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Abstract
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1. Introduction and preliminaries

Throughout the paper we denote the set of n-dimensional row vector on the real number field by Rn.
Also,

Rn+ = {x = (x1, . . . , xn) ∈ Rn : xi > 0, i = 1, . . . , n}.

In particular, R1 and R1
+ denoted by R and R+ respectively.

For x, y > 0 and p ∈ R, the Lehmer mean values Lp(x, y) were introduced by Lehmer [13] as follows:

Lp(x, y) =
xp + yp

xp−1 + yp−1
.

Many mean values are special cases of the Lehmer mean values, for example

A(x, y) =
x+ y

2
= L1(x, y)
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is the arithmetic mean,
G(x, y) =

√
xy = L 1

2
(x, y)

is the geometric mean,

H(x, y) =
2xy

x+ y
= L0(x, y)

is the harmonic mean,

H̃(x, y) =
x2 + y2

x+ y
= L2(x, y)

is the anti-harmonic mean.
Investigation of the elementary properties and inequalities for Lp(x, y) has attracted the attention of a

considerable number of mathematicians (see [1–3, 10–12, 14, 21, 23, 26, 28–31]).
In 2009, Gu and Shi [11] discussed the Schur convexity and Schur geometric convexity of the Lehmer

means Lp(x, y) with respect to (x, y) ∈ R2
+ for fixed p. Subsequently, Xia and Chu [36] researched the Schur

harmonic convexity of the Lehmer means Lp(x, y) with respect to (x, y) ∈ R2
+ for fixed p.

Let x = (x1, x2, . . . , xn) ∈ Rn+. For Schur-convexity and Schur-geometric convexity of n variables Lehmer
mean,

Lp(x) = Lp(x1, x2, . . . , xn) =

∑n
i=1 x

p
i∑n

i=1 x
p−1
i

,

Gu and Shi [11] obtained the following results.

Theorem 1.1. Let x = (x1, x2, . . . , xn) ∈ Rn+ and p ∈ R. If 1 ≤ p ≤ 2, then Lp(x) is Schur-convex with
x ∈ Rn+, if 0 ≤ p ≤ 1, then Lp(x) is Schur-concave with x ∈ Rn+.

Furthermore, Gu and Shi [11] proposed the following conjecture.

Conjecture 1.2. If p ≥ 2, then Lp(x) is Schur-convex with x ∈ Rn+, if p ≤ 0, then Lp(x) is Schur-concave
with x ∈ Rn+.

We first point out that this conjecture does not hold.
In fact, for n = 3, p = 3, by computing, we have

∆ := (x1 − x2)
(
∂L3(x)

∂x1
− ∂L3(x)

∂x2

)
=

(x1 − x2)2λ(x)

(x21 + x22 + x23)
2
,

where
λ(x) = λ(x1, x2, x3) = 3(x1 + x2)(x

2
1 + x22 + x23)− 2(x31 + x32 + x33),

if x = (1, 3, 7), then λ(x) = −34, so that ∆ < 0, but by taking y = (1, 2, 3), then λ(y) = 54, so that
∆ > 0. According to Lemma 2.4 in second section, we assert that the Schur-convexity of L3(x1, x2, x3) is
not determined on the whole R3

+.
It can easily be shown that L−2(x1, x2, x3) = 1

L3(
1
x1
, 1
x2
, 1
x3

)
, since the Schur-convexity of L3(x1, x2, x3) is

not determined on the whole R3
+, L−2(x1, x2, x3) so does.

In this paper, we study Schur-convexity, Schur-geometric convexity and Schur-harmonic convexity of
Lp(x) on certain subsets of Rn+. As consequences, some interesting inequalities are obtained.

Our main results are as follows:

Theorem 1.3. Let x = (x1, x2, . . . , xn) ∈ Rn+, n ≥ 2 and p ∈ R.

(I) If p ≥ 2, then for any a > 0, Lp(x) is Schur-convex with x ∈
[
(p−2)a
p , a

]n
.

