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1. Introduction

In this paper we present many generalizations of the Lefschetz fixed point theorem in a variety of
extension type spaces. These spaces are generalization of spaces considered in [5, 6, 8, 10, 11, 12].

For the remainder of this section we present some definitions and known results which will be needed
throughout this paper. Suppose X and Y are topological spaces. Given a class X of maps, X (X,Y )
denotes the set of maps F : X → 2Y (nonempty subsets of Y ) belonging to X , and Xc the set of finite
compositions of maps in X . We let

F(X ) = {Z : FixF ̸= ∅ for all F ∈ X (Z,Z)}

where FixF denotes the set of fixed points of F .
The class A of maps is defined by the following properties:

(i) A contains the class C of single valued continuous functions;

(ii) each F ∈ Ac is upper semicontinuous and closed valued; and

(iii) Bn ∈ F(Ac) for all n ∈ {1, 2, ....}; here Bn = {x ∈ Rn : ∥x∥ ≤ 1}.
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Remark 1.1. The class A is essentially due to Ben-El-Mechaiekh and Deguire [3]. A includes the class of
maps U of Park (U is the class of maps defined by (i), (iii) and (iv). each F ∈ Uc is upper semicontinuous
and compact valued). Thus if each F ∈ Ac is compact valued the class A and U coincide.

We next consider the class Uκ
c (X,Y ) (respectively Aκ

c (X,Y )) of maps F : X → 2Y such that for each F
and each nonempty compact subset K of X there exists a map G ∈ Uc(K,Y ) (respectively G ∈ Ac(K,Y ))
such that G(x) ⊆ F (x) for all x ∈ K.

Recall Uκ
c is closed under compositions. The class Uκ

c include (the Kakutani maps, the acyclic maps,
the O’Neill maps, the approximable maps and the maps admissible with respect to Gorniewicz.

For a subset K of a topological space X, we denote by CovX (K) the set of all coverings of K by
open sets of X (usually we write Cov (K) = CovX (K)). Given a map F : X → 2X and α ∈ Cov (X),
a point x ∈ X is said to be an α–fixed point of F if there exists a member U ∈ α such that x ∈ U
and F (x) ∩ U ̸= ∅. Given two maps single valued f, g : X → Y and α ∈ Cov (Y ), f and g are said to
be α–close if for any x ∈ X there exists Ux ∈ α containing both f(x) and g(x). We say f and g are
α-homotopic if there is a homotopy hh : X → Y (0 ≤ t ≤ 1) joining f and g such that for each x ∈ X
the values ht(x) belong to a common Ux ∈ α for all t ∈ [0, 1].

The following results can be found in [1, Lemma 1.2 and 4.7].

Theorem 1.2. Let X be a regular topological space and F : X → 2X an upper semicontinuous map with
closed values. Suppose there exists a cofinal family of coverings θ ⊆ CovX (F (X)) such that F has an
α–fixed point for every α ∈ θ. Then F has a fixed point.

Remark 1.3. labelRemark 1.2. From Theorem 1.2 in proving the existence of fixed points in uniform
spaces for upper semicontinuous compact maps with closed values it suffices [2, pp. 298] to prove the
existence of approximate fixed points (since open covers of a compact set A admit refinements of the form
{U [x] : x ∈ A} where U is a member of the uniformity [9, pp. 199] so such refinements form a cofinal
family of open covers). Note also uniform spaces are regular (in fact completely regular) [4, pp. 431] (see
also [4, pp. 434]). Note in Theorem 1.2 if F is compact valued then the assumption that X is regular can
be removed. For convenience in this paper we will apply Theorem 1.2 only when the space is uniform.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued map p : Γ→ X is called
a Vietoris map (written p : Γ⇒ X) if the following two conditions are satisfied:

(i) for each x ∈ X, the set p−1(x) is acyclic;

(ii) p is a perfect map i.e. p is closed and for every x ∈ X the set p−1(x) is nonempty and compact.

Let D(X,Y ) be the set of all pairs X
p⇐ Γ

q→ Y where p is a Vietoris map and q is continuous. We

will denote every such diagram by (p, q). Given two diagrams (p, q) and (p′, q′), where X
p′⇐ Γ′ q′→ Y , we

write (p, q) ∼ (p′, q′) if there are maps f : Γ→ Γ′ and g : Γ′ → Γ such that q′ ◦f = q, p′ ◦f = p, q ◦g = q′

and p ◦ g = p′. The equivalence class of a diagram (p, q) ∈ D(X,Y ) with respect to ∼ is denoted by

ϕ = {X p⇐ Γ
q→ Y } : X → Y

or ϕ = [(p, q)] and is called a morphism from X to Y . We let M(X,Y ) be the set of all such morphisms.
For any ϕ ∈M(X,Y ) a set ϕ(x) = q p−1 (x) where ϕ = [(p, q)] is called an image of x under a morphism
ϕ.

