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Abstract

In this paper, we obtain strong and ∆-convergence theorems of modified S-iteration for total asymp-
totically nonexpansive mappings in CAT(κ) spaces with κ > 0. Our results extend and improve the cor-
responding recent results announced by Panyanak [B. Panyanak, J. Inequal. Appl., 2014 (2014), 13 pages]
and many authors. c©2015 All rights reserved.
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1. Introduction

The initials of the term CAT are in honor of E. Cartan, A. D. Alexanderov and V. A. Toponogov, who
have made important contributions to the understanding of curvature via inequalities for the distance func-
tion. A CAT(κ) space is a geodesic metric space which no geodesic triangle is fatter than the corresponding
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comparison triangle in a model space with constant curvature κ, for κ ∈ R. It is a generalization of a
simply-connected Riemannian manifold with sectional curvature ≤ κ.

Kirk ([18, 19]) first studied the theory of fixed point in CAT(κ) spaces. Later on, many authors gener-
alized the notion of CAT(κ) given in [18, 19], mainly focusing on CAT(0) spaces (see e.g., [1, 9, 10, 12, 16,
20, 22, 29, 26, 30]). The results of a CAT(0) space can be applied to any CAT(κ) space with κ ≤ 0 since
any CAT(κ) space is a CAT(κ′) space for every κ′ ≥ κ (see in [5]). Although, CAT(κ) spaces for κ > 0,
were studied by some authors (see e.g., [13, 15, 25]).

Alber et al. [3] first introduced the total asymptotically nonexpansive mappings in Banach spaces.
He generalizes the concept of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[14] as well as the concept of nearly asymptotically nonexpansive mappings was introduced by Sahu [27].
Recently, Panyanak [25] studied the existence theorems, the demiclosed principle, ∆-convergence and
strongly convergence theorems for uniformly continuous total asymptotically nonexpansive mappings in
CAT(κ) spaces. Moreover, there were many authors who have studied about this mappings, (see e.g.,
[4, 7, 8, 17, 25, 31, 33, 34, 35, 36, 37]).

The S-iteration process was introduced by Agarwal, O’Regan and Sahu [2] in a Banach space. They
showed that their process was independent of those of Mann and Ishikawa and converges faster than both
of theses (see in [2]). 

x1 ∈ K,

xn+1 = (1− αn)Txn + αnT (yn),

yn = (1− βn)xn + βnT (xn), n ∈ N,
(1.1)

where {αn} and {βn} are the sequences in (0, 1).
In 1991, Schu [28] considered the following modified Mann iteration process which is a generalization of

the Mann iteration process,  x1 ∈ K,

xn+1 = (1− αn)xn + αnT
n(xn), n ∈ N, (1.2)

where {αn} is a sequence in (0, 1).
In 1994, Tan and Xu [32] studied the modified Ishikawa iteration process which is a generalization of the

Ishikawa iteration process as follows:
x1 ∈ K,

xn+1 = (1− αn)xn + αnT
n(yn),

yn = (1− βn)xn + βnT
n(xn), n ∈ N,

(1.3)

where the sequences {αn} and {βn} are in (0, 1). This iteration process reduces to the modified Mann
iteration process when βn = 0 for all n ∈ N.

In 2007, Agarwal, O’Regan and Sahu [2] introduced the following modified S-iteration process in a
Banach space, 

x1 ∈ K,

xn+1 = (1− αn)Tnxn + αnT
n(yn),

yn = (1− βn)xn + βnT
n(xn), n ∈ N,

(1.4)

where the sequences {αn} and {βn} are in (0, 1). Note that (1.4) is independent of (1.3) (and hence of
(1.2)). Also, (1.4) reduces to (1.1) when n = 1.
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Recently, Kumam, Saluja and Nashine [21] studied modified S-iteration process and investigated the
existence and convergence theorems in the setting of CAT(0) spaces for a class of mappings which is wider
than that of asymptotically nonexpansive mappings as follows:

x1 ∈ K,

xn+1 = (1− αn)Tnxn ⊕ αnSn(yn),

yn = (1− βn)xn ⊕ βnTn(xn), n ∈ N,
(1.5)