(II) If p < 0, then for any a > 0, Lp(x) is Schur-concave with x ∈
[
a, (p−2)a

p

]n
.
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Theorem 1.4. Let x = (x1, x2, . . . , xn) ∈ Rn+, n ≥ 2 and p ∈ R.

(I) If p < 1
2 and p 6= 0, then for any a > 0, Lp(x) is Schur-geometrically concave with x ∈

[
a, (p−1

p )2a
]n

.

(II) If p > 1
2 , then for any a > 0, Lp(x) is Schur-geometrically convex with x ∈

[
(p−1
p )2a, a

]n
.

(III) If p = 0, then Lp(x) is Schur-geometrically convex with x ∈ Rn+.

Theorem 1.5. Let x = (x1, x2, . . . , xn) ∈ Rn+, n ≥ 2 and p ∈ R.

(I) If 0 ≤ p ≤ 1, then Lp(x) is Schur-harmonically convex with x ∈ Rn+, if −1 ≤ p ≤ 0, then Lp(x) is
Schur-harmonically concave with x ∈ Rn+.

(II) If p > 1, then for any a > 0, Lp(x) is Schur-harmonically convex with x ∈
[
(p−1)a
p+1 , a

]n
.

(III) If p < −1, then for any a > 0, Lp(x) is Schur-harmonically concave with x ∈
[
a, (p−1)a

p+1

]n
.

2. Definitions and lemmas

We need the following definitions and lemmas.

Definition 2.1 ([17, 27]). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn.

(i) x is said to be majorized by y (in symbols x ≺ y), if
∑k

i=1 x[i] ≤
∑k

i=1 y[i], for k = 1, 2, . . . , n− 1 and∑n
i=1 xi =

∑n
i=1 yi, where x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] are rearrangements of x and y in a

descending order.
(ii) Ω ⊂ Rn is called a convex set, if (αx1 + βy1, αx2 + βy2, . . . , αxn + βyn) ∈ Ω, for any x and y ∈ Ω,

where α and β ∈ [0, 1] with α+ β = 1.
(iii) Let Ω ⊂ Rn, ϕ: Ω → R is said to be a Schur-convex function on Ω, if x ≺ y on Ω implies ϕ (x) ≤

ϕ (y) . ϕ is said to be a Schur-concave function on Ω, if and only if −ϕ is Schur-convex function.

Definition 2.2 ([20, 44]). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn+.

(i) Ω ⊂ Rn+ is called a geometrically convex set, if (xα1 y
β
1 , x

α
2 y

β
2 , . . . , x

α
ny

β
n) ∈ Ω, for any x and y ∈ Ω,

where α and β ∈ [0, 1] with α+ β = 1.
(ii) Let Ω ⊂ Rn+, ϕ: Ω→ R+ is said to be a Schur-geometrically convex function on Ω, if

(lnx1, lnx2, . . . , lnxn) ≺ (ln y1, ln y2, . . . , ln yn)

on Ω implies ϕ (x) ≤ ϕ (y) . ϕ is said to be a Schur-geometrically concave function on Ω, if and only
if −ϕ is Schur-geometrically convex function.

Definition 2.3 ([4, 18]). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn+.

(i) A set Ω ⊂ Rn+ is said to be a harmonically convex set, if(
x1y1

λx1 + (1− λ)y1
,

x2y2
λx2 + (1− λ)y2

, . . . ,
xnyn

λxn + (1− λ)yn

)
∈ Ω,

for every x,y ∈ Ω and λ ∈ [0, 1].

(ii) A function ϕ : Ω→ R+ is said to be a Schur-harmonically convex function on Ω, if
(

1
x1
, 1
x2
, . . . , 1

xn

)
≺(

1
y1
, 1
y2
, . . . , 1

yn

)
implies ϕ(x) ≤ ϕ(y). A function ϕ is said to be a Schur-harmonically concave function

on Ω, if and only if −ϕ is a Schur-harmonically convex function.

