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Abstract

In this paper, we investigate a nonlinear second order boundary value problem of ¢-integro-difference equa-
tions supplemented with non-separated boundary conditions. Sufficient conditions for the existence and
nonexistence of solutions are presented. Examples are provided for explanation of the obtained work.
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1. Introduction
Consider the following nonlinear second order g-integro-difference equation with non-separated boundary

conditions:
{D§U(t) = f(t,u(t)) + Ig(t, u(t)), te€ lq,

(1.1)
w(0) =nu(T),  Dqu(0) = nDqu(T),

where f,g € C(I; xR, R), 1, =1[0,T] NV, ¢V = {¢" :n e N}U{0}, T € ¢V is a fixed constant and n # 1
is a fixed real number.
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The study of ¢-difference equations, initiated with the works of Jackson [18, 19], Carmichael [14], Mason
[22] and Adams [I], has recently gained a considerable interest. The subject of g-calculus is also known
as quantum calculus and distinguishes itself from the classical calculus in the sense that the notion of
g-derivative is independent of the concept of limit and that g-difference equations are always completely
controllable. The tools of g-calculus are found to be of a great value in studying g-optimal control problems
[10]. The g-analogue of continuous variational calculus is variational g-calculus, where the extra-parameter
q accounts for a physical or economical situation. In fact, the variational calculus on g-uniform lattice helps
to find the extremum of the functional involved in Lagrange problems of ¢-Euler equations rather than
solving the Euler-Lagrange equation itself [I1]. The g¢-difference equations have potential applications in
several fields such as special functions, super-symmetry, operator theory, combinatorics, etc. For examples
and details, see a series of books ([7, [8, 16, 20]) and papers ([2, 12, 23]) and the references cited therein.
Concerning the theory of initial and boundary value problems of ¢-difference equations, we refer the reader
to the works obtained in papers ([3} 14} [5 (6, 9] 13, 15 17, 24]).

In the sequel, we use the following conditions and notation:
. ) . g(t,u) .
(Hy) lim =a(t) and lim = b(t) uniformly on I,.
ful—oe  |u ful—oe [ul
[t u)

(Hz) lim f(tu) =0and lim = 0 uniformly on I,.
ul 0+ [ul ful oo |u
t
(Hs3) lim (£, u) =0and lim gl = 0 uniformly on I,.
ful ot Ju| o0 |ul
= su t —gslla(s)|d S—I—/ dgr
s=sup{ [l aslo(o) o )l
7] /
+— T+ (1—n)(t—gs)|a(s)|dgs
-1/, T+ (1 =n)(t - gs)|als)|dq
) /T ¢*r® —
— T+ (1—- T— 1-—
toroe ) I 0= —an) + (=t = oidr}.
T2 T3 T2 T2
M= n i 7] - ]
I+g (+9(+g+¢) -1 |n=1/1+q)
(T + 11— nIT)T e
(n—1)?(1+q) =11 +q+4q%)

The main objective of the present paper is to establish the following results which deal with the existence
and nonexistence of solutions for the problem ([1.1)).

Theorem 1.1. Assume that the condition (Hy) holds. Then the problem (1.1 has at least one solution
provided that 0 < A < 1.

Theorem 1.2. Assume that the conditions (Hz) and (Hs) hold. If there exists a constant B > 0 such that
M < B, then the non-separated boundary value problem (L.1)) has no solution.
2. Preliminaries

Let us describe some basic concepts of g-calculus [7, [16].
For 0 < g < 1, the ¢g-derivative of a real valued function f is defined as

M D, f(0) = lim D, f(¢).

(1 — q)t ’ t—0

qu(t) =
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The g¢-integral of a function f is defined as

[ #0dt =Y 00— 0 ") - alt - )" o). 3 € [0,

and for a = 0, we denote
= [ #0dst = Yt = 0 pGaa®)
n=0

provided the series converges. If a € [0,b] and f is defined on the interval [0, b], then

/abf(t)dqt = /Obf(t)dqt - /Oaf(t)dqt

L) =f(t), I3f(t) =1L I3 f(t), neN

Similarly, we have

Observe that

Dylyf(z) = f(x), (2.1)
and if f is continuous at x = 0, then I, D, f(z) = f(z) — f(0). In g-calculus, the product rule and integration
by parts formula are

Dq(gh)(t) = Dqg( )h(t )+g qt)Dgh(t), (2.2)
/ f qg dqt / qu g(qt)d, (2'3)

