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Abstract

In this paper, we introduce the concept of Menger PMT-spaces. Further, we prove common fixed point
theorems in a complete Menger probabilistic metric type space and, by using the main result, we give
applications on the existence and uniqueness of a solution for a class of integral equations. ©2016 All rights
reserved.
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1. Introduction and preliminaries

Throughout this paper, the space of all probability distribution functions (briefly, d.f.’s) is denoted by

∆+ = {F : R ∪ {−∞,+∞} −→ [0, 1] : F is left-continuous and non-decreasing on R,
F (0) = 0 and F (+∞) = 1},

and the subset D+ ⊆ ∆+ is the set D+ = {F ∈ ∆+ : l−F (+∞) = 1}, where l−f(x) denotes the left limit of
the function f at the point x and l−f(x) = limt→x− f(t). The space ∆+ is partially ordered by the usual
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point-wise ordering of functions, i.e., F ≤ G, if and only if F (t) ≤ G(t) for all t ∈ R. The maximal element
for ∆+ in this order is the d.f. given by

ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.

Definition 1.1 ([11]). A mapping T : [0, 1]× [0, 1] −→ [0, 1] is called a continuous t–norm, if T satisfies the
following conditions:

(t1) T is commutative and associative;

(t2) T is continuous;

(t3) T (a, 1) = a, for all a ∈ [0, 1];

(t4) T (a, b) ≤ T (c, d) whenever a ≤ c and c ≤ d, and a, b, c, d ∈ [0, 1].

Two typical examples of continuous t–norm are T (a, b) = ab and T (a, b) = min{a, b}.

Now, the t–norm T are recursively defined by T 1 = T and

Tn(x1, · · · , xn+1) = T (Tn−1(x1, · · · , xn), xn+1)

for each n ≥ 2 and xi ∈ [0, 1] for each i ∈ {1, 2, · · · , n + 1}. The t-norm T is of Hadžić type I, if for any
ε ∈]0, 1[, there exists δ ∈]0, 1[ (which may depend on m) such that

Tm(1− δ, · · · , 1− δ) > 1− ε (1.1)

for each m ∈ N.

We assume that, in this paper, all the t–norms are of Hadžić type I.

Definition 1.2 ([11]). A mapping S : [0, 1]× [0, 1] −→ [0, 1] is called a continuous s–norm, if S satisfies the
following conditions:

(s1) S is associative and commutative;

(s2) S is continuous;

(s3) S(a, 0) = a, for all a ∈ [0, 1];

(s4) S(a, b) ≤ S(c, d) whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1].

Two typical examples of continuous s–norm are S(a, b) = min{a+ b, 1} and S(a, b) = max{a, b}.

Definition 1.3. A Menger probabilistic metric type space (briefly, Menger PMT-space) is a triple (X,F , T ),
where X is a nonempty set, T is a continuous t–norm, and F is a mapping from X ×X into D+ such that,
if Fx,y denotes the value of F at the pair (x, y), then the following conditions hold:
for all x, y, z ∈ X,

(PM1) Fx,y(t) = ε0(t) for all t > 0, if and only if x = y;

(PM2) Fx,y(t) = Fy,x(t);

(PM3) Fx,z(K(t+ s)) ≥ T (Fx,y(t), Fy,z(s)) for all x, y, z ∈ X and t, s ≥ 0 for some constant K ≥ 1.
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Definition 1.4. A Menger probabilistic normed type space (briefly, Menger PNT-space) is a triple (X,µ, T ),
where X is a vector space, T is a continuous t–norm, and µ is a mapping from X into D+ such that the
following conditions hold for all x, y ∈ X,

(PN1) µx(t) = ε0(t) for all t > 0, if and only if x = 0;

(PN2) µαx(t) = µx

(
t
|α|

)
for α 6= 0;

(PN3) µx+y(K(t+ s)) ≥ T (µx(t), µy(s)) for all x, y, z ∈ X and t, s ≥ 0 for some constant K ≥ 1.

Probabilistic metric space, Probabilistic normed space and Menger probabilistic normed type spaces
have been studied by some authors [1]-[7],[9], [10], [12], [13].

Remark 1.5. The space Lp (0 < p < 1) of all real-valued functions f(x) for all x ∈ [0, 1] such that∫ 1
0 |f(x)|pdx <∞ is a type metric space. Define

D(f, g) =
(∫ 1

0
|f(x)− g(x)|pdx

) 1
p

for all f, g ∈ Lp. Then D is a metric type space with K = 2
1
p .

Example 1.6. Let M be the set of Lebesgue measurable functions on [0, 1] such that
∫ 1
0 |f(x)|pdx < ∞,

where p > 0 is a real number. Define

Ff,g(t) =

{
0, if t ≤ 0,

t

t+(
∫ 1
0 |f(x)−g(x)|

pdx)
1
p
, if t > 0.