Lemma 2.4 ([17, 27]). Let Ω ⊂ Rn is convex set, and has a nonempty interior set Ω0. Let ϕ : Ω → R
be continuous on Ω and differentiable in Ω0. Then ϕ is the Schur − convex (or Schur − concave, resp.)
function, if and only if it is symmetric on Ω and if

(x1 − x2)
(
∂ϕ(x)

∂x1
− ∂ϕ(x)

∂x2

)
≥ 0, (or ≤ 0 resp.), (2.1)

holds for any x = (x1, x2, · · · , xn) ∈ Ω0.
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Remark 2.5 ([9, 19]). It is easy to see that the condition (2.1) is equivalent to

∂ϕ(x)

∂xi
≤ ∂ϕ(x)

∂xi+1
, (or ≥ resp.), i = 1, . . . , n− 1, for all x ∈ D ∩ Ω,

where D = {x : x1 ≤ x2 ≤ · · · ≤ xn}.
The condition (2.1) is also equivalent to

∂ϕ(x)

∂xi
≥ ∂ϕ(x)

∂xi+1
, (or ≤ resp.), i = 1, . . . , n− 1, for all x ∈ E ∩ Ω,

where E = {x : x1 ≥ x2 ≥ · · · ≥ xn}.

Lemma 2.6 ([20, 44]). Let Ω ⊂ Rn+ be a symmetric geometrically convex set with a nonempty interior Ω0.
Let ϕ : Ω→ R+ be continuous on Ω and differentiable on Ω0. Then ϕ is a Schur-geometrically convex ( or
Schur-geometrically concave, resp.) function, if and only if ϕ is symmetric on Ω and

(x1 − x2)
(
x1
∂ϕ(x)

∂x1
− x2

∂ϕ(x)

∂x2

)
≥ 0, (or ≤ 0 resp.), (2.2)

holds for any x = (x1, x2, · · · , xn) ∈ Ω0.

Remark 2.7. It is easy to see that the condition (2.2) is equivalent to

xi
∂ϕ(x)

∂xi
≤ xi+1

∂ϕ(x)

∂xi+1
, (or ≥ resp.), i = 1, . . . , n− 1, for all x ∈ D ∩ Ω,

where D = {x : x1 ≤ x2 ≤ · · · ≤ xn}.
The condition (2.2) is also equivalent to

xi
∂ϕ(x)

∂xi
≥ xi+1

∂ϕ(x)

∂xi+1
, (or ≤ resp.), i = 1, . . . , n− 1, for all x ∈ E ∩ Ω,

where E = {x : x1 ≥ x2 ≥ · · · ≥ xn}.

Lemma 2.8 ([4, 18]). Let Ω ⊂ Rn+ be a symmetric harmonically convex set with a nonempty interior Ω0.
Let ϕ : Ω→ R+ be continuous on Ω and differentiable on Ω0. Then ϕ is a Schur- harmonically convex (or
Schur-harmonically concave, resp.) function, if and only if ϕ is symmetric on Ω and

(x1 − x2)
(
x21
∂ϕ(x)

∂x1
− x22

∂ϕ(x)

∂x2

)
≥ 0, (or ≤ 0 resp.), (2.3)

holds for any x = (x1, x2, · · · , xn) ∈ Ω0.

Remark 2.9. It is easy to see that the condition (2.3) is equivalent to

x2i
∂ϕ(x)

∂xi
≤ x2i+1

∂ϕ(x)

∂xi+1
, (or ≥ resp.), i = 1, . . . , n− 1, for all x ∈ D ∩ Ω,

where D = {x : x1 ≤ x2 ≤ · · · ≤ xn}.
The condition (2.3) is also equivalent to

x2i
∂ϕ(x)

∂xi
≥ x2i+1

∂ϕ(x)

∂xi+1
, (or ≤ resp.), i = 1, . . . , n− 1, for all x ∈ E ∩ Ω,

where E = {x : x1 ≥ x2 ≥ · · · ≥ xn}.
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Lemma 2.10. Let x1 ≥ x2 ≥ · · · ≥ xn > 0, m ∈ R. Then

x1 ≥
xm1 + xm2 + · · ·+ xmn

xm−1
1 + xm−1

2 + · · ·+ xm−1
n

≥ xn.