where the sequences {αn} and {βn} are in [0, 1], for all n ≥ 1.
Motivated and inspired by (1.4) and (1.5) we proposed the algorithm as follows.
Let K be a nonempty closed convex subset of a complete CAT(κ) space X and T : K → K be uniformly

continuous total asymptotically nonexpansive mapping with F (T ) 6= ∅. Suppose that {xn} is a sequence
generated iteratively by 

x1 ∈ K,

xn+1 = (1− αn)Tnxn ⊕ αnTn(yn),

yn = (1− βn)xn ⊕ βnTn(xn), n ∈ N,
(1.6)

where the sequences {αn} and {βn} are in (0, 1), for all n ≥ 1.
The purpose of this paper was to prove strong and ∆-convergence of the modified S-iteration process for

uniformly continuous total asymptotically nonexpansive mappings in CAT(κ) spaces. Our results extend
and improve the corresponding recent results announced by [25]. This paper was organized as follows. In
section 2 and 3, we present preliminaries and results of strong and ∆-convergence, respectively.

2. Preliminaries

In this section , we divide the content of preliminaries into three parts as follows.

2.1. CAT(κ) spaces and property

Let (X, ρ) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic from x
to y) is a map γ from a closed interval [0, l] ⊂ R to X such that γ(0) = x, γ(l) = y, and ρ(γ(t), γ(t′)) = |t−t′|
for all t, t′ ∈ [0, l]. In particular, γ is an isometry and ρ(x, y) = l. The image γ([0, l]) of γ is called a geodesic
segment joining x and y. When it is unique this geodesic segment is denoted by [x, y]. This means that
z ∈ [x, y] if and only if there exists α ∈ [0, 1] such that

ρ(x, z) = (1− α)ρ(x, y) and ρ(y, z) = αρ(x, y).

In this case, we write z = αx⊕ (1− α)y. The space (X, ρ) is said to be a geodesic space (D − geodesic
space) if every two points of X (every two points of distance smaller than D) are joined by a geodesic, and
X is said to be uniquely geodesic (D − uniquely geodesic) if there is exactly one geodesic joining x and y
for each x, y ∈ X (for x, y ∈ X with ρ(x, y) < D). A subset K of X is said to be convex if K includes every
geodesic segment joining any two of its points. The set K is said to be bounded if

diam(K) := sup{ρ(x, y) : x, y ∈ K} <∞.

Now we introduce the model spaces Mn
κ , for more details on these spaces the reader is referred to [5].

Let n ∈ N . We denote by En the metric space Rn endowed with the usual Euclidean distance. We denote
by (·|·) the Euclidean scalar product in Rn, that is,
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(x|y) = x1y1 + ...+ xnyn where x = (x1, ..., xn), y = (y1, ..., yn).

Let Sn denote the n− dimensional sphere defined by

Sn = {x = x1, ..., xn+1 ∈ Rn+1 : (·|·) = 1},

with metric dSn = arccos(x|y), x, y ∈ Sn.
Let En,1 denote the vector space Rn+1 endowed with the symmetric bilinear form which associates to

vectors u = (u1, ..., un+1) and v = (v1, ..., vn+1) the real number 〈u|v〉 defined by

〈u|v〉 = −un+1vn+1 +
∑n

i=1 uivi.

Let Hn denote the hyperbolic n− space defined by

Hn = {u = (u1, u2, ..., un+1) ∈ En,1 : 〈u|u〉 = −1, un+1 > 1}

with metric dHn such that

coshdHn(x, y) = −〈x|y〉, x, y ∈ Hn.

Definition 2.1. Given κ ∈ R, we denote by Mn
κ the following metric spaces:

(1) if κ = 0 then Mn
0 is the Euclidean space En;

(2) if κ > 0 then Mn
κ is obtained from the spherical space Sn by multiplying the distance function by the

constant 1/
√
κ;

(3) if κ < 0 then Mn
κ is obtained from the hyperbolic space Hn by multiplying the distance function by the

constant 1/
√
−κ.