Consider vector spaces over a field K. Let E be a vector space and f : E → E an endomorphism. Now
let N(f) = {x ∈ E : f (n)(x) = 0 for some n} where f (n) is the nth iterate of f , and let Ẽ = E\N(f).
Since f(N(f)) ⊆ N(f) we have the induced endomorphism f̃ : Ẽ → Ẽ. We call f admissible if dim Ẽ <∞;
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for such f we define the generalized trace Tr(f) of f by putting Tr(f) = tr(f̃) where tr stands for the
ordinary trace.

Let f = {fq} : E → E be an endomorphism of degree zero of a graded vector space E = {Eq}. We call
f a Leray endomorphism if

(i) all fq are admissible and

(ii) almost all Ẽq are trivial.

For such f we define the generalized Lefschetz number Λ(f) by

Λ(f) =
∑
q

(−1)q Tr (fq).

A linear map f : E → E of a vector space E into itself is called weakly nilpotent provided for every
x ∈ E there exists nx such that fnx(x) = 0. Assume that E = {Eq} is a graded vector space and
f = {fq} : E → E is an endomorphism. We say that f is weakly nilpotent iff fq is weakly nilpotent
for every q. It is well known [6, pp 53] that any weakly nilpotent endomorphism f : E → E is a Leray
endomorphism and Λ(f) = 0.

Let H be the C̆ech homology functor with compact carriers and coefficients in the field of rational
numbers K from the category of Hausdorff topological spaces and continuous maps to the category of
graded vector spaces and linear maps of degree zero. Thus H(X) = {Hq(X)} is a graded vector space,
Hq(X) being the q–dimensional C̆ech homology group with compact carriers of X. For a continuous map
f : X → X, H(f) is the induced linear map f⋆ = {f⋆ q} where f⋆ q : Hq(X)→ Hq(X).

With C̆ech homology functor extended to a category of morphisms (see [7, pp. 364]) we have the following
well known result (note the homology functor H extends over this category i.e. for a morphism

ϕ = {X p⇐ Γ
q→ Y } : X → Y

we define the induced map
H (ϕ) = ϕ⋆ : H(X)→ H(Y )

by putting ϕ⋆ = q⋆ ◦ p−1
⋆ ).

Recall the following result [5, 6, pp. 227].

Theorem 1.4. If ϕ : X → Y and ψ : Y → Z are two morphisms (here X, Y and Z are Hausdorff
topological spaces) then

(ψ ◦ ϕ)⋆ = ψ⋆ ◦ ϕ⋆.

Two morphisms ϕ, ψ ∈ M(X,Y ) are homotopic (written ϕ ∼ ψ) provided there is a morphism χ ∈
M(X× [0, 1], Y ) such that χ(x, 0) = ϕ(x), χ(x, 1) = ψ(x) for every x ∈ X (i.e. ϕ = χ ◦ i0 and ψ = χ ◦ i1,
where i0, i1 : X → X × [0, 1] are defined by i0(x) = (x, 0), i1(x) = (x, 1)). Recall the following result [6,
pp. 231]: If ϕ ∼ ψ then ϕ⋆ = ψ⋆.

Let ϕ : X → Y be a multivalued map (note for each x ∈ X we assume ϕ(x) is a nonempty subset of

Y ). A pair (p, q) of single valued continuous maps of the form X
p← Γ

q→ Y is called a selected pair of ϕ
(written (p, q) ⊂ ϕ) if the following two conditions hold:

(i) p is a Vietoris map

(ii) q (p−1(x)) ⊂ ϕ(x) for any x ∈ X.

Definition 1.5. A upper semicontinuous map ϕ : X → Y is said to be strongly admissible [6, 7] (and we
write ϕ ∈ Ads(X,Y )) provided there exists a selected pair (p, q) of ϕ with ϕ(x) = q (p−1(x)) for x ∈ X.
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Definition 1.6. A map ϕ ∈ Ads(X,X) is said to be a Lefschetz map if for each selected pair (p, q) ⊂ ϕ
with ϕ(x) = q (p−1(x)) for x ∈ X the linear map q⋆ p

−1
⋆ : H(X) → H(X) (the existence of p−1

⋆ follows
from the Vietoris Theorem) is a Leray endomorphism.

When we talk about ϕ ∈ Ads it is assumed that we are also considering a specified selected pair (p, q) of
ϕ with ϕ(x) = q (p−1(x)).

Remark 1.7. In fact since we specify the pair (p, q) of ϕ it is enough to say ϕ is a Lefschetz map if
ϕ⋆ = q⋆ p

−1
⋆ : H(X) → H(X) is a Leray endomorphism. However for the examples of ϕ, X known in the

literature [6] the more restrictive condition in Definition 1.6 works. We note [6, pp 227] that ϕ⋆ does not
depend on the choice of diagram from [(p, q)], so in fact we could specify the morphism.

If ϕ : X → X is a Lefschetz map as described above then we define the Lefschetz number (see [6, 7])
Λ (ϕ) (or ΛX (ϕ)) by

Λ (ϕ) = Λ(q⋆ p
−1
⋆ ).

