2, ..., N};

(ii) lim infn→∞ rn > 0 and
∑∞

n=1 |rn+1 − rn| <∞.

If {Ti}Ni=1 satisfies the condition (A), then the sequences {xn} and {un} generated by (2.1) converge
strongly to z ∈ ∩Ni=1F (Ti)

⋂
EP (F ), where z = P∩Ni=1F (Ti)

⋂
EP (F )f(z).

Proof. Let Q = P∩Ni=1F (Ti)
⋂
EP (F ). Since f is a contraction, there exists a constant α ∈ [0, 1) such that

‖Qf(x)−Qf(y)‖ ≤ ‖f(x)− f(y)‖ ≤ α‖x− y‖ for all x, y ∈ H. Hence Qf is a contraction of H into itself,
so there exists a unique element z ∈ H such that z = Qf(z). We divide the proof into five steps.

Step 1. We show that {xn} is bounded.
Let p ∈ ∩Ni=1F (Ti)

⋂
EP (F ). Then from un = Trnxn, we have

‖un − p‖ = ‖Trnxn − Trnp‖ ≤ ‖xn − p‖ (3.1)

for all n ≥ 1. It follows that

‖xn+1 − p‖ ≤ α0,n‖f(xn)− p‖+

N∑
i=1

αi,n‖zi,n − p‖

= α0,n‖f(xn)− p‖+
N∑
i=1

αi,nd(zi,n, Tip)
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≤ α0,n‖f(xn)− p‖+
N∑
i=1

αi,nH(Tiun, Tip)

≤ α0,n

(
‖f(xn)− f(p)‖+ ‖f(p)− p‖

)
+

N∑
i=1

αi,n‖un − p‖

≤
(

1− α0,n(1− α)

)
‖xn − p‖+ α0,n‖f(p)− p‖

≤ max

{
‖xn − p‖,

1

(1− α)
‖f(p)− p‖

}
.

By induction,

‖xn − p‖ ≤ max

{
‖x1 − p‖,

1

(1− α)
‖f(p)− p‖

}
, ∀n ≥ 1.

Hence {xn} is bounded. The same holds for {un}, {f(xn)} and {zi,n} for all i ∈ {1, 2, ..., N}.
Step 2. We show that ‖xn+1 − xn‖ → 0 as n→∞.
From the definition of {xn} there exist zi,n+1 ∈ Tiun+1 and zi,n ∈ Tiun for all i ∈ {1, 2, ..., N} such that

‖zi,n+1 − zi,n‖ ≤ H(Tiun+1, Tiun). Let K = supn≥1{‖f(xn)‖+
∑N

i=1 ‖zi,n‖}. Then, we have

‖xn+2 − xn+1‖ = ‖α0,n+1f(xn+1)− α0,n+1f(xn) + α0,n+1f(xn)− α0,nf(xn)

+
N∑
i=1

αi,n+1zi,n+1 −
N∑
i=1

αi,n+1zi,n +
N∑
i=1

αi,n+1zi,n −
N∑
i=1

αi,nzi,n‖

≤ α0,n+1‖f(xn+1)− f(xn)‖+ |α0,n+1 − α0,n|‖f(xn)‖

+
N∑
i=1

αi,n+1‖zi,n+1 − zi,n‖+
N∑
i=1

|αi,n+1 − αi,n|‖zi,n‖

≤ α0,n+1α‖xn+1 − xn‖+
N∑
i=0

|αi,n+1 − αi,n|K +
N∑
i=1

αi,n+1H(Tiun+1, Tiun)

≤ α0,n+1α‖xn+1 − xn‖+

N∑
i=0

|αi,n+1 − αi,n|K +

N∑
i=1

αi,n+1‖un+1 − un‖. (3.2)

On the other hand, from un = Trnxn and un+1 = Trn+1xn+1, we have

F (un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0 (3.3)

for all y ∈ D and

F (un+1, y) +
1

rn+1
〈y − un+1, un+1 − xn+1〉 ≥ 0 (3.4)

for all y ∈ D. Setting y = un+1 in (3.3) and y = un in (3.4), we obtain

F (un, un+1) +
1

rn
〈un+1 − un, un − xn〉 ≥ 0

and

F (un+1, un) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.