Proof.

x1(x
m−1
1 + xm−1

2 + · · ·+ xm−1
n )− (xm1 + xm2 + · · ·+ xmn )

= xm−1
1 (x1 − x1) + xm−1

2 (x1 − x2) + · · ·+ xm−1
n (x1 − xn) ≥ 0,

xn(xm−1
1 + xm−1

2 + · · ·+ xm−1
n )− (xm1 + xm2 + · · ·+ xmn )

= xm−1
1 (xn − x1) + xm−1

2 (xn − x2) + · · ·+ xm−1
n (xn − xn) ≤ 0.

We have thus proved the Lemma 2.10.

Lemma 2.11 ([17]). Let x = (x1, x2, · · · , xn) ∈ Rn+ and An(x) = 1
n

∑n
i=1 xi. Then

u =

An(x), An(x), · · · , An(x)︸ ︷︷ ︸
n

 ≺ (x1, x2, · · · , xn) = x.

3. Proofs of theorems

3.1. Proof of Theorem 1.3

Proof. Straightforward computation gives

∂Lp(x)

∂xi
=
pxp−1

i

∑n
j=1 x

p−1
j − (p− 1)xp−2

i

∑n
j=1 x

p
j

(
∑n

j=1 x
p−1
j )2

, i = 1, 2, . . . , n, (3.1)

and then
∂Lp(x)

∂xi
− ∂Lp(x)

∂xi+1
=

fi(x)

(
∑n

i=1 x
p−1
i )2

, i = 1, 2, . . . , n− 1,

where

fi(x) = p(xp−1
i − xp−1

i+1 )
n∑
j=1

xp−1
j − (p− 1)(xp−2

i − xp−2
i+1 )

n∑
j=1

xpj .

It is clear that Lp(x) is symmetric with x ∈ Rn+. Without loss of generality, we may assume that
x1 ≥ x2 ≥ · · · ≥ xn > 0.

For any a > 0, according to the integral mean value theorem, there is a ξ which lies between xi and
xi+1, such that

p(xp−1
i − xp−1

i+1 )− a(p− 1)(xp−2
i − xp−2

i+1 ) = (p− 1)p

∫ xi

xi+1

xp−2dx− a(p− 2)(p− 1)

∫ xi

xi+1

xp−3dx

= (p− 1)

∫ xi

xi+1

[pxp−2 − a(p− 2)xp−3]dx (3.2)

= (p− 1)[pξp−2 − a(p− 2)ξp−3](xi − xi+1)

= (p− 1)pξp−3

(
ξ − (p− 2)a

p

)
(xi − xi+1).
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Proof of (I): When p ≥ 2 and a ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ (p−2)a
p > 0, from (3.2), we have

p(xp−1
i − xp−1

i+1 )− a(p− 1)(xp−2
i − xp−2

i+1 ) ≥ 0,

that is,
p(xp−1

i − xp−1
i+1 )

(p− 1)(xp−2
i − xp−2

i+1 )
≥ a,

and then from Lemma 2.10, it follows that

p(xp−1
i − xp−1

i+1 )

(p− 1)(xp−2
i − xp−2

i+1 )
≥ x1 ≥

∑n
j=1 x

p
j∑n

j=1 x
p−1
j

,

namely, fi(x) ≥ 0, and then
∂Lp(x)
∂xi

≥ ∂Lp(x)
∂xi+1

. By Lemma 2.4 and Remark 2.5, it follows that Lp(x) is

Schur-convex with x ∈
[
p−2
p a, a

]n
.

Proof of (II): When p < 0 and (p−2)a
p ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ a > 0, from (3.2), we have

p(xp−1
i − xp−1

i+1 )− a(p− 1)(xp−2
i − xp−2

i+1 ) ≤ 0,

that is,
p(xp−1

i − xp−1
i+1 )

(p− 1)(xp−2
i − xp−2

i+1 )
≤ a,

and then from Lemma 2.10, it follows that

p(xp−1
i − xp−1

i+1 )

(p− 1)(xp−2
i − xp−2

i+1 )
≤ xn ≤

∑n
j=1 x

p
j∑n

j=1 x
p−1
j

,

namely, fi(x) ≤ 0, and then
∂Lp(x)
∂xi

≤ ∂Lp(x)
∂xi+1

. By Lemma 2.4 and Remark 2.5, it follows that Lp(x) is

Schur-concave with x ∈
[
a, p−2

p a
]n

.