If we do not wish to specify the selected pair (p, q) of ϕ then we would consider the Lefschetz set
Λ (ϕ) = {Λ(q⋆ p−1

⋆ ) : ϕ = q (p−1)}.

Definition 1.8. A Hausdorff topological space X is said to be a Lefschetz space (for the class Ads) provided
every compact ϕ ∈ Ads(X,X) is a Lefschetz map and Λ(ϕ) ̸= 0 implies ϕ has a fixed point.

Definition 1.9. A upper semicontinuous map ϕ : X → Y with closed values is said to be admissible (and
we write ϕ ∈ Ad(X,Y )) provided there exists a selected pair (p, q) of ϕ.

Definition 1.10. A map ϕ ∈ Ad(X,X) is said to be a Lefschetz map if for each selected pair (p, q) ⊂ ϕ
the linear map q⋆ p

−1
⋆ : H(X)→ H(X) (the existence of p−1

⋆ follows from the Vietoris Theorem) is a Leray
endomorphism.

If ϕ : X → X is a Lefschetz map, we define the Lefschetz set Λ (ϕ) (or ΛX (ϕ)) by

Λ (ϕ) =
{
Λ(q⋆ p

−1
⋆ ) : (p, q) ⊂ ϕ

}
.

Definition 1.11. A Hausdorff topological space X is said to be a Lefschetz space (for the class Ad) provided
every compact ϕ ∈ Ad(X,X) is a Lefschetz map and Λ(ϕ) ̸= {0} implies ϕ has a fixed point.

Remark 1.12. Many examples of Lefschetz spaces (for the class Ad or Ads) can be found in [5, 6, 7, 8, 12].

Definition 1.13. A multivalued map F : X → K(Y ) (K(Y ) denotes the class of nonempty compact
subsets of Y ) is in the class Am(X,Y ) if (i). F is continuous, and (ii). for each x ∈ X the set F (x)
consists of one or m acyclic components; here m is a positive integer. We say F is of class A0(X,Y ) if F
is upper semicontinuous and for each x ∈ X the set F (x) is acyclic.

Definition 1.14. A decomposition (F1, ..., Fn) of a multivalued map F : X → 2Y is a sequence of maps

X = X0
F1→ X1

F2→ X2
F3→ .....

Fn−1→ Xn−1
Fn→ Xn = Y,

where Fi ∈ Ami(Xi−1, Xi), F = Fn ◦ .... ◦ F1. One can say that the map F is determined by the
decomposition (F1, ..., Fn). The number n is said to be the length of the decomposition (F1, ..., Fn). We
will denote the class of decompositions by D(X,Y ).

Definition 1.15. An upper semicontinuous map F : X → K(Y ) is permissible provided it admits a selector
G : X → K(Y ) which is determined by a decomposition (G1, ..., Gn) ∈ D(X,Y ). We denote the class of
permissible maps from X into Y by P(X,Y ).
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Let X be a Hausdorff topological space and let a map Φ be determined by (Φ1, ....,Φk) ∈ D(X,X).
Then Φ is said to be a Lefschetz map if the induced homology homomorphism [6, pp 262, 263] (Φ1, ...,Φk)⋆ :
H(X)→ H(X) is a Leray endomorphism.

If Φ : X → X is a Lefschetz map as described above then we define the Lefschetz number (see [6])
Λ (Φ) (or ΛX (Φ)) by

Λ (Φ) = Λ((Φ1, ...,Φk)⋆).

A Hausdorff topological space X is said to be a Lefschetz space (for the class D) provided every compact
Φ : X → K(X) determined by a decomposition (Φ1, ....,Φk) ∈ D(X,X) is a Lefschetz map and Λ(ϕ) ̸= 0
implies Φ has a fixed point.

A map Φ ∈ P(X,X) is said to be a Lefschetz map provided every selector G : X → K(X) of Φ
which is determined by (G1, ..., Gk) ∈ D(X,X) is such that (G1, ..., Gk)⋆ : H(X) → H(X) is a Leray
endomorphism.

If Φ ∈ P(X,X) is a Lefschetz map as described above then we define the Lefschetz set Λ (Φ) (or
ΛX (Φ)) by

Λ (Φ) = {Λ((G1, ..., Gk)⋆) : (G1, ..., Gk) ∈ D(X,X) and (G1, ...., Gk) determines a selection of Φ}.

A Hausdorff topological space X is said to be a Lefschetz space (for the class P) provided every compact
Φ ∈ P(X,X) is a Lefschetz map and Λ(ϕ) ̸= {0} implies Φ has a fixed point.

2. Fixed Point Theory

By a space we mean a Hausdorff topological space. Let X be a space and F : X → 2X .

Definition 2.1. We say X ∈ locGNES (w.r.t. Ad and F ) if there exists a Lefschetz space (for the class
Ad) U , a set V ⊆ X with F (V ) ⊆ V , a single valued continuous map r : U →W where W = F (V ), and a
compact valued map Φ ∈ Ad(W,U) with rΦ = idW .