It follows from (A2) that 〈
un+1 − un,

un − xn
rn

− un+1 − xn+1

rn+1

〉
≥ 0
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and hence 〈
un+1 − un, un − un+1 + un+1 − xn −

rn
rn+1

(un+1 − xn+1)

〉
≥ 0.

Since lim infn→∞ rn > 0, there exists a real number a such that rn > a > 0 for all n ≥ 1. Then, we have

‖un+1 − un‖2 ≤
〈
un+1 − un, xn+1 − xn +

(
1− rn

rn+1

)
(un+1 − xn+1)

〉
≤ ‖un+1 − un‖

{
‖xn+1 − xn‖+

∣∣∣∣1− rn
rn+1

∣∣∣∣‖un+1 − xn+1‖
}

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖+
1

rn+1
|rn+1 − rn|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖+
1

a
|rn+1 − rn|M, (3.5)

where M = sup{‖un − xn‖ : n ≥ 1}. Combining (3.2) and (3.5), we obtain

‖xn+2 − xn+1‖ ≤ α0,n+1α‖xn+1 − xn‖+

N∑
i=0

|αi,n+1 − αi,n|K +

N∑
i=1

αi,n+1

(
‖xn+1 − xn‖+

1

a
|rn+1 − rn|M

)

=
(
1− α0,n+1(1− α)

)
‖xn+1 − xn‖+

N∑
i=0

|αi,n+1 − αi,n|K +
1

a
|rn+1 − rn|M.

By Lemma 2.7, ‖xn+1 − xn‖ → 0 as n→∞.
Step 3. We show that limn→∞ ‖xn − zi,n‖ = limn→∞ ‖un − zi,n‖ = 0 for all i ∈ {1, 2, ..., N}.
From (3.5) and (ii), we have

lim
n→∞

‖un+1 − un‖ = 0. (3.6)

Let p ∈ ∩Ni=1F (Ti)
⋂
EP (F ). From Lemma 2.3 and (3.1), we get

‖xn+1 − p‖2 ≤ α0,n‖f(xn)− p‖2 +
N∑
i=1

αi,n‖zi,n − p‖2 − αj,nαk,n‖zj,n − zk,n‖2

= α0,n‖f(xn)− p‖2 +

N∑
i=1

αi,nd(zi,n, Tip)
2 − αj,nαk,n‖zj,n − zk,n‖2

≤ α0,n‖f(xn)− p‖2 +
N∑
i=1

αi,nH(Tiun, Tip)
2 − αj,nαk,n‖zj,n − zk,n‖2

≤ α0,n‖f(xn)− p‖2 + ‖un − p‖2 − αj,nαk,n‖zj,n − zk,n‖2

≤ α0,n‖f(xn)− p‖2 + ‖xn − p‖2 − αj,nαk,n‖zj,n − zk,n‖2

for all j, k ∈ {1, 2, ..., N}. It follows that

αj,nαk,n‖zj,n − zk,n‖2 ≤ α0,n‖f(xn)− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

≤ α0,n‖f(xn)− p‖2 + ‖xn+1 − xn‖
(
‖xn − p‖+ ‖xn+1 − p‖

)
for all j, k ∈ {1, 2, ..., N}. From (i), we have that ‖zj,n− zk,n‖ → 0 as n→∞ for all j, k ∈ {1, 2, ..., N}. This
implies that

‖xn − zi,n‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zi,n‖ → 0 (3.7)
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as n→∞ for all i ∈ {1, 2, ..., N}. For p ∈ ∩Ni=1F (Ti)
⋂
EP (F ), we see that

‖un − p‖2 = ‖Trnxn − Trnp‖2

≤ 〈Trnxn − Trnp, xn − p〉
= 〈un − p, xn − p〉

=
1

2

(
‖un − p‖2 + ‖xn − p‖2 − ‖xn − un‖2

)
,

which yields
‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2.

Therefore, using the convexity of ‖ · ‖2, we obtain

‖xn+1 − p‖2 = ‖α0,nf(xn) +
N∑
i=1

αi,nzi,n − p‖2

≤ α0,n‖f(xn)− p‖2 +

N∑
i=1

αi,n‖zi,n − p‖2

= α0,n‖f(xn)− p‖2 +
N∑
i=1

αi,nd(zi,n, Tip)
2

≤ α0,n‖f(xn)− p‖2 +
N∑
i=1

αi,nH(Tiun, Tip)
2

≤ α0,n‖f(xn)− p‖2 + (1− α0,n)‖un − p‖2

≤ α0,n‖f(xn)− p‖2 + (1− α0,n)
(
‖xn − p‖2 − ‖xn − un‖2

)
≤ α0,n‖f(xn)− p‖2 + ‖xn − p‖2 − (1− α0,n)‖xn − un‖2,

whence

(1− α0,n)‖xn − un‖2 ≤ α0,n‖f(xn)− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

≤ α0,n‖f(xn)− p‖2 + ‖xn+1 − xn‖
(
‖xn − p‖+ ‖xn+1 − p‖

)
.