The proof of Theorem 1.3 is complete.

3.2. Proof of Theorem 1.4

Proof. From (3.1), we have

xi
∂Lp(x)

∂xi
− xi+1

∂Lp(x)

∂xi+1
=

gi(x)

(
∑n

i=1 x
p−1
i )2

, i = 1, 2, . . . , n− 1,

where

gi(x) = p(xpi − x
p
i+1)

n∑
j=1

xp−1
j − (p− 1)(xp−1

i − xp−1
i+1 )

n∑
j=1

xpj .

It is clear that Lp(x) is symmetric with x ∈ Rn+. Without loss of generality, we may assume that
x1 ≥ x2 ≥ · · · ≥ xn > 0.

For any a > 0, according to the integral mean value theorem, there is a ξ which lies between xi and
xi+1, such that

p(xpi − x
p
i+1)− a(p− 1)(xp−1

i − xp−1
i+1 ) = p2

∫ xi

xi+1

xp−1dx− a(p− 1)2
∫ xi

xi+1

xp−2dx

=

∫ xi

xi+1

[p2xp−1 − a(p− 1)2xp−2]dx (3.3)
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= [p2ξp−1 − a(p− 1)2ξp−2](xi − xi+1)

= p2ξp−2

[
ξ − (

p− 1

p
)2a

]
(xi − xi+1).

Proof of (I): When p ≥ 1
2 and a ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ (p−1

p )2a > 0, from (3.3) we have

p(xpi − x
p
i+1)− a(p− 1)(xp−1

i − xp−1
i+1 ) ≥ 0,

that is,
p(xpi − x

p
i+1)

(p− 1)(xp−1
i − xp−1

i+1 )
≥ a,

and then from Lemma 2.10, it follows that

p(xpi − x
p
i+1)

(p− 1)(xp−1
i − xp−1

i+1 )
≥ x1 ≥

∑n
j=1 x

p
j∑n

j=1 x
p−1
j

,

namely, gi(x) ≥ 0, and then xi
∂Lp(x)
∂xi

≥ xi+1
∂Lp(x)
∂xi+1

. By Lemma 2.6 and Remark 2.7, it follows that Lp(x) is

Schur-geometrically convex with x ∈
[
(p−1
p )2a, a

]n
.

Proof of (II): When p < 1
2 , p 6= 0 and (p−1

p )2a ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ a > 0, from (3.3), we have

p(xpi − x
p
i+1)− a(p− 1)(xp−1

i − xp−1
i+1 ) ≤ 0,

that is,
p(xpi − x

p
i+1)

(p− 1)(xp−1
i − xp−1

i+1 )
≤ a,

and then from Lemma 2.10, it follows that

p(xpi − x
p
i+1)

(p− 1)(xp−1
i − xp−1

i+1 )
≤ xn ≤

∑n
j=1 x

p
j∑n

j=1 x
p−1
j

,

namely, gi(x) ≤ 0, and then xi
∂Lp(x)
∂xi

≤ xi+1
∂Lp(x)
∂xi+1

. By Lemma 2.6 and Remark 2.7, it follows that Lp(x) is

Schur-geometrically concave with x ∈
[
a, (p−1

p )2a
]n

.

Proof of (III): When p = 0, gi(x) ≤ 0, it follows that Lp(x) is Schur-geometrically concave with x ∈ Rn+.
The proof of Theorem 1.4 is complete.