A geodesic triangle ∆(x, y, z) in a geodesic space (X, ρ) consists of three points x, y, z in X (the vertices
of ∆) and three geodesic segments between each pair of vertices (the edges of ∆). A comparison triangle
for a geodesic triangle ∆(x, y, z) in (X, ρ) is a triangle ∆(x, y, z) in M2

κ such that

ρ(x, y) = dM2
κ
(x, y), ρ(x, z) = dM2

κ
(x, z) and ρ(z, x) = dM2

κ
(z, x).

If κ ≤ 0 then such a comparison triangle always exists in M2
κ . If κ > 0 then such a triangle exists

whenever ρ(x, y) + ρ(y, z) + ρ(z, x) < 2Dκ, where Dκ = π/
√
κ. A point p ∈ [x, y] is called a comparison

point for p ∈ [x, y] if ρ(x, p) = dM2
κ
(x, p).

A geodesic triangle ∆(x, y, z) in X is said to satisfy the CAT(κ) inequality if for any p, q ∈ ∆(x, y, z)
and for their comparison points p, q ∈ ∆(x, y, z), one has

ρ(p, q) ≤ dM2
κ
(p, q).

Definition 2.2. If κ ≤ 0, then X is called a CAT(κ) space if and only if X is a geodesic space such that
all of its geodesic triangles satisfy the CAT(κ) inequality. If κ > 0, then X is called a CAT(κ) space if and
only if X is Dκ -geodesic and any geodesic triangle ∆(x, y, z) in X with ρ(x, y) + ρ(y, z) + ρ(z, x) < 2Dκ

satisfies the CAT(κ) inequality.

Notice that in a CAT(0) space (X, ρ), if x, y, z ∈ X then the CAT(0) inequality implies

ρ2(x,
1

2
y ⊕ 1

2
z) ≤ 1

2
ρ2(x, y) +

1

2
ρ2(x, z)− 1

4
ρ2(y, z). (CN)

This is the (CN) inequality of Bruhat and Tits [6]. This inequality is extended by Dhompongsa and
Panyanak [11] as

ρ2(x, (1− α)y ⊕ αz) ≤ (1− α)ρ2(x, y) + αρ2(x, z)− (1− α)αρ2(y, z). (CN*)

for all α ∈ [0, 1] and x, y, z ∈ X. In fact, if X is a geodesic space then the following statements are
equivalent:
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(1) X is a CAT(0) space;

(2) X satisfies (CN);

(3) X satisfies (CN*).

Let R ∈ (0, 2]. Recall that a geodesic space (X, ρ) is said to be R − convex for R (see [24]) if for any
three points x, y, z ∈ X, we have

ρ2(x, (1− α)y ⊕ αz) ≤ (1− α)ρ2(x, y) + αρ2(x, z)− R

2
(1− α)αρ2(y, z). (2.1)

It follows from (CN*) that a geodesic space (X, ρ) is a CAT(0) space if and only if (X, ρ) is R− convex
for R = 2. The following lemma is a consequence of Proposition 3.1 in [24].

Lemma 2.3. Let κ > 0 and (X, ρ) be a CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0, π/2). Then

(X, ρ) is R− convex for R = (π − 2ε)tan(ε).

The following lemma is also needed.

Lemma 2.4 ([5]). Let κ > 0 and (X, ρ) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some

ε ∈ (0, π/2). Then

ρ((1− α)x⊕ αy, z) ≤ (1− α)ρ(x, z) + αρ(y, z),

for all x, y, z ∈ X and α ∈ [0, 1].

2.2. ∆-convergence for total asymptotically nonexpansive mappings in CAT(κ) spaces

We now collect some elementary facts about CAT(κ) spaces. Most of them are proved in the setting of
CAT(1) spaces. For completeness, we state the results in CAT(κ) with κ > 0.

Let {xn} be a bounded sequence in a CAT(κ) space (X, ρ). For x ∈ X, we set

r(x, {xn}) = lim supn→∞ ρ(x, {xn}).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known from [13] that in a CAT(κ) space X with diam(X) < 2π
2
√
κ
, A({xn}) consists of exactly one

point. We now give the concept of ∆-convergence and collect some of its basic properties.