Since limn→∞ α0,n = 0 and limn→∞ ‖xn+1 − xn‖ = 0, we have

‖xn − un‖ → 0 (3.8)

as n→∞. It follows from (3.7) and (3.8) that, for each i = 1, 2, ..., N ,

‖zi,n − un‖ ≤ ‖zi,n − xn‖+ ‖xn − un‖ → 0 (3.9)

as n→∞.
Step 4. We show that lim supn→∞〈f(z)− z, xn − z〉 ≤ 0, where z = P∩Ni=1F (Ti)

⋂
EP (F )f(z).

Since {xn} is bounded, we can choose a subsequence {xni} of {xn} such that

lim
i→∞
〈f(z)− z, xni − z〉 = lim sup

n→∞
〈f(z)− z, xn − z〉.

Since {un} is bounded, we infer that uni ⇀ q ∈ D and also xni → q. We will now show that q ∈ EP (F ).
From un = Trnxn, we have

F (un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ D.
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Also, from (A2),
1

rn
〈y − un, un − xn〉 ≥ F (y, un)

and hence 〈
y − uni ,

uni − xni

rni

〉
≥ F (y, uni).

Since
uni−xni
rni

→ 0 and uni ⇀ q, from (A4) we have

0 ≥ F (y, q)

for all y ∈ D. For t with 0 < t ≤ 1 and y ∈ D, let yt = ty + (1− t)q. Since y ∈ D and q ∈ D, yt ∈ D, hence
F (yt, q) ≤ 0. Consequently, from (A1) and (A4) we get

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, q) ≤ tF (yt, y)

and thus 0 ≤ F (yt, y). It follows that 0 ≤ F (q, y) for all y ∈ D by (A3), and hence q ∈ EP (F ). Since
limn→∞ ‖zi,n − un‖ = 0 and uni ⇀ q, using Lemma 2.6, we obtain that q ∈ F (Ti) for all i ∈ {1, 2, ..., N}.
Therefore q ∈ ∩Ni=1F (Ti)

⋂
EP (F ). By Lemma 2.1, we have

lim sup
n→∞

〈f(z)− z, xn − z〉 = lim
i→∞
〈f(z)− z, xni − z〉 = 〈f(z)− z, q − z〉 ≤ 0. (3.10)

Step 5. We show that xn → z as n→∞.
From Lemma 2.2 (iii) we have

‖xn+1 − z‖2 ≤
N∑
i=1

α2
i,n‖zi,n − z‖2 + 2α0,n〈f(xn)− z, xn+1 − z〉

=

N∑
i=1

α2
i,nd(zi,n, Tiz)

2 + 2α0,n〈f(xn)− z, xn+1 − z〉

≤
N∑
i=1

α2
i,nH(Tiun, Tiz)

2 + 2α0,n〈f(xn)− z, xn+1 − z〉

≤ (1− α0,n)2‖un − z‖2 + 2α0,n〈f(xn)− f(z), xn+1 − z〉+ 2α0,n〈f(z)− z, xn+1 − z〉
≤ (1− α0,n)2‖xn − z‖2 + 2α0,nα‖xn − z‖‖xn+1 − z‖+ 2α0,n〈f(z)− z, xn+1 − z〉

≤ (1− α0,n)2‖xn − z‖2 + α0,nα

{
‖xn − z‖2 + ‖xn+1 − z‖2

}
+ 2α0,n〈f(z)− z, xn+1 − z〉.

This implies that

‖xn+1 − z‖2 ≤
(1− α0,n)2 + α0,nα

1− α0,nα
‖xn − z‖2 +

2α0,n

1− α0,nα
〈f(z)− z, xn+1 − z〉

=
1− 2α0,n + α0,nα

1− α0,nα
‖xn − z‖2 +

α2
0,n

1− α0,nα
‖xn − z‖2 +

2α0,n

1− α0,nα
〈f(z)− z, xn+1 − z〉

=

(
1− 2(1− α)α0,n

1− α0,nα

)
‖xn − z‖2

+
2(1− α)α0,n

1− α0,nα

{
α0,n

2(1− α)
‖xn − z‖2 +

1

1− α
〈f(z)− z, xn+1 − z〉

}
.