Theorem 2.2. Let X ∈ locGNES (w.r.t. Ad and F ) and let U , V , W , r and Φ be as described in
Definition 2.1. Assume F ∈ Ad(V, V ) and F |W is a compact map. Then Λ (F |W ) is well defined. Also
Λ (F |W ) ̸= {0} guarantees that F |W has a fixed point (i.e. F has a fixed point in W ).

Proof. Let G = ΦF |W r. We first note that F |W ∈ Ad(W,W ) since for any selected pair (p0, q0) of F |V
then (p0, q0) ⊂ F |W ; here p0, q0 : p−1

0 (W ) → W are given by p0(z) = p0(z), q0(z) = q0(z) for z ∈ p−1
0 (W ).

Next note that G ∈ Ad(U,U) is a compact map.
Let (p, q) be a selected pair for F |W and (p1, q1) be a selected pair of Φ. Now since F |W r ∈ Ad(U,W )

then [6, Section 40] guarantees that there exists a selected pair (p′, q′) of F |W r with

(q′)⋆ (p
′)−1
⋆ = q⋆ p

−1
⋆ r⋆. (2.1)

Also there exists [6, Section 40] a selected pair (p, q) of G with

(q)⋆ (p)
−1
⋆ = (q1)⋆ (p1)

−1
⋆ (q′)⋆ (p

′)−1
⋆ . (2.2)

Now (2.1) and (2.2) imply
(q)⋆ (p)

−1
⋆ = (q1)⋆ (p1)

−1
⋆ q⋆ p

−1
⋆ r⋆, (2.3)

and notice as well since rΦ = idW that

q⋆ p
−1
⋆ r⋆ (q1)⋆ (p1)

−1
⋆ = q⋆ p

−1
⋆ . (2.4)
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Now since U is a Lefschetz space (for the class Ad) then (q)⋆ (p)
−1
⋆ is a Leray endomorphism. Now [5,

page 214, see (1.3) or see the diagram below] (here E′ = U ′ = H(U), E′′ = W ′ = H(W ), u = (q′)⋆ (p
′)−1
⋆ ,

v = (q1)⋆ (p1)
−1
⋆ , f ′ = (q)⋆ (p)

−1
⋆ and f ′′ = q⋆ p

−1
⋆ and note (2.1), (2.3) and (2.4))

f ′ f ′′

E′

E′

E′′

E′′u

u

v

guarantees that q⋆ p
−1
⋆ is a Leray endomorphism and Λ (q⋆ p

−1
⋆ ) = Λ ((q)⋆ (p)

−1
⋆ ). Thus Λ (F |W ) is well

defined.
Next suppose Λ (F |W ) ̸= {0}. Then there exists a selected pair (p, q) as described above with

Λ (q⋆ p
−1
⋆ ) ̸= 0. Let p and q be as described above with Λ ((q)⋆ (p)

−1
⋆ ) = Λ (q⋆ p

−1
⋆ ) ̸= 0. Now since U

is a Lefschetz space (for the class Ad) there exists x ∈ U with x ∈ q (p)−1(x) i.e. x ∈ G(x). Let y = r(x),
so y ∈ rΦF |W (y) i.e. y ∈ rΦ(q) for some q ∈ F |W (y). Note q ∈ W = F (V ). Now since rΦ = idW we
have y ∈ F |W (y).

Remark 2.3. From the proof above we see that the assumption F ∈ Ad(V, V ) in the statement of Theorem
2.2 could be replaced by the assumption F ∈ Ad(W,W ). Note also if F ∈ Ad(X,X) then automatically
F ∈ Ad(V, V ) (and F ∈ Ad(W,W )).

Remark 2.4. From the proof of Theorem 2.2 we see that we can replace the condition that U is a Lefschetz
space with the assumption that the compact map ΦF |W r ∈ Ad(U,U) is a Lefschetz map and Λ(ΦF |W r) ̸=
{0} implies ΦF |W r has a fixed point.

Remark 2.5. One could also replace Ad maps with Ads maps in the above presentation.

Remark 2.6. One could also obtain a result for the class P (or the class D) if some extra technical assump-
tions are assumed. We leave the details to the reader (for ideas here we refer the reader to [10]).

Remark 2.7. One could also obtain a fixed point result (with no reference to Lefschetz maps or sets) for the
class Uκ

c if we assume G ∈ Uκ
c (U,U) (as described in Theorem 2.2) has a fixed point.

Definition 2.8. We say X ∈ locGANES (w.r.t. Ad and F ) if there exists a set V ⊆ X with F (V ) ⊆ V
and for each α ∈ CovW (F (W )), here W = F (V ), there exists a Lefschetz space (for the class Ad) Uα,
a single valued continuous map rα : Uα → W and a compact valued map Φα ∈ Ad(W,Uα) such that
rαΦα : W → 2W and i : W → W are strongly α-close (by this we mean for each x ∈ K there exists
Vx ∈ α with rαΦα(x) ⊆ Vx and x = i(x) ∈ Vx) and (rα)⋆ (q

0
α)⋆ (p

0
α)

−1
⋆ = i⋆ for any selected pair (p0α, q

0
α)

of Φα.