3.3. Proof of Theorem 1.5

Proof. From (3.1), we have

x2i
∂Lp(x)

∂xi
− x2i+1

∂Lp(x)

∂xi+1
=

hi(x)

(
∑n

i=1 x
p−1
i )2

, i = 1, 2, . . . , n− 1, (3.4)

where

hi(x) = p(xp+1
i − xp+1

i+1 )
n∑
j=1

xp−1
j − (p− 1)(xpi − x

p
i+1)

n∑
j=1

xpj .

It is clear that Lp(x) is symmetric with x ∈ Rn+. Without loss of generality, we may assume that
x1 ≥ x2 ≥ · · · ≥ xn > 0.
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Proof of (I): According to the integral mean value theorem, there is a ξ which lies between xi and xi+1, such
that

hi(x) =
n∑
j=1

xp−1
j

[
p(xp+1

i − xp+1
i+1 )− (p− 1)(xpi − x

p
i+1)

∑n
j=1 x

p
j∑n

j=1 x
p−1
j

]

=
n∑
j=1

xp−1
j

[
(p+ 1)p

∫ xi

xi+1

xpdx− p(p− 1)

∑n
j=1 x

p
j∑n

j=1 x
p−1
j

∫ xi

xi+1

xp−1dx

]

=
n∑
j=1

xp−1
j p

∫ xi

xi+1

[
(p+ 1)xp − (p− 1)

∑n
j=1 x

p
j∑n

j=1 x
p−1
j

xp−1

]
dx (3.5)

=
n∑
j=1

xp−1
j p

[
(p+ 1)ξp − (p− 1)

∑n
j=1 x

p
j∑n

j=1 x
p−1
j

ξp−1

]
(xi − xi+1)

=
n∑
j=1

xp−1
j (p+ 1)pξp−1

[
ξ − p− 1

p+ 1

∑n
j=1 x

p
j∑n

j=1 x
p−1
j

]
(xi − xi+1).

Notice that for −1 < p ≤ 1, ξ − p−1
p+1

∑n
j=1 x

p
j∑n

j=1 x
p−1
j

≥ 0.

When 0 < p ≤ 1, from (3.5), we have hi(x) ≥ 0, and then x2i
∂Lp(x)
∂xi

≥ x2i+1
∂Lp(x)
∂xi+1

. By Lemma 2.8 and

Remark 2.9, it follows that Lp(x) is Schur-harmonically convex with x ∈ Rn+.

When −1 < p ≤ 0, hi(x) ≤ 0, and then x2i
∂Lp(x)
∂xi

≤ x2i+1
∂Lp(x)
∂xi+1

. By Lemma 2.8 and Remark 2.9, it

follows that Lp(x) is Schur-harmonically concave with x ∈ Rn+.
When p = −1, hi(x) = 2

∑n
j=1 x

−1
j (x−1

i − x
−1
i+1) ≤ 0, it follows that Lp(x) is Schur-harmonically concave

with x ∈ Rn+.
Proof of (II): For any a > 0, according to the integral mean value theorem, there is a ξ which lies between
xi and xi+1, such that

p(xp+1
i − xp+1

i+1 )− a(p− 1)(xpi − x
p
i+1) = p(p+ 1)

∫ xi

xi+1

xpdx− a(p− 1)p

∫ xi

xi+1

xp−1dx

= p

∫ xi

xi+1

[(p+ 1)xp − a(p− 1)xp−1]dx (3.6)

= p[(p+ 1)ξp − a(p− 1)ξp−1](xi − xi+1)

= p(p+ 1)ξp−1

[
ξ − (p− 1)a

p+ 1

]
(xi − xi+1).

When p ≥ 1 and a ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ p−1
p+1a > 0, from (3.6) we have

p(xp+1
i − xp+1

i+1 )− a(p− 1)(xpi − x
p
i+1) ≥ 0,

that is,
p(xp+1

i − xp+1
i+1 )

(p− 1)(xpi − x
p
i+1)

≥ a,

and then from Lemma 2.10, it follows that

p(xp+1
i − xp+1

i+1 )

(p− 1)(xpi − x
p
i+1)