Put

γn =
α0,n

2(1− α)
‖xn − z‖2 +

1

1− α
〈f(z)− z, xn+1 − z〉.
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It follows from (i) and (3.10) that lim supn→∞ γn ≤ 0, so limn→∞ ‖xn− z‖2 = 0 by Lemma 2.7. This implies
that {xn} converges strongly to z ∈ ∩Ni=1F (Ti)

⋂
EP (F ). It is easily seen that {un} also converges strongly

to z. We thus complete the proof.

If, for each i = 1, 2, ..., N , Tip = {p} for all p ∈ F (Ti), then {Ti}Ni=1 satisfies the condition (A). We then
obtain the following result.

Corollary 3.2. Let D be a nonempty and weakly compact subset of a Hilbert space H. Let F be a bifunc-
tion from D ×D to R satisfying (A1)-(A4) and {Ti}Ni=1 be nonexpansive multi-valued mappings of D into
K(H) such that ∩Ni=1F (Ti)

⋂
EP (F ) 6= ∅. Let f be a contraction of H into itself, and let {α0,n}, {αi,n}

(i = 1, 2, ..., N) and {rn} be as in Theorem 3.1. If, for each i = 1, 2, ..., N , Tip = {p} for all p ∈ F (Ti),
then the sequences {xn} and {un} generated by (2.1) converge strongly to z ∈ ∩Ni=1F (Ti)

⋂
EP (F ), where

z = P∩Ni=1F (Ti)
⋂
EP (F )f(z).

Since PTi (i = 1, 2, ..., N) satisfies the condition (A), we also obtain

Corollary 3.3. Let D be a nonempty and weakly compact subset of a Hilbert space H. Let F be a bifunction
from D×D to R satisfying (A1)-(A4) and {Ti}Ni=1 be a family of multi-valued mappings of D into P (H) such
that ∩Ni=1F (Ti)

⋂
EP (F ) 6= ∅ and F (Ti) is closed and convex for all i ∈ {1, 2, ..., N}. Let f be a contraction

of H into itself, and let {α0,n}, {αi,n} (i = 1, 2, ..., N), and {rn} be as in Theorem 3.1. Let the sequences
{xn} and {un} be generated as follows:{

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ D,

xn+1 = α0,nf(xn) +
∑N

i=1 αi,nzi,n,
(3.11)

where zi,n ∈ PTiun such that ‖zi,n+1 − zi,n‖ ≤ H(PTiun+1, PTiun).
If PTi is nonexpansive and I −Ti is demiclosed at 0 for all i ∈ {1, 2, ..., N}, then the sequences {xn} and

{un} converge strongly to z ∈ ∩Ni=1F (Ti)
⋂
EP (F ), where z = P∩Ni=1F (Ti)

⋂
EP (F )f(z).

4. Example and numerical results

In this section, we give an example and numerical results supporting our main theorem.

Example 4.1. Let H = R and D = [0, 1]. Let F (x, y) = −9x2 + xy + 8y2, f(x) = x
2 , T1x = [0, x2 ],

T2x = [0, sinx] and let α0,n = 1
80n , α1,n = α2,n = 80n−1

160n and rn = n
n+1 .

It is easy to check that F satisfies all the conditions in Theorem 3.1. For each r > 0 and x ∈ [0, 1],
Lemma 2.4 ensures that there exists z ∈ [0, 1] such that, for any y ∈ [0, 1],

F (x, y) +
1

r
〈y − z, z − x〉 ≥ 0⇔ −9z2 + zy + 8y2 +

1

r
(y − z)(z − x) ≥ 0

⇔ 8ry2 + (zr + z + x)y + (xz − 9rz2 − z2) ≥ 0.