Theorem 2.9. Let X ∈ locGANES (w.r.t. Ad and F ) be a uniform space and let V , W , α, Uα, rα and
Φα be as described in Definition 2.8. Assume F ∈ Ad(W,W ) and F |W is a compact map. Then Λ (F |W )
is well defined. Also Λ (F |W ) ̸= {0} guarantees that F |W has a fixed point (i.e. F has a fixed point in W ).

Proof. Let Gα = Φα F |W rα. Note Gα ∈ Ad(Uα, Uα) is a compact map. Let (p, q) be a selected pair for
F |W and (p0α, q

0
α) be a selected pair of Φα. Now since F |W rα ∈ Ad(Uα,W ) then [6, Section 40] guarantees

that there exists a selected pair (p′α, q
′
α) of F |W rα with

(q′α)⋆ (p
′
α)

−1
⋆ = q⋆ p

−1
⋆ (rα)⋆. (2.5)
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Also there exists [6, Section 40] a selected pair (pα, qα) of Gα with

(qα)⋆ (pα)
−1
⋆ = (q0α)⋆ (p

0
α)

−1
⋆ (q′α)⋆ (p

′
α)

−1
⋆ (2.6)

so (2.5) and (2.6) imply
(qα)⋆ (pα)

−1
⋆ = (q0α)⋆ (p

0
α)

−1
⋆ q⋆ p

−1
⋆ (rα)⋆. (2.7)

Notice as well by assumption (see Definition 2.8) that

q⋆ p
−1
⋆ (rα)⋆ (q

0
α)⋆ (p

0
α)

−1
⋆ = q⋆ p

−1
⋆ . (2.8)

Now since Uα is a Lefschetz space (for the class Ad) then (qα)⋆ (pα)
−1
⋆ is a Leray endomorphism. Now

[5, page 214, see (1.3)] (here E′ = U ′
α, E

′′ = W ′, u = (q′α)⋆ (p
′
α)

−1
⋆ , v = (q0α)⋆ (p

0
α)

−1
⋆ , f ′ = (qα)⋆ (pα)

−1
⋆

and f ′′ = q⋆ p
−1
⋆ and note (2.5), (2.7) and (2.8)) guarantees that q⋆ p

−1
⋆ is a Leray endomorphism and

Λ (q⋆ p
−1
⋆ ) = Λ ((qα)⋆ (pα)

−1
⋆ ). Thus Λ (F |W ) is well defined.

Next suppose Λ (F |W ) ̸= {0}. Then there exists a selected pair (p, q) as described above with
Λ (q⋆ p

−1
⋆ ) ̸= 0. Let pα and qα be as described above with Λ ((qα)⋆ (pα)

−1
⋆ ) = Λ (q⋆ p

−1
⋆ ) ̸= 0. Now

since Uα is a Lefschetz space (for the class Ad) there exists x ∈ Uα with x ∈ qα (pα)−1(x) i.e. x ∈ Gα(x).
Let y = rα(x), so y ∈ rαΦα F |W (y) i.e. y ∈ rαΦα (q) for some q ∈ F |W (y). Note q ∈ W . Now since
rαΦα :W → 2W and i :W →W are strongly α-close there exists V0 ∈ α with

rαΦα(q) ⊆ V0 and q ∈ V0.

Thus y ∈ V0 since y ∈ rαΦα(q) and also note q ∈ F |W (y) and q ∈ V0. Thus

y ∈ V0 and F |W (y) ∩ V0 ̸= ∅.

As a result F |W has an α-fixed point (for α ∈ CovW (F (W ))) so Theorem 1.2 guarantees that F |W has a
fixed point.

Remark 2.10. In the proof of Theorem 2.9 the condition (rα)⋆ (q
0
α)⋆ (p

0
α)

−1
⋆ = i⋆ for any selected pair

(p0α, q
0
α) of Φα in Definition 2.8 was only used to establish (2.8). Suppose for example rαΦα :W → W (is

single valued) and i : W → W are α-homotopic. Then [6, pp. 202] guarantees that (rαΦα)⋆ = i⋆ and so
for any selected pair (p0α, q

0
α) of Φα there exists a selected pair (p2α, q

2
α) of rαΦα with i⋆ = (rαΦα)⋆ =

(q2α)⋆ (p
2
α)

−1
⋆ = (rα)⋆ (q

0
α)⋆ (p

0
α)

−1
⋆ ). Another example follows from [6, pp. 202] if rαΦα : W → 2W (is

acyclic) and i :W →W are α-homotopic (homotopic in the sense of [6, pp. 202]).

Remark 2.11. From the proof above we see that the assumption F ∈ Ad(W,W ) in the statement of Theorem
2.9 could be replaced by the assumption F ∈ Ad(V, V ). Note also if F ∈ Ad(X,X) then automatically
F ∈ Ad(V, V ) (and F ∈ Ad(W,W )). Of course X being a uniform space could be replaced by W being a
uniform space in the statement of Theorem 2.9.