Definition 2.5 ([20, 23]). A sequence {xn} in X is said to ∆-converge to x ∈ X if x is the unique asymptotic
center of {un} for every subsequence {un} of {xn}. In this case we write ∆ − limnxn = x and call x the
∆-limit of {xn}.

Lemma 2.6 ([26]). Let κ > 0 and (X, ρ) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some

ε ∈ (0, π/2). Then the following statements hold:

(i) every sequence in X has a ∆-convergence subsequence;

(ii) if {xn} ⊆ X and ∆− limnxn = x, then x ∈
⋂∞
k=1 conv{xk, xk+1, ...}, where conv(A) =

⋂
{B : B ⊇ A

and B is closed and convex}.
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By the uniqueness of asymptotic centers, we can obtain the following lemma (see [11]).

Lemma 2.7. Let κ > 0 and (X, ρ) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some ε ∈ (0, π/2).

If {xn} is a sequence in X with A({xn}) = {x} and let {un} is a subsequence of {xn} with A({un}) = {u}
and the sequence {ρ(xn, u)} converges, then x = u.

Definition 2.8. Let K be a nonempty subset of a CAT(κ) space (X, ρ). A mapping T : K → K is called
total asymptotically nonexpansive if there exist nonnegative real sequences {νn}, {µn} with νn → 0, µn → 0
as n→∞ and a strictly increasing continuous function ψ : [0, 1)→ [0, 1) with ψ(0) = 0 such that

ρ(Tn(x), Tn(y)) ≤ ρ(x, y) + νnψ(ρ(x, y)) + µn for all n ∈ N, x, y ∈ K.

A point x ∈ K is called a fixed point of T if x = T (x). We denote with F (T ) the set of fixed points of
T . A sequence {xn} in K is called approximate fixed point sequence for T (AFPS in short) if

limn→∞ ρ(xn, T (xn)) = 0.

Lemma 2.9 ([32]). Let {sn} and {tn} be sequences of nonnegative real numbers satisfying

sn+1 ≤ sn + tn for all n ∈ N .

If
∑∞

n=1 tn <∞ then limn→∞ sn exists.

2.3. Existence theorems, Demiclosed principle and Semi-compact

Theorem 2.10. Let κ > 0 and (X, ρ) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some

ε ∈ (0, π/2) . Let K be a nonempty closed convex subset of X, and T : K → K be a continuous total
asymptotically nonexpansive mapping. Then T has a fixed point in K.

Proof. See in [25]

Theorem 2.11. Let κ > 0 and (X, ρ) be a complete CAT(κ) space with diam(X) ≤ π/2−ε√
κ

for some

ε ∈ (0, π/2). Let K be a nonempty closed convex subset of X, and T : K → K be a uniformly continuous
total asymptotically nonexpansive mapping. If {xn} is an AFPS for T such that ∆→ limn→∞ xn = ω, then
ω ∈ K and ω = T (ω).

Proof. See in [25]

Definition 2.12. Let (X, ρ) be a metric space and K be its nonempty subset. Then T : K → K is said to
be semi-compact if for a sequence xn in K with limn→∞ ρ(xn, Txn) = 0, there exists a subsequence xnk of
xn such that xnk → p ∈ K.

3. Main results

In this section, we prove strong and ∆-convergence of the modified S-iteration process for total asymp-
totically nonexpansive mappings in a CAT(κ) spaces as follows.

Lemma 3.1. Let κ > 0 and (X, ρ) be a complete CAT (κ) space with diam(X) ≤ π/2−ε√
κ

for some

ε ∈ (0, π/2). Let K be a nonempty closed convex subset of X, and T : K → K be a uniformly continuous
total asymptotically nonexpansive mapping with

∑∞
n=1 νn < ∞ and

∑∞
n=1 µn < ∞. Let {xn} be a sequence

in K defined by (1.6) where {αn} and {βn} are sequences in (0, 1) such that lim infn αnβn(1−βn) > 0. Then
{xn} is an AFPS for T and limn ρ(xn, p) exists for all p ∈ F (T ).
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Proof. We divide the proof of this lemma into two steps.