Put G(y) = 8ry2 + (zr + z + x)y + (xz − 9rz2 − z2). Then G is a quadratic function of y with coefficients
a = 8r, b = rz + z + x and c = xz − 9rz2 − z2. We next compute the discriminant ∆ of G as follows:

∆ = b2 − 4ac

=
(
(1 + r)z − x

)2 − 32r(xz − 9rz2 − z2
)

= x2 − 2x(1 + r)z + (1 + r)2z2 − 32rxz + 288r2z2 + 32rz2

= x2 − 34rxz − 2xz + 289r2z2 + 34rz2 + z2

= x2 − 2x(17rz + z) + (17rz + z)2

=
(
x− (17rz + z)

)2
.
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We know that G(y) ≥ 0 for all y ∈ [0, 1] if it has at most one solution in [0, 1]. So 4 ≤ 0 and hence
x = 17rz + z. Now we have z = Trx = x

(17r+1) . Algorithm (2.1) becomes

xn+1 =
xn

160n
+

80n− 1

160n

(
z1,n + z2,n

)
, ∀n ≥ 1,

where z1,n ∈
[
0, xn

2
(
17( n

n+1
)+1
)], z2,n ∈ [0, sin ( xn

17( n
n+1

)+1

)]
are such that

|z1,n+1 − z1,n| ≤ H
([

0,
xn+1

2
(
17(n+1

n+2) + 1
)], [0, xn

2
(
17( n

n+1) + 1
)]) =

∣∣∣∣ xn+1

2
(
17(n+1

n+2) + 1
) − xn

2
(
17( n

n+1) + 1
)∣∣∣∣

and

|z2,n+1 − z2,n| ≤ H
([

0, sin
( xn+1

17(n+1
n+2) + 1

)]
,

[
0, sin

( xn
17( n

n+1) + 1

)])
=

∣∣∣∣ sin ( xn+1

17(n+1
n+2) + 1

)
− sin

( xn
17( n

n+1) + 1

∣∣∣∣
for all n ≥ 1. Choose x1 = 1 and take randomly z1,n, z2,n satisfying the above conditions. We then have

n z1,n z2,n xn |xn+1 − xn|
1 2.68763620E-02 3.18914138E-02 1.00000000E+00 9.67674761E-01

2 1.03550828E-03 1.27284146E-03 3.23252386E-02 3.11085285E-02

3 1.90384562E-05 4.33038000E-06 1.21671005E-03 1.20316104E-03

4 1.08825740E-07 5.58886787E-08 1.35490137E-05 1.34499262E-05

5 8.68977905E-10 2.18228584E-10 9.90875836E-08 9.84418966E-08

6 2.07077239E-11 1.68185074E-11 6.45686971E-10 6.26380855E-10

7 1.33453390E-13 1.77800965E-13 1.93061163E-11 1.91356494E-11

8 3.32911503E-15 1.17262475E-16 1.70466913E-13 1.68627738E-13

9 2.34667065E-17 1.85492397E-17 1.83917524E-15 1.81704404E-15

10 1.94968136E-19 2.60343261E-19 2.21311977E-17 2.18912261E-17
...

...
...

...
...

50 7.95313036E-94 5.60964135E-94 3.24048135E-92 6.27814377E-93

Table 1 Numerical results of Example 4.1 being randomized the first time.

n z1,n z2,n xn |xn+1 − xn|
1 3.87646646E-02 2.11808262E-02 1.00000000E+00 9.67089584E-01

2 9.08427596E-04 5.17399890E-04 3.29104157E-02 3.21319091E-02

3 9.82766561E-07 1.29163897E-06 7.78506635E-04 7.76156570E-04

4 6.53081245E-08 1.19028080E-08 2.35006562E-06 2.30861909E-06

5 1.33075088E-09 3.64430816E-10 4.14465346E-08 4.05575361E-08

6 2.68341046E-11 1.50264282E-11 8.88998510E-10 8.67311870E-10

7 2.73653976E-13 4.49152288E-13 2.16866396E-11 2.13088585E-11

8 1.15014750E-14 6.10767047E-16 3.77781126E-13 3.71471069E-13

9 8.23396605E-17 8.77593543E-17 6.31005777E-15 6.22117079E-15

10 9.57108690E-19 5.14323658E-19 8.88869817E-17 8.81015976E-17
...

...
...

...
...

50 8.74865895E-97 6.97685899E-97 2.03284925E-94 2.03284925E-94

Table 2 Numerical results of Example 4.1 being randomized the second time.

From Table 1 and Table 2, we see that 0 is the solution of the equilibrium problem and it is the common
fixed point of T1 and T2 in Example 4.1.
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