We introduce the Banach space X = C(Iy, ) = {u: Iq — R | u e C(I;)} equipped with a topology of

uniform convergence with respect to the norm ||u|| = sup |u(t)].
€lq

Lemma 2.1 ([4]). The linear problem of a second order q-difference equation supplemented with non-
separated boundary conditions:

{ D2u(t) = y(t), tel, 240
u(0) = nu(T),  Dqu(0) = nDqu(T),
has a unique solution given by
t T
ut) = [ (= asdes+ g [0+ == as)ue)dye (25)

To transform the problem (|1.1]) into a fixed point problem we use Lemma to define an operator
T:X = X as

(Tu)(t) = /0 (t = 43)[f (5, u(s)) + Tog(s, u(s))|dgs

T
b /0[T+(1—n)(t—QS)][f(&U(S))+Iq9(87U(S))]qu

(n—1)?
t t S
:/0 (t—qs)f(s,u(s))dys —{—/O (t — qs)/0 g(r,u(r))dgrdgs (2.6)
1 ' T+ (1 =)t — qs)]f (s, u(s))dys
MCESIE /0 : LA ’ !
n T s
o [ =) [ oty

which can alternatively be written as
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t 2 37,2

) = [ (= apudys + [ (o —art+ 1t ur)dyr

T
+ C _171)2 /0 [T+ (1 —n)(t—qs)]f(s,u(s))dgs 2
n T q3r2 ) qu
+ (17—1)2/0 [[T+ (1=t (T —qr)+ (1 _U)Tq

Observe that the problem (|1.1]) has a solution if and only if the operator 7" has a fixed point.

}g(r, u(r))dgr.

3. The Proof of Main Results
In order to obtain the proof of Theorem we need the following fixed point theorem.

Theorem 3.1 ([21]). Let X be a Banach Space. Let T : X — X be a completely continuous mapping and
let L: X — X be a bounded linear mapping such that 1 is not an eigenvalue of L. Suppose that

Then T has a fixed point in X.

Proof of Theorem [1.1l

In the first step, we show that T is a completely continuous operator. Obviously, the operator T is
continuous in view of continuity of functions f and g.

Let © C C(I4,R) be bounded. Then, for any ¢ € I, there exist positive constants L and L such that
|f(t,u)] < Ly and |g(t,u)| < Lo, Vu € Q2. Then, we have

t t 2 37,.2
|(Tu)(t)| = ‘/0 (t —qs)f(s,u(s))dgs +/0 (1:(] —qrt + | q)g(r,u(r))dqr
n T
i [T = )= el u)dys
T 3,2 _ T2
+ o [ [T 0= wa = o+ 0 - T ot )y

3.2

r
d
ot gl

L/u—qusu )Idgs +

N m’l/]T+ﬂ—mU—QﬂU@W@m%3
0

(n—1)?
[l /T ¢r? — qT?
+ T+ 1 —=mt)(T —qr)+ (1 —n)————||g(r,u(r))|der
e T =T )+ () T ()
t t t2 32
§/0 |t_q3|L1dq5+/0 T4 |L2d7“
g W’Q/wuw41—mu—q@wmw
(m—1)*Jo
[n) /T $Br? — qT?
+ T+ 1=nt| (T —qr)+ (1 —n)——————|Ladyr
=12 J, [T+ (1 =n)t]( )+ (1 —n) g | Lad,
t £’ [n|T° || 7°
gsup{ L1+ Lo + 1+ 77—
tef, \1+q 1+q)(1+q+¢*) (n—1)? In—1/(1+q)

T+ =7 e )
(-1 +a) T =10+ q+ )
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T? T3 | T2 n| T2
=L+ L+ Lit+——— I
1+gq 1+q¢)(1+q+¢?) (n—1)2 ln —1|(1+q)

Inl(T + |1 — n!T)TQL Inlq o

)

2
(n—1)%(1+q) n—1(1+q+¢?)
which implies that ||T'u|| < L. Moreover, for Vt1,ts € I, t1 < t2, we obtain

|(Tu)(t2) — (Tu)(t1)|
(ta —qs)f(s,u(s))dys — /0 1(t1 —qs)f(s,u(s))dys

ty 42 2 g2 4
+ /0 (ﬁ — qrty + T q)g(r,u(r))dqr — /0 (1 _i i qrti + T q)g(r,u(r))dqr
W=t [ s utogs + 200 [ g,
t1 to
< ’(tg — 1) ; f(s,u(s))dgs —|—/ (ta — qs)f(s,u(s))dgs
t1
t1 ta 42 3,.2
ta-n) [ f; R O e e e
M=t 17 s utopgs + "2 [ gt

which tends to zero 1ndependent of u as to — t; — 0. Thus, the operator T is relatively compact on €.
Hence, by the Arzela-Ascoli Theorem, the operator T is compact on 2. Hence, the operator T is completely
continuous.