Step 1 : We will prove that limn ρ(xn, p) exists.
It follows from Theorem 2.10 that F (T ) 6= ∅. Let p ∈ F (T ) and M = diam(K). Since T is total

asymptotically nonexpansive, by Lemma 2.4 we have

ρ(yn, p) = ρ((1− βn)xn ⊕ βnTn(xn), p)

≤ (1− βn)ρ(xn, p) + βnρ(Tn(xn), p)

= (1− βn)ρ(xn, p) + βnρ(Tn(xn), Tn(p))

≤ (1− βn)ρ(xn, p) + βn{ρ(xn, p) + νnψ(M) + µn}
≤ ρ(xn, p) + βnνnψ(M) + βnµn.

This implies that

ρ(xn+1, p) = ρ((1− αn)Tn(xn)⊕ αnTn(yn), p)

≤ (1− αn)ρ(Tn(xn), p) + αnρ(Tn(yn), Tn(p))

≤ (1− αn)ρ(Tn(xn), Tn(p)) + αnρ(Tn(yn), Tn(p))

≤ (1− αn){ρ(xn, p) + νnψ(ρ(xn, p)) + µn}
+ αn{ρ(yn, p) + νnψ(ρ(yn, p)) + µn}
≤ (1− αn){ρ(xn, p) + νnψ(M) + µn}

+ αn{ρ(xn, p) + βnνnψ(M) + βnµn

+ νnψ(M) + µn}
≤ ρ(xn, p) + νnψ(M) + (1 + αnβn)µn).

Since
∑∞

n=1 νn < 1 and
∑∞

n=1 µn < 1 , by Lemma 2.9 limn→∞ ρ(xn, p) exists.

Step 2 : We will prove that limn→∞ ρ(xn, T (xn)) = 0.
Next,we show that {xn} is an AFPS for T . In view of (2.1), we have

ρ2(xn+1, p) = ρ2((1− αn)Tn(xn)⊕ αnTn(yn), p)

≤ (1− αn)ρ2(Tn(xn), p) + αnρ
2(Tn(yn), p)− R

2
αn(1− αn)ρ2(Tn(xn), Tn(yn))

≤ (1− αn)ρ2(Tn(xn), Tn(p)) + αnρ
2(Tn(yn), Tn(p))

≤ (1− αn)[ρ(xn, p) + (νnψ(ρ(xn, p)) + µn)]2 + αn[ρ(yn, p) + (νnψ(ρ(yn, p)) + µn)]2

≤ (1− αn)[ρ2(xn, p) + 2ρ(xn, p)(νnψ(ρ(xn, p)) + µn) + (νnψ(ρ(xn, p)) + µn)2]

+αn[ρ2(yn, p) + 2ρ(yn, p)(νnψ(ρ(yn, p)) + µn) + (νnψ(ρ(yn, p)) + µn)2]

≤ (1− αn)ρ2(xn, p) + (1− αn)[2ρ(xn, p)(νnψ(ρ(xn, p)) + µn) + (νnψ(ρ(xn, p)) + µn)2]

+αnρ
2(yn, p) + αn[2ρ(yn, p)(νnψ(ρ(yn, p)) + µn) + (νnψ(ρ(yn, p)) + µn)2].

This implies that

ρ2(xn+1) ≤ (1− αn)ρ2(xn, p) + αnρ
2(yn, p) +Aνn +Bµn ∃A,B ≥ 0. (3.1)

Again by (2.1) , we have
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ρ2(yn, p) = ρ2((1− βn)xn ⊕ βnTn((xn), p))

≤ (1− βn)ρ2(xn, p) + βnρ
2(Tn(xn), Tn(p))− R

2
βn(1− βn)ρ2(xn, T

n(xn))

≤ (1− βn)ρ2(xn, p) + βn[ρ(xn, p) + νnψ(M) + µn]2

−R
2
βn(1− βn)ρ2(xn, T

n(xn))

≤ ρ2(xn, p) + βn[2ρ(xn, p)(νnψ(M) + µn) + (νnψ(M) + µn)2]

−R
2
βn(1− βn)ρ2(xn, T

n(xn)).

