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Abstract

In this paper, we introduce the concept of Menger PMT-spaces. Further, we prove common fixed point
theorems in a complete Menger probabilistic metric type space and, by using the main result, we give
applications on the existence and uniqueness of a solution for a class of integral equations. (©)2016 All rights
reserved.
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1. Introduction and preliminaries

Throughout this paper, the space of all probability distribution functions (briefly, d.f.’s) is denoted by

AT ={F:RU{~o00,+00} — [0,1] : F is left-continuous and non-decreasing on R,
F(0) =0 and F(+o00) =1},

and the subset DT C AT is the set DT = {F € AT : [ F(400) = 1}, where [~ f(z) denotes the left limit of
the function f at the point z and [~ f(x) = lim,_,,— f(¢). The space AT is partially ordered by the usual
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point-wise ordering of functions, i.e., F' < G, if and only if F(t) < G(¢) for all ¢ € R. The maximal element
for AT in this order is the d.f. given by

@ 0, if t <0,
£ =
0 1, if t> 0.

Definition 1.1 ([I1]). A mapping T": [0,1] x [0,1] — [0, 1] is called a continuous t-norm, if T' satisfies the
following conditions:

tl) T is commutative and associative;

t3

(
(
(t3) T(a,1) = a, for all a € [0,1];
(

)

t2) T is continuous;
)
)

t4) T(a,b) < T(c,d) whenever a < ¢ and ¢ < d, and a,b,c,d € [0,1].

Two typical examples of continuous t—norm are T'(a,b) = ab and T'(a,b) = min{a, b}.

Now, the t-norm T are recursively defined by 7' = T and
Tn($17 e 7$n+1) - T(Tnil(xl) e 7xn)7 xn-‘rl)

for each n > 2 and z; € [0,1] for each i € {1,2,--- ,n+ 1}. The t-norm T is of Hadzi¢ type I, if for any
e €]0, 1[, there exists ¢ €]0,1[ (which may depend on m) such that

(1 —8,---,1-6)>1—¢ (1.1)

for each m € N.

We assume that, in this paper, all the t—norms are of Hadzi¢ type I.

Definition 1.2 ([I1]). A mapping S : [0,1] x [0,1] — [0,1] is called a continuous s—norm, if S satisfies the
following conditions:

sl) S is associative and commutative;

s2) S is continuous;

s3) S(a,0) = a, for all a € [0, 1];

(s1)
(s2)
(s3)
(s4) S(a,b) < S(c,d) whenever a < ¢ and b < d, for all a,b,c,d € [0,1].

Two typical examples of continuous s—norm are S(a,b) = min{a + b,1} and S(a,b) = max{a, b}.

Definition 1.3. A Menger probabilistic metric type space (briefly, Menger PMT-space) is a triple (X, F,T),
where X is a nonempty set, T' is a continuous t—norm, and F is a mapping from X x X into D™ such that,
if F,, denotes the value of F at the pair (z,y), then the following conditions hold:

for all x,y,z € X,

(PM1) F,4(t) = eo(t) for all t > 0, if and only if x = y;
) =

(PM2) Fyy(t) = Fyu(t);
(PM3) F,.(K(t+s)) > T(Fyy(t), Fy(s)) for all z,y,z € X and t,s > 0 for some constant K > 1.
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Definition 1.4. A Menger probabilistic normed type space (briefly, Menger PNT-space) is a triple (X, u, T'),
where X is a vector space, T' is a continuous t—norm, and y is a mapping from X into DT such that the
following conditions hold for all z,y € X,

(PN1) pg(t) =eo(t) for all ¢ > 0, if and only if x = 0;
(PN2) faa(t) = fia (ﬁ) for o % 0;
(PN3) gy (K(t+5)) > T(pz(t), py(s)) for all z,y,z € X and t,s > 0 for some constant K > 1.

Probabilistic metric space, Probabilistic normed space and Menger probabilistic normed type spaces
have been studied by some authors [1]-[7],[9], [10], [12], [13].

Remark 1.5. The space L, (0 < p < 1) of all real-valued functions f(x) for all € [0,1] such that
fol |f(z)|Pdz < oo is a type metric space. Define

p(r.0) = ([ 1560) - sy’

1
for all f,g € L,. Then D is a metric type space with K = 2.

Example 1.6. Let M be the set of Lebesgue measurable functions on [0, 1] such that fol |f(z)|Pdz < oo,
where p > 0 is a real number. Define

0, if t <0,
Fyg(t) = ¢ o, ift>0.
t+(fy |f(2)—g(x)|Pdz) P

Then, by Remark L