Next, we show that T has a fixed point. Define an operator L : X — X as

t 2 3,.2

T
(g 0t 1 ) ulr)dgr

(Lu)(t) = /0 (t —gs)a(s)|u(s)|dys +/0

n T
i [T = )= asla(o)u(e)dys (3.1)

n T
st [ [ e -+ -

Thus L is a bounded linear operator. In addition, we have

q3,r.2 o qT2

o) ) ldgr.

t t t2 q3742
o= | [ ¢ = asatoluts)id,s + [ (5 = art+ Ll

n T
b [T - - sl

T
+_771)/ [[T+(1—n)](T—qr)+(1—77)q

3 2
< [ t=aslotoyags + [ 175 ) dar

ul — —qs)||la(s)|dgs
e _1)2/0 T+ (1 —n)(t — gs)|a(s)|d,

T
0 [ @i —an+ - )

37.2

1+

IIb( )ldgr
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< sup /\t—qsua yds+/
tel,

1+gq (r)|dgr

T
s [T - a9l
T 37,2_ 2
s [ @@ = an) + (1= ) DI b
= Alul.

This, together with 0 < A < 1, for any u such that v = Lu, implies that
Jull = [[Lull < Ajull < lul,

which is a contradiction. This means that A = 1 is not an eigenvalue of the linear operator L.
In view of (H;), for any € > 0, there exists a positive constant M such that for any |u| > M, we have

f(tz;u) - a(t)‘ < e and )g(ﬁ;r)

Thus |f(t,u) — a(t)|u|| < elu| and |g(t,u) — b(t)|u|| < €|u] for any t € 1.
Thus, for € > 0 and |u| > M, we have

(Tu)(t) — (Lu) (1)
< / 1t — gs||f (s, u(s)) — a(s) u(s)|dgs

(t)| < e for any t € I,.

3.2

qr
g qu(r,u(r)) — b(r)|u(r)||dgr

T
(n o |1>2 /0 T+ (1= m)(t — g5)|1 (s, u(s)) — a(s)lu(s)|dgs

In!

+

T 3,2 _ T2
= HT+(1—77)](T—qT)+(1—77)ql+ZT

/ |t —qs|dgs +

T
s [T e - s

|77’ 3.2 2

T 2 _
= 1)2/0 T+ (=@ = ar)+ (0T el
t? t2 [n|2 [n|?

14+¢
Ssup{ + + +
ter, \1+q¢  (1+¢)(1+q+¢>) M-1)2 [n—11+q)
In|(T + |1 — n[t)T*? nlq } Jull
(n—1)2%(1+q) In—1[(1+q+q¢?)
_{ T? T3 n|T? n|T?

g (r, u(r)) = b(r)[u(r)|dgr

|d
1+ 1+

_l’_

T+¢ 0+9Utard -0 m-10+q

(m—1)%*(1+q) m—1(1+q+q?)
= Me||u]|.

This yields || Tu — Lu|| < Melul|, that is, lim ————
lul oo [luf
are satisfied. Hence, by the conclusion of Theorem there exists a fixed point uw of the operator T’

= 0. Therefore, all the conditions of Theorem
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which corresponds to a solution the problem ((1.1)). This completes the proof.

The Proof of Theorem [1.2]

Proof. In view of (Hs), we have

t
Ve1 > 0 there is 61 > 0 such that if 0 < |u| < §; then ‘f(h;’u) - 0‘ < eyp,ie [f(tu)] < eplul,
7t 0) (33)
u
Veg > 0 there is N1 > 0 such that if |u| > N; then ) |Q;| - O‘ < gg, e |f(t,u)] < e2]ul.
Without loss of generality, let d; < N7 and
t
¢ = max {al,ag,max{f(| ”u) : (51 < \u\ < Nl,t S Iq}}-
u
Then, for all t € I, and u € R, we have | f(t,u)| < &'|ul.
Similarly, using (H3), we get
: : g(t,u) ,
Ves > 0 there is d2 > 0 such that if 0 < |u| < d, then ’ Wl 0‘ < g3, i.e. |g(t,u)| < eslul,
(3.4)

t
Veyq > 0 there is N > 0 such that if |u| > Ny then ‘g( ) _ 0’ < g, e |g(t,u)| < eqlul.

|ul
Let 9 < Ny and
g(t,u)
|ul
Thus, for all ¢t € I, and u € R, we have |g(¢,u)| < &”|ul.