Substituting this into (3.1), we get that

ρ2(xn+1, p) ≤ (1− αn)ρ2(xn, p) + αn[ρ2(xn, p) + βn[2ρ(xn, p)(νnψ(M) + µn)

+(νnψ(M) + µn)2]− R

2
βn(1− βn)ρ2(xn, T

n(xn))] +Aνn +Bµn,

≤ ρ2(xn, p) + αn[βn[2ρ(xn, p)(νnψ(M) + µn) + (νnψ(M) + µn)2]

−R
2
βn(1− βn)ρ2(xn, T

n(xn))] +Aνn +Bµn,

yielding
R

2
αnβn(1− βn)ρ2(xn, T

n(xn)) ≤ ρ2(xn, p)− ρ2(xn+1, p) + Cνn +Dµn ∃C,D ≥ 0.

Since
∑∞

n=1 νn <∞ and
∑∞

n=1 µn <∞ , we have

∞∑
n=1

αnβn(1− βn)ρ2(xn, T
n(xn)) <∞.

This implies by lim infn→∞ αnβn(1− βn) > 0 that

lim
n→∞

ρ(xn, T
n(xn)) = 0. (3.2)

By the uniform continuity of T , we have

lim
n→∞

ρ(T (xn), Tn+1(xn)) = 0. (3.3)

It follows from (3.2) and the definitions of xn+1 and yn that

ρ(xn, xn+1) = ρ(xn, (1− αn)Tnxn ⊕ αnTnyn)

≤ (1− αn)ρ(xn, T
n(xn)) + αnρ(xn, T

n(yn))

≤ ρ(xn, T
n(xn)) + ρ(xn, T

n(yn))

≤ ρ(xn, T
n(xn)) + ρ(xn, T

n(xn)) + ρ(Tn(xn), Tn(yn))

≤ 2ρ(xn, T
n(xn)) + ρ(Tn(xn), Tn(yn))

= 2ρ(xn, T
n(xn)) + [ρ(xn, yn) + νnψ(M) + µn]

≤ 2ρ(xn, T
n(xn)) + ρ(xn, (1− βn)xn ⊕ βnTn(xn)) + νnψ(M) + µn

≤ 2ρ(xn, T
n(xn)) + (1− βn)ρ(xn, xn) + βnρ(xn, T

n(xn)) + νnψ(M) + µn

= 2ρ(xn, T
n(xn)) + βnρ(xn, T

n(xn)) + νnψ(M) + µn

= (2 + βn)ρ(xn, T
n(xn)) + νnψ(M) + µn → 0 as n→∞. (3.4)
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By (3.2),(3.3), and (3.4), we have

ρ(xn, T (xn)) ≤ ρ(xn, xn+1) + ρ(xn+1, T
n(xn+1))

+ρ(Tn+1(xn+1), T
n+1(xn)) + ρ(Tn+1(xn), T (xn))

≤ ρ(xn, xn+1) + ρ(xn+1, T
n(xn+1)) + ρ(xn+1, xn)

+νn+1ψ(M) + µn+1 + ρ(Tn+1(xn), T (xn))→ 0 as n→∞.

Now, we are ready to prove our ∆ - convergence theorem.

Theorem 3.2. Let κ > 0 and (X, ρ) be a complete CAT (κ) space with diam(X) ≤ π/2−ε√
κ

for some

ε ∈ (0, π/2). Let K be a nonempty closed convex subset of X, and T : K → K be a uniformly continuous
total asymptotically nonexpansive mapping with

∑∞
n=1 νn < ∞ and

∑∞
n=1 µn < ∞ .Let {xn} be a sequence

in K defined by (1.6) where {αn} and {βn} are sequences in (0, 1) such that lim infn αnβn(1−βn) > 0. Then
{xn} ∆ - converges to a fixed point of T .