Then, by Remark 1.5, (M,F , Tp) is a PMT-space with K = 2
1
p .

Definition 1.7. Let (X,F , T ) be a Menger PMT-space.

(1) A sequence {xn}n in X is said to be convergent to x in X, if for any ε > 0 and λ > 0, there exists a
positive integer N such that

Fxn,x(ε) > 1− λ,

whenever n ≥ N , which is denoted by limn→∞ xn = x.

(2) A sequence {xn}n in X is called a Cauchy sequence, if for any ε > 0 and λ > 0, there exists a positive
integer N such that

Fxn,xm(ε) > 1− λ,

whenever n,m ≥ N .

(3) A Menger PMT-space (X,F , T ) is said to be complete, if every Cauchy sequence in X is convergent
to a point in X.

Definition 1.8. Let (X,F , T ) be a Menger PMT-space. For any p ∈ X and λ > 0, the strong λ −
neighborhood of p is the set

Np(λ) = {q ∈ X : Fp,q(λ) > 1− λ},

and the strong neighborhood system for X is the union
⋃
p∈V Np, where Np = {Np(λ) : λ > 0}.

The strong neighborhood system for X determines a Hausdorff topology for X.
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Remark 1.9. In this paper, we assume that, if (X,F , T ) is a PMT-space and {pn}, {qn} are two sequences
such that pn → p and qn → q, then

lim
n→∞

Fpn,qn(t) = Fp,q(t).

Remark 1.10. In certain situations, we assume the following:

Suppose that, for any µ ∈]0, 1[, there exists λ ∈]0, 1[ (which does not depend on n) such that

Tn−1(1− λ, · · · , 1− λ) > 1− µ (1.2)

for each n ∈ {1, 2, · · · }.

Lemma 1.11. Let (X,F , T ) be a Menger PMT-space. If we define Eλ,F : X2 −→ R+ ∪ {0} by

Eλ,F (x, y) = inf{t > 0 : fx,y(t) > 1− λ}

for all λ ∈ (0, 1) and x, y ∈ X, then we have the following:

(1) For any µ ∈ (0, 1), there exists λ ∈ (0, 1) such that

Eµ,F (x1, xk) ≤ KEλ,F (x1, x2) +K2Eλ,F (x2, x3) + · · ·+Kn−1Eλ,F (xk−1, xk)

for any x1, · · · , xk ∈ X.

(2) For any sequence {xn} in X, Fxn,x(t) −→ 1, if and only if Eλ,F (xn, x)→ 0. Also, the sequence {xn}
is a Cauchy sequence with respect to F , if and only if it is a Cauchy sequence with respect to Eλ,F .

Proof. (1) For any µ ∈ (0, 1), we can find λ ∈ (0, 1) such that

Tn−1(1− λ, · · · , 1− λ) > 1− µ.

By the triangular inequality, we have

Fx,xn(KEλ,F (x1, x2) + · · ·+Kn−1Eλ,F (xn−1, xn) +Knδ)

≥ Tn−1(fx1,x2(Eλ,F (x1, x2) + δ), · · · , Fxn−1,xn(Eλ,F (xn−1, xn) + δ))

≥ Tn−1(1− λ, · · · , 1− λ) > 1− µ

for any δ > 0, which implies that

Eµ,F (x1, xn) ≤ Kfλ,F (x1, x2) +K2Eλ,F (x2, x3) + · · ·+Kn−1Eλ,F (xn−1, xn) +Knδ.

Since δ > 0 is arbitrary, we have

Eµ,F (x1, xn) ≤ KEλ,F (x1, x2) +K2Eλ,F (x2, x3) + · · ·+Kn−1Eλ,F (xn−1, xn).

(2) It follows that
Fxn,x(η) > 1− λ ⇐⇒ Eλ,F (xn, x) < η

for any η > 0. This completes the proof.

Remark 1.12. If (1.2) holds, then the λ in part (1) of Lemma 1.11 does not depend on k (see [8]).

2. Common fixed point theorems

Now, we are in a position to prove some fixed point theorems in complete Menger PMT-spaces. We have
more general results which improve Theorem 2.3 in [8] (we do not need to assume

∑∞
n=1 φ

n(t) <∞ for any
t > 0).
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Definition 2.1. Let f and g be two mappings from a Menger PMT-space (X,F , T ) into itself. The mappings
f and g are said to be weakly commuting, if

Ffgx,gfx(t) ≥ Ffx,gx(t)

for all x ∈ X and t > 0.

For the remainder of the paper, let Φ be the set of all onto and strictly increasing functions

φ : [0,∞) −→ [0,∞),

which satisfy limn→∞ φ
n(t) = 0 for an t > 0, where φn(t) denotes the n-th iterative function of φ(t).