Remark 2.12. From the proof in Theorem 2.9 we see that we can replace the condition that Uα is a Lefschetz
space for each α ∈ CovW (F (W )) with the assumption that for each α ∈ CovW (F (W )) the compact map
Φα F |W rα ∈ Ad(Uα, Uα) is a Lefschetz map and Λ(Φα F |W rα) ̸= {0} implies Φα F |W rα has a fixed point.

Remark 2.13. One could also replace Ad maps with Ads maps in the above presentation.

Remark 2.14. One could also obtain a result for the class P (or the class D) if some extra technical
assumptions are assumed. We leave the details to the reader (for ideas here we refer the reader to [10]).

Remark 2.15. One could also obtain a fixed point result (with no reference to Lefschetz maps or sets)
for the class Uκ

c (assuming as well that F |W is upper semicontinuous with closed values) if we assume
Gα ∈ Uκ

c (Uα, Uα) (as described in Theorem 2.9) has a fixed point.

Now we discuss a more general situation motivated in part by [11]. Again X is a space and F : X → 2X .
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Definition 2.16. We say X ∈ locGMNES (w.r.t. Ad and F ) if there exists a Lefschetz space (for the
class Ad) U , a set V ⊆ X with F (V ) ⊆ V and F |W ∈ Ad(W,W ) (here W = F (V )), a compact map
Φ ∈ Ad(U,W ), a compact valued map Ψ ∈ Ad(W,U) with ΦΨ (x) ⊆ F |W (x) for x ∈W , and such that if
(p, q) is a selected pair of F |W then there exists a selected pair (p1, q1) of Φ and a selected pair (p′, q′) of
Ψ with (q1)⋆ (p1)

−1
⋆ (q′)⋆ (p

′)−1
⋆ = q⋆ p

−1
⋆ .

Theorem 2.17. Let X ∈ locGMNES (w.r.t. Ad and F ) and let U , V , W , Φ and Ψ be as described in
Definition 2.16. Then Λ (F |W ) is well defined. Also Λ (F |W ) ̸= {0} guarantees that F |W has a fixed point
(i.e. F has a fixed point in W ).

Proof. Let G = ΨΦ. Note G ∈ Ad(U,U) is a compact map (note the image of a compact set under Ψ
is compact). Let (p, q) be a selected pair of F |W . Then from Definition 2.16 there exists a selected pair
(p1, q1) of Φ and a selected pair (p′, q′) of Ψ with

(q1)⋆ (p1)
−1
⋆ (q′)⋆ (p

′)−1
⋆ = q⋆ p

−1
⋆ . (2.9)

There exists [6, Section 40] a selected pair (p, q) of G with

(q)⋆ (p)
−1
⋆ = (q′)⋆ (p

′)−1
⋆ (q1)⋆ (p1)

−1
⋆ (2.10)

Now U is a Lefschetz space (for the class Ad) so (q)⋆ (p)
−1
⋆ is a Leray endomorphism. Now [5, page 214, see

(1.3)] (here E′ = U ′, E′′ = W ′, v = (q′)⋆ (p
′)−1
⋆ , u = (q1)⋆ (p1)

−1
⋆ , f ′ = (q)⋆ (p)

−1
⋆ and f ′′ = q⋆ p

−1
⋆ and note

(2.9) and (2.10)) guarantees that q⋆ p
−1
⋆ is a Leray endomorphism and Λ (q⋆ p

−1
⋆ ) = Λ ((q)⋆ (p)

−1
⋆ ). Thus

Λ (F |W ) is well defined.
Next suppose Λ (F |W ) ̸= {0}. Then there exists a selected pair (p, q) as described above with

Λ (q⋆ p
−1
⋆ ) ̸= 0. Let p and q be as described above with Λ ((q)⋆ (p)

−1
⋆ ) = Λ (q⋆ p

−1
⋆ ) ̸= 0. Now since U

is a Lefschetz space (for the class Ad) there exists x ∈ U with x ∈ q (p)−1(x) i.e. x ∈ G(x) = ΨΦ(x).
Then there exists a y ∈ Φ(x) such that x ∈ Ψ(y). As a result y ∈ Φ(x) ∈ ΦΨ(y) ⊆ F |W (y).

Remark 2.18. From the proof above we see that the assumption F ∈ Ad(W,W ) in Definition 2.16 could be
replaced by the assumption F ∈ Ad(V, V ). Note also if F ∈ Ad(X,X) then automatically F ∈ Ad(V, V )
(and F ∈ Ad(W,W )).

Remark 2.19. One could also replace Ad maps with Ads maps in the above presentation. One could also
obtain a result for the class P (or the class D) if some extra technical assumptions are assumed. One could
also obtain a fixed point result (with no reference to Lefschetz maps or sets) for the class Uκ

c (assuming
as well that Ψ is upper semicontinuous with compact values) if we assume G ∈ Uκ

c (U,U) (as described in
Theorem 2.17) has a fixed point.