Let us pick ¢ = max{e’,”}. Then, for any ¢t € I, and u € R, we obtain |f(¢,u)| < e|u|, |g(t,u)| < €|u
and

¢’ = max {53,64,max{ 102 < |u|l < Na,t € Iq}}.

t t 2 37“2
(@O < [ 1= asll s ulsDldgs + [ 1 = art+ gt ldyr

T
i (?7|_77 ’1)2 /0 T+ (1= 0)(t — gs)[| (s, uls))ldys

l

T Pr? — qT?
o [T+ =T — o)+ (0 -

1+gq

[lg(r, u(r))ldgr

3.2

t t t2 cr
< t— sausds—i—/ —qrt + elu(r)|dgr
< [ = astelutoldgs + [ 17 = art+ Sl

T
e |_77’1)2 /0 T+ (1= m)(t — gs)lelu(s)|dys

T 302 _ 2
; ’17’1)2 /0 [T+ (1= )] (T — qr) + (1 — n)qu!du(”’dqr

t t t2 q3T2
S{/|t—qs|d8+/| —qrt + |dgr
0 ! o 1+g 14q 7

T
+ C |_77’1)2 /0 |T 4+ (1 —n)(t — gs)dys

l
(n—1)2

3,,,.2 o qT2

T
+ /0 1T+ (1 =m)(T = gr) + (1 =) 1+gq

dqr Jelul
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<sup{ r + a + [nIT* + [n/T*
e, 1tg I+ @(L+g+¢*)  (n—1*  |n—11+q)
nl(T +]1 — nlp)T? e\,
m=120+q)  In—11+q+¢)
= Mellu],
which implies that
[Tul] < Meljul.

(3.5)

1
Take B = —(B > M). If u is a solution of the non-separated boundary value problem 1) then u is a
€

fixed point of operator T'. Thus, ||u|| = ||Tu||. This, together with (3.5 and M < B, yields

lull = 1Tul] < Mellull < [lul],

which is a contradiction. That is, u is not a solution of the non-separated boundary value problem (1.1).

This completes the proof.

4. Examples

Example 4.1. Consider the following non-separated boundary value problem given by

2 5 82

S+ [ s+ o+ Tlulsdys. ey,
u(0) = —2u(1), D%U(O) = —2D%u(1),

Diu(t) = 3% + t? sinu(t) +
2

M\H

1 +2 5 42
Here, 1=5 1= =2, T=1, f(t,u) —3t3+t2smu—|— |u\ and g(t, u) _2t3+—+f‘u|

Obviously,
2
£(t, ) 3t3 +t?sinu + — |u\ 2
lim '~ = lim = —,
5 B2
%+—+|m 2
t t
lim 9(t,v) = lim = —.
R N \UI 4

t? t?
For a(t) = = b(t) = 7 Ve have

t 2 t 42 3,2 .2
t
A:sup{/ ]t—qs\sdqs+/ rt &lr—dqr
tel, Jo 7 0o 1+4q 14+q 4

| T 52
w s [ s e gl s

(n—1
|77’ /T q3r2 _ qT2 742
— T+ (1— )T — 1- 44477d}
+( [T+ (L= m)t](T — qr) + ( n)1+q Cdar
262 1 r2
S~ Sup / ’t *3‘32d18—|— / ’7_, t 4+ — ’TQd;'I"
t€01]1 2 12 L
/ |1+3t—*$ |s2d18+/ 13( 1_775"‘2(5—1)‘7“26%1”}
8 15

<—+7+—+— o

O

(4.1)
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Thus, all the conditions of Theorem are satisfied. Hence, we conclude that the problem (4.1]) has at least
one solution.

Example 4.2. Consider the following non-separated boundary value problem

Diu(t) = t3sinu(t)(1 — cosu(t)) + /t(SQuQ(s)e_“(s))dés, t€[0,1]

1
S L ; (4.2)
u(0) = gu(l), D%u(()) = gD%u(l)
1 1 , ‘ N
Here, ¢ = 3 =5 T =1, f(t,u) =t>(1 — cosu)sinu and g(t,u) = t*u“e” 1"
Note that
( lim ft,u) — lim t3(1 —cosu)sinu o,
uls0+ Jul  juls0t |ul
301 _ .
f(t,u) ~ lim t°(1 — cosu) sinu o,
ulsoo  fu  Jul=oo |ul
9 (4.3)
lu|—0t+  ul lu|—0+ elul ’
2

Clearly all the conditions of Theorem hold. Consequently, the non-separated boundary value problem
(4.2) has no solution.
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