Remark 2.2. First, notice that, if φ ∈ Φ, then φ(t) < t for any t > 0. To see this, suppose that there exists
t0 > 0 with t0 ≤ φ(t0). Then, since φ is nondecreasing, we have t0 ≤ φn(t0) for each n ∈ {1, 2, · · · }, which
is a contradiction. Note also that φ(0) = 0.

Lemma 2.3 ([8]). Suppose that a Menger PMT-space (X,F , T ) satisfies the following condition:

Fx,y(t) = C

for all t > 0. Then we have C = ε0(t) and x = y.

Theorem 2.4. Let (X,F , T ) be a complete Menger PMT-space and f , g be weakly commuting self-mappings
of X satisfying the following conditions:

(a) f(X) ⊆ g(X);

(b) f or g is continuous;

(c) Ffx,fy(φ(t)) ≥ Fgx,gy,(t), where φ ∈ Φ.

Then we have the following:

(1) If (1.1) holds and there exists x0 ∈ X such that

EF (gx0, fx0) = sup{Eγ,F (gx0, fx0) : γ ∈ (0, 1)} <∞,

then f and g have a unique common fixed point.

(2) If (1.2) holds, then f and g have a unique common fixed point.

Proof. (1) Choose x0 ∈ X with EF (gx0, fx0) < ∞ and, next, choose x1 ∈ X with fx0 = gx1. Iteratively,
choose xn+1 ∈ X such that fxn = gxn+1. Now, we have

Ffxn,fxn+1(φn+1(t)) ≥ Fgxn,gxn+1(φn(t)) = Ffxn−1,fxn(φn(t)) ≥ · · · ≥ Fgx0,gx1(t).

Note (see Lemma 1.9. of [8]) that, for any λ ∈ (0, 1),

Eλ,F (fxn, fxn+1) = inf{φn+1(t) > 0 : Ffxn,fxn+1(φn+1(t)) > 1− λ}
≤ inf{φn+1(t) > 0 : Fgx0,fx0(t) > 1− λ}
≤ φn+1(inf{t > 0 : Fgx0,fx0(t) > 1− λ})
= φn+1(Eλ,F (gx0, fx0))

≤ φn+1(EF (gx0, fx0)),
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and so
Eλ,F (fxn, fxn+1) ≤ φn+1(EF (gx0, fx0))

for all λ ∈ (0, 1), which implies that

EF (fxn, fxn+1) ≤ φn+1(EF (gx0, fx0)).

Let ε > 0 and choose n ∈ {1, 2, · · · } so that

EF (fxn, fxn+1) <
ε− φ(ε)

K
.

Thus, for any λ ∈ (0, 1), there exists µ ∈ (0, 1) such that

Eλ,F (fxn, fxn+2) ≤ KEµ,F (fxn, fxn+1) +KEµ,F (fxn+1, fxn+2)

≤ KEµ,F (fxn, fxn+1) + φ(KEµ,F (fxn, fxn+1))

≤ KEF (fxn, fxn+1) + φ(KEF (fxn, fxn+1))

≤ Kε− φ(ε)

K
+ φ

(
K
ε− φ(ε)

K

)
≤ ε.

We can do this argument for each λ ∈ (0, 1) so that

EF (fxn, fxn+2) ≤ ε.

For any λ ∈ (0, 1), there exists µ ∈ (0, 1) such that

Eλ,F (fxn, xn+3) ≤ KEµ,F (fxn, fxn+1) +KEµ,F (fxn+1, fxn+3)

≤ KEµ,F (fxn, fxn+1) + φ(KEµ,F (fxn, fxn+2))

≤ KEF (fxn, fxn+1) + φ(KEF (fxn, fxn+2))

≤ ε− φ(ε) + φ(ε)

= ε,

where note that we used the fact that

Ffxn+1,fxn+3(φ(t)) ≥ Fgxn+1,gxn+3(t) = Ffxn,fxn+2(t),

and so
Eλ,F (fxn+1, fxn+3) ≤ φ(Eµ,F (fxn, fxn+2)).

Thus we have
EF (fxn, fxn+3) ≤ ε.

By the induction, it follows that
EF (fxn, fxn+k) ≤ ε,

for each k ∈ {1, 2, · · · }. Thus {fxn} is a Cauchy sequence in X and so, by the completeness of X, {fxn}
converges to a point in X, say it z. Also, {gxn} converges to z ∈ X.

Suppose that the mapping f is continuous. Then limn→∞ ffxn = fz and limn fgxn = fz. Furthermore,
since f and g are weakly commuting, we have

Ffgxn,gfxn(t) ≥ Ffxn,gxn(t).