Remark 2.20. From the proof above we see that we can replace the condition that U is a Lefschetz space
with the assumption that the compact map ΨΦ ∈ Ad(U,U) is a Lefschetz map and Λ(ΨΦ) ̸= {0} implies
ΨΦ has a fixed point.

Definition 2.21. We say X ∈ locGMANES (w.r.t. Ad and F ) if there exists a set V ⊆ X with F (V ) ⊆ V
and F |W ∈ Ad(W,W ) (here W = F (V )), and for each α ∈ CovW (F (W )) there exists a Lefschetz space (for
the class Ad) Uα, a compact map Φα ∈ Ad(Uα,W ), a compact valued map Ψα ∈ Ad(W,Uα) such that for
each x ∈ Uα and y ∈ Φα (x) with x ∈ Ψα (y) there exists Ux,y ∈ α with y ∈ Ux,y and F |W (y)∩Ux,y ̸= ∅
and such that if (p, q) is a selected pair of F |W then there exists a selected pair (p1,α, q1,α) of Φα and a
selected pair (p′α, q

′
α) of Ψα with (q1,α)⋆ (p1,α)

−1
⋆ (q′α)⋆ (p

′
α)

−1
⋆ = q⋆ p

−1
⋆ .

Theorem 2.22. Let X ∈ locGMANES (w.r.t. Ad and F ) be a uniform space and let V , W , α, Uα, Ψα

and Φα be as described in Definition 2.4. Then Λ (F |W ) is well defined. Also Λ (F |W ) ̸= {0} guarantees
that F |W has a fixed point (i.e. F has a fixed point in W ).
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Proof. Let Gα = ΨαΦα. Note Gα ∈ Ad(Uα, Uα) is a compact map. Let (p, q) be a selected pair of F |W .
Then from Definition 2.21 there exists a selected pair (p1,α, q1,α) of Φα and a selected pair (p′α, q

′
α) of Ψα

with
(q1,α)⋆ (p1,α)

−1
⋆ (q′α)⋆ (p

′
α)

−1
⋆ = q⋆ p

−1
⋆ . (2.11)

There exists [6, Section 40] a selected pair (pα, qα) of Gα with

(qα)⋆ (pα)
−1
⋆ = (q′α)⋆ (p

′
α)

−1
⋆ (q1,α)⋆ (p1,α)

−1
⋆ (2.12)

Now Uα is a Lefschetz space (for the class Ad) so (qα)⋆ (pα)
−1
⋆ is a Leray endomorphism. Now [5, page

214, see (1.3)] (here E′ = U ′
α, E

′′ = W ′, v = (q′α)⋆ (p
′
α)

−1
⋆ , u = (q1,α)⋆ (p1,α)

−1
⋆ , f ′ = (qα)⋆ (pα)

−1
⋆ and

f ′′ = q⋆ p
−1
⋆ and note (2.11) and (2.12)) guarantees that q⋆ p

−1
⋆ is a Leray endomorphism and Λ (q⋆ p

−1
⋆ ) =

Λ ((qα)⋆ (pα)
−1
⋆ ). Thus Λ (F |W ) is well defined.

Next suppose Λ (F |W ) ̸= {0}. Then there exists a selected pair (p, q) as described above with
Λ (q⋆ p

−1
⋆ ) ̸= 0. Let pα and qα be as described above with Λ ((qα)⋆ (pα)

−1
⋆ ) = Λ (q⋆ p

−1
⋆ ) ̸= 0. Now since

Uα is a Lefschetz space (for the class Ad) there exists x ∈ Uα with x ∈ qα (pα)−1(x) i.e. x ∈ Gα(x). As a
result there exists a y ∈ Φα(x) with x ∈ Ψα (y). Then (from Definition 2.21) there exists V ∈ α with

y ∈ V and F |W (y) ∩ V ̸= ∅.

As a result F |W has an α-fixed point (for α ∈ CovW (F (W ))) so Theorem 1.2 guarantees that F |W has a
fixed point.

Remark 2.23. From the proof above we see that the assumption F ∈ Ad(W,W ) in Definition 2.21 could be
replaced by the assumption F ∈ Ad(V, V ). Note also if F ∈ Ad(X,X) then automatically F ∈ Ad(V, V )
(and F ∈ Ad(W,W )). Of course X being a uniform space could be replaced by W being a uniform space in
the statement of Theorem 2.22.

Remark 2.24. One could also replace Ad maps with Ads maps in the above presentation. One could also
obtain a result for the class P (or the class D) if some extra technical assumptions are assumed. One could
also obtain a fixed point result (with no reference to Lefschetz maps or sets) for the class Uκ

c (assuming as
well that Ψα is upper semicontinuous with compact values) if we assume Gα ∈ Uκ

c (Uα, Uα) (as described in
Theorem 2.22) has a fixed point.

Remark 2.25. From the proof above we see that we can replace the condition that Uα is a Lefschetz space
for each α ∈ CovW (F (W )) with the assumption that for each α ∈ CovW (F (W )) the compact map
ΨαΦα ∈ Ad(Uα, Uα) is a Lefschetz map and Λ(ΨαΦα) ̸= {0} implies ΨαΦα has a fixed point.