Proof. Let ωω({xn}) :=
⋃
A({un}) where the union is taken for all subsequences {un} of {xn}. We first

show that ωω({xn}) ⊆ F (T ). Let u ∈ ωω({xn}), then there exists a subsequence {un} of {xn} such that
A({un}) = {u}. By Lemma 2.6, there exists a subsequence {υn} of {un} such that ∆ − limn υn = υ ∈ K.
By Lemma 3.1 and Theorem 2.11, we have υ ∈ F (T ). Since limn ρ(xn, υ) exists, so u = υ by Lemma 2.7.
This shows that ωω(xn) ⊆ F (T ).

Next, we show that ∆-converges to a point in F (T ), it is sufficient to show that ωω({xn}) consists of
exactly one point. Let {un} be a subsequence of {xn} with A({un}) = {u} and let A({xn}) = {x}. Since
u ∈ ωω(xn) ⊆ F (T ), by Lemma 3.1 limn ρ(xn, u) exists. And by Lemma 2.7, we have x = u. This completes
the proof.

As a consequence of Theorem 3.2, we obtain

Corollary 3.3 ([17]). Let (X, ρ) be a complete CAT (0) space, K be a nonempty bounded closed convex
subset of X, and T : K → K be a uniformly continuous total asymptotically nonexpansive mapping with∑∞

n=1 νn < ∞ and
∑∞

n=1 µn < ∞. Let {xn} be a sequence in K defined by (1.6) where {αn} and {βn} are
sequences in (0, 1) such that lim infn αnβn(1− βn) > 0. Then {xn} ∆-converges to a fixed point of T .

Now, we prove a strong convergence theorem for uniformly continuous total asymptotically nonexpansive
semi-compact mappings.

Theorem 3.4. Let κ > 0 and (X, ρ) be a complete CAT (κ) space with diam(X) ≤ π−ε√
κ

for some

ε ∈ (0, π/2). Let K be a nonempty closed convex subset of X, and T : K → K be a uniformly continuous
total asymptotically nonexpansive mapping with

∑∞
n=1 νn <∞ and

∑∞
n=1 µn <∞. Let {xn} be a sequence in

K defined by (1.6) where {αn} and {βn} are sequences in (0, 1) such that lim infn αnβn(1−βn) > 0.Suppose
that Tm is semi-compact for some m ∈ N . Then {xn} converges strongly to a fixed point of T .

Proof. By Lemma 3.1, limn ρ(xn, T (xn)) = 0. Since T is uniformly continuous, we have

ρ(xn, T
m(xn)) ≤ ρ(xn, T (xn)) + ρ(T (xn), T 2(xn)) + ...+ ρ(Tm−1(xn), Tm(xn))→ 0

as n → ∞. That is, {xn} is an AFPS for Tm. By definition 2.12, there exist a subsequence {xnj} of
{xn} and p ∈ K such that limj→∞ xnj = p. Again, by the uniform continuity of T , we have

ρ(T (p), p) ≤ ρ(T (p), T (xnj )) + ρ(T (xnj ), xnj ) + ρ(xnj , p)→ 0 as j →∞.
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That is, p ∈ F (T ). By Lemma 3.1, limn ρ(xn, p) exists, thus p is the strong limit of the sequence {xn}
itself.

Corollary 3.5 ([17]). Let (X, ρ) be a complete CAT (0) space, K be a nonempty bounded closed convex
subset of X, and T : K → K be a uniformly continuous total asymptotically nonexpansive mapping with∑∞

n=1 νn < ∞ and
∑∞

n=1 µn < ∞. Let {xn} be a sequence in K defined by (1.6) where {αn} and {βn} are
sequences in (0, 1) such that lim infn αnβn(1− βn) > 0. Suppose that Tm is semi-compact for some m ∈ N .
Then {xn} converges strongly to a fixed point of T .

Remark 3.6. The results in this paper also hold for the class of weakly total asymptotically nonexpansive
mappings in the following sense. A mapping T : K → K is called weakly total asymptotically nonexpansive
if there exist nonnegative real sequences {νn}, {µn} with νn → 0 , µn → 0 as n → ∞ and a nondecreasing
function ψ : [0, 1)→ [0, 1) such that

ρ(Tn(x), Tn(y)) = ρ(x, y) + νnψ(ρ(x, y)) + µn for all n ∈ N, x, y ∈ K.
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