≥ x1 ≥
∑n

j=1 x
p
j∑n

j=1 x
p−1
j

,

namely, hi(x) ≥ 0, and then x2i
∂Lp(x)
∂xi

≥ x2i+1
∂Lp(x)
∂xi+1

. By Lemma 2.8 and Remark 2.9, it follows that Lp(x)

is Schur-harmonically convex with x ∈
[
p−1
p+1a, a

]n
.
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Proof of (III): When p < −1 and p−1
p+1a ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ a > 0, from (3.6), we have

p(xp+1
i − xp+1

i+1 )− a(p− 1)(xpi − x
p
i+1) ≤ 0,

that is,
p(xp+1

i − xp+1
i+1 )

(p− 1)(xpi − x
p
i+1)

≤ a,

and then from Lemma (2.10), it follows that

p(xp+1
i − xp+1

i+1 )

(p− 1)(xpi − x
p
i+1)

≤ xn ≤
∑n

j=1 x
p
j∑n

j=1 x
p−1
j

,

namely, hi(x) ≤ 0, and then x2i
∂Lp(x)
∂xi

≤ x2i+1
∂Lp(x)
∂xi+1

. By Lemma 2.8 and Remark 2.9, it follows that Lp(x)

is Schur-harmonically concave with x ∈
[
a, p−1

p+1a
]n

.

The proof of Theorem 1.5 is complete.

4. Applications

Theorem 4.1. For any a > 0, if p ≥ 2 and x = (x1, x2, . . . , xn) ∈
[
p−2
p a, a

]n
, then we have

An(x) ≥ Lp(x). (4.1)

If p < 0 and x ∈
[
a, p−2

p a
]n

, then the inequality (4.1) is reversed.

Proof. If p ≥ 2 and x ∈
[
p−2
p a, a

]n
, then by Theorem 1.3, from Lemma 2.11, we have

Lp(u) ≥ Lp(x),

rearranging gives (4.1), if p < 0 and x ∈
[
a, p−2

p a
]n

, then the inequality (4.1) is reversed.

The proof is complete.

Theorem 4.2. For any a > 0, if p > 1
2 and x = (x1, x2, . . . , xn) ∈

[
(p−1
p )2a, a

]n
, then we have

Gn(x) ≤ Lp(x). (4.2)

where Gn(x) = n
√
x1x2 · · ·xn is the geometric mean of x. If p < 1

2 , p 6= 0 and x ∈
[
a, (p−1

p )2a
]n

, then the

inequality (4.2) is reversed.

Proof. By Lemma 2.11, we havelogGn(x), · · · , logGn(x)︸ ︷︷ ︸
n

 ≺ (log x1, log x2, · · · , log xn) ,

if p > 1
2 and x ∈

[
(p−1
p )2a, a

]n
, by Theorem 1.4, it follows

Lp

Gn(x), · · · , Gn(x)︸ ︷︷ ︸
n

 ≤ Lp (x1, x2, · · · , xn) ,

rearranging gives (4.2). If p < 1
2 , p 6= 0 and x ∈

[
a, (p−1

p )2a
]n

, then the inequality (4.2) is reversed.

The proof is complete.
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Theorem 4.3. For any a > 0, if p > 1 and x ∈
[
p−1
p+1a, a

]n
, then we have

Hn(x) ≤ Lp(x), (4.3)

where Hn(x) = n∑n
i=1

1
xi

is the harmonic mean of x. If p < −1 and x ∈
[
a, p−1

p+1a
]n

, then the inequality (4.3)

is reversed.

Proof. By Lemma 2.11, we have 1

Hn(x)
, · · · , 1

Hn(x)︸ ︷︷ ︸
n

 ≺ ( 1

x1
,

1

x2
, · · · , 1

xn

)
.

If p > 1 and x ∈
[
p−1
p+1a, a

]n
, by Theorem 1.5, it follows

Lp

Hn(x), · · · , Hn(x)︸ ︷︷ ︸
n

 ≤ Lp (x1, x2, · · · , xn) ,

rearranging gives (4.3), if p < −1 and x ∈
[
a, p−1

p+1a
]n

, then the inequality (4.3) is reversed.

The proof is complete.