Definition 2.26. Let X be a space. A map F ∈ Ad(X,X) is said to be a locally general compact absorbing
contraction (written F ∈ locGCAC(X,X) or F ∈ locGCAC(X)) if

(i) X ∈ locGNES (w.r.t. Ad and F ), and let U , V , W , r and Φ be as described in Definition 2.1, and
F |W is a compact map;

(ii) for any selected pair (p, q) of F , q′′⋆ (p
′′)−1

⋆ : H(X,W )→ H(X,W ) is a weakly nilpotent endomorphism
(here p′′, q′′ : (Γ, p−1(W ))→ (X,W ) are given by p′′(u) = p(u) and q′′(u) = q(u)).

Remark 2.27. For a discussion on compact absorbing contractions see [10] and the books [6, Section 42] and
[8, Section 15.5].

Our next result guarantees that Λ (F ) is well defined.

Theorem 2.28. Let X be a space and F ∈ locGCAC(X,X) (and let U , V , W , r and Φ be as described
in Definition 2.1). Then Λ (F ) is well defined and if Λ (F ) ̸= {0} then F has a fixed point.
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Proof. Let (p, q) be a selected pair for F so in particular q p−1(W ) ⊆ F (W ). Consider F |W and let
q′, p′ : p−1(W ) → W be given by p′(u) = p(u) and q′(u) = q(u) (and note (p′, q′) is a selected pair
for F |W ). Now since X ∈ locGNES (w.r.t. Ad and F ) then as in Theorem 2.2, q′⋆ (p

′)−1
⋆ is a Leray

endomorphism. Now (ii) and [6, Property 11.8, pp 53] guarantees that q′′⋆ (p
′′)−1

⋆ is a Leray endomorphism
and Λ (q′′⋆ (p

′′)−1
⋆ ) = 0. Also [6, Property 11.5, pp 52] guarantees that q⋆ p

−1
⋆ is a Leray endomorphism (with

Λ (q⋆ p
−1
⋆ ) = Λ (q′⋆ (p

′)−1
⋆ )) so Λ (F ) is well defined.

Next suppose Λ (F ) ̸= {0}. Then there exists a selected pair (p, q) of F with Λ (q⋆ p
−1
⋆ ) ̸= 0. Let (p′, q′)

be as described above with Λ (q⋆ p
−1
⋆ ) = Λ (q′⋆ (p

′)−1
⋆ ). Then Λ (q′⋆ (p

′)−1
⋆ ) ̸= 0 so since X ∈ locGNES (w.r.t.

Ad and F ) there exists x ∈W with x ∈ F |W (x) i.e. x ∈ F x.

Definition 2.29. Let X be a space. A map F ∈ Ad(X,X) is said to be a locally general approximative com-
pact absorbing contraction (written F ∈ locGACAC(X,X) or F ∈ locGACAC(X)) if X ∈ locGANES
(w.r.t. Ad and F ), and let V , W , α, Uα, rα and Φα be as described in Definition 2.8, and F |W is a compact
map and (ii) in Definition 2.26 holds.

The same reasoning as in Theorem 2.28 (except Theorem 2.9 replaces Theorem 2.2) establishes the next
result.

Theorem 2.30. Let X be a uniform space and F ∈ locGACAC(X,X) (and let V , W , α, Uα, rα and Φα

be as described in Definition 2.8). Then Λ (F ) is well defined and if Λ (F ) ̸= {0} then F has a fixed point.

Definition 2.31. Let X be a space. A map F ∈ Ad(X,X) is said to be a locally general absorbing
contraction (written F ∈ locGAC(X,X) or F ∈ locGAC(X)) if X ∈ locGMNES (w.r.t. Ad and F ), and
let U , V , W , Φ and Ψ be as described in Definition 2.16, and (ii) in Definition 2.26 holds.

The same reasoning as in Theorem 2.28 (except Theorem2.17 replaces Theorem2.2) establishes the next
result.

Theorem 2.32. Let X be a space and F ∈ locGAC(X,X) (and let U , V , W , Φ and Ψ be as described in
Definition 2.16). Then Λ (F ) is well defined and if Λ (F ) ̸= {0} then F has a fixed point.

Definition 2.33. Let X be a space. A map F ∈ Ad(X,X) is said to be a locally general approximative
absorbing contraction (written F ∈ locGAAC(X,X) or F ∈ locGAAC(X)) if X ∈ locGMANES (w.r.t.
Ad and F ), and let V , W , α, Uα, Φα and Ψα be as described in Definition 2.21, and (ii) in Definition 2.26
holds.

The same reasoning as in Theorem 2.28 (except Theorem 2.22 replaces Theorem 2.2) establishes the
next result.

Theorem 2.34. Let X be a uniform space and F ∈ locGAAC(X,X) (and let V , W , α, Uα, Φα and Ψα

be as described in Definition 2.21). Then Λ (F ) is well defined and if Λ (F ) ̸= {0} then F has a fixed
point.
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