By letting n→∞ in the above inequality, we have limn→∞ gfxn = fz by the continuity of F .
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Now, we prove that z = fz, that is, z is a fixed point of f . Suppose z 6= fz. By (c), it follows that, for
any t > 0,

Ffxn,ffxn(φk+1(t)) ≥ Fgxn,gfxn(φk(t))

for each k ∈ N. Let n→∞ in the above inequality, then we have

Fz,fz(φ
k+1(t)) ≥ Fz,fzφk(t)).

Also, we get
Fz,fz(φ

k(t)) ≥ Fz,fz(φk−1(t)),

and
Fz,fz(φ(t)) ≥ Fz,fz(t).

Therefore, we obtain
Fz,fz(φ

k+1(t)) ≥ Fz,fz(t).

On the other hand, we observe (see Remark 2.2)

Fz,fz(φ
k+1(t)) ≤ Fz,fz(t).

Then Fz,fz(t) = C and by Lemma 2.3, z = fz. Since f(X) ⊆ g(X), we can find z1 ∈ X such that
z = fz = gz1. Now, we see

Fffxn,fz1(t) ≥ Fgfxn,gz1(φ−1(t)).

By taking the limit as n→∞, we have

Ffz,fz1(t) ≥ Ffz,gz1(φ−1(t)) = ε0(t),

which implies that fz = fz1, i.e., z = fz = fz1 = gz1. Also, for any t > 0, since f and g are weakly
commuting, we obtain

Ffz,gz(t) = Ffgz1,gfz1(t) ≥ Ffz1,gz1(t) = ε0(t),

which again implies that fz = gz. Thus z is a common fixed point of f and g.
Now, to prove the uniqueness of the common fixed point z, suppose that z′ 6= z is another common fixed

point of f and g. Then, for any t > 0 and n ∈ N, we have

Fz,z′(φ
n+1(t)) = Ffz,fz′(φ

n+1(t)) ≥ Fgz,gz′(φn(t)) = Fz,z′(φ
n(t)).

Also, we infer
Fz,z′(φ

n(t)) ≥ Fz,z′(φn−1(t)),

and
Fz,z′(φ(t)) ≥ Fz,z′(t).

Therefore, we obtain
Fz,z′(φ

n+1(t)) ≥ Fz,z′(t).

On the other hand, we have
Fz,z′(t) ≤ Fz,z′(φn+1(t)).

Then we have Fz,z′(t) = C and so, by Lemma 2.3, z = z′, which is a contradiction. Therefore, z is the
unique common fixed point of f and g.

(2) The argument is as in the case (1) except in this case we use Remark 1.11 in [8]. This completes the
proof.

In Theorem 2.4, if we take g = IX (the identity on X), then we have the following:
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Corollary 2.5. Let (X,F , T ) be a complete Menger PMT-space and f be a self-mapping of X satisfying
the following conditions:

(a) f is continuous;

(b) Ffx,fy(φ(t)) ≥ Fx,y,(t), where φ ∈ Φ.

Then we have the following:

(1) If (1.1) holds and there exists x0 ∈ X such that

EF (x0, fx0) = sup{Eγ,F (x0, fx0) : γ ∈ (0, 1)} <∞,

then f has a unique common fixed point.

(2) If (1.2) holds, then f has a unique common fixed point.

3. Applications on solutions of integral equations

Let X = C([1, 3], (−∞, 2.1443888)) and define

Fx,y(t) =

{
0, if t ≤ 0,
inf`∈[1,3]

t
t+(x(`)−y(`))2 , if t > 0,

for all x, y ∈ X. It is easily seen that (X,F ,min) is a complete PTM-space with K = 2.
Define a mapping T : X → X by

T (x(`)) = 4 +

∫ `

1
(x(u)− u2) e1−udu.

Put g(x) = T (x) and f(x) = T 2(x). Since fg = gf , f and g are (weakly) commuting. Now, it follows
that, for x, y ∈ X and t > 0,

Ffx,fy(t) = FT (Tx(`)),T (Ty(`))(t)

= inf
`∈[1,3]

t

t+ |
∫ `
1 (Tx(u)− Ty(u)) e1−udu|2

≥ t

t+ 1
e4
|
∫ 3
1 (Tx(u)− Ty(u))du|2

= Fgx,gy(t),

and hence

Ffx,fy

(
t

e4

)
≥ Fgx,gy(t).

Thus all the conditions of Theorem 2.4 are satisfied for φ(t) = t
e4

and so f and g have a unique common
fixed point, which is a unique solution of the integral equations:

x(`) = 4 +

∫ `

1
(x(u)− u2) e1−udu,

and

x(`) = (1− `)2e1−` +

∫ `

1

∫ u

1
(x(v)− v2) e2−(u+v)dvdu.
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