In recent years, the study on the properties of the mean by using theory of majorization is unusually
active, interested readers may refer to the literature [5–9, 15, 16, 19, 22, 24, 25, 32–35, 37–43, 45].
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[26] K. B. Stolarsky, Hölder means, Lehmer means, and x−1 log coshx, J. Math. Anal. Appl., 202 (1996), 810–818. 1
[27] B.-Y. Wang, Foundations of Majorization Inequalities, (in Chinese) Beijing Normal Univ. Press, Beijing, China,

(1990). 2.1, 2.4
[28] M. K. Wang, Y.-M. Chu, G.-D. Wang, A sharp double inequality between the Lehmer and arithmetic-geometric

means, Pac. J. Appl. Math., 4 (2012), 1–25. 1
[29] M.-K. Wang, Y.-F. Qiu, Y.-M. Chu, Sharp bounds for seiffert means in terms of Lehmer means, J. Math. Inequal.,

4 (2010), 581–586.
[30] S. R. Wassell, Rediscovering a family of means, Math. Intelligencer, 24 (2002), 58–65.
[31] A. Witkowski, Convexity of weighted Stolarsky means, JIPAM. J. Inequal. Pure Appl. Math., 7 (2006), 6 pages.

1
[32] A. Witkowski, On Schur-convexity and Schur-geometric convexity of four-parameter family of means, Math.

Inequal. Appl., 14 (2011), 897–903. 4
[33] Y. Wu, F. Qi, Schur-harmonic convexity for differences of some means, Analysis (Munich), 32 (2012), 263–270.
[34] Y. Wu, F. Qi, H.-N. Shi, Schur-harmonic convexity for differences of some special means in two variables, J.

Math. Inequal., 8 (2014), 321–330.
[35] W.-F. Xia, Y.-M. Chu, The Schur convexity of the weighted generalized logarithmic mean values according to

harmonic mean, Int. J. Mod. Math., 4 (2009), 225–233. 4
[36] W.-F. Xia, Y.-M. Chu, The Schur harmonic convexity of Lehmer means, Int. Math. Forum, 4 (2009), 2009–2015.

1
[37] W.-F. Xia, Y.-M. Chu, The Schur multiplicative convexity of the generalized Muirhead mean values, Int. J. Funct.

Anal. Oper. Theory Appl., 1 (2009), 1–8. 4
[38] W.-F. Xia, Y.-M. Chu, The Schur convexity of Gini mean values in the sense of harmonic mean, Acta Math. Sci.

Ser. B Engl. Ed., 31 (2011), 1103–1112.
[39] W.-F. Xia, Y.-M. Chu, G.-D. Wang, Necessary and sufficient conditions for the Schur harmonic convexity or

concavity of the extended mean values, Rev. Un. Mat. Argentina, 51 (2010), 121–132.
[40] Z.-H. Yang, Necessary and sufficient conditions for Schur geometrical convexity of the four-parameter homoge-

neous means, Abstr. Appl. Anal., 2010 (2010), 16 pages.
[41] Z.-H. Yang, Schur harmonic convexity of Gini means, Int. Math. Forum, 6 (2011), 747–762.
[42] Z.-H. Yang, Schur power convexity of Stolarsky means, Publ. Math. Debrecen, 80 (2012), 43–66.
[43] H.-P. Yin, H.-N. Shi, F. Qi, On Schur m-power convexity for ratios of some means, J. Math. Inequal., 9 (2015),

145–153. 4
[44] X.-M. Zhang, Geometrically convex functions, (Chinese) Anhui University Press, Hefei, (2004). 2.2, 2.6
[45] T.-Y. Zhang, A.-P. Ji, Schur-Convexity of Generalized Heronian Mean, International Conference on Information

Computing and Applications, Springer, Berlin, Heidelberg, 244 (2011), 25–33. 4


	1 Introduction and preliminaries
	2 Definitions and lemmas
	3 Proofs of theorems
	3.1 Proof of Theorem 1.3
	3.2 Proof of Theorem 1.4
	3.3 Proof of Theorem 1.5

	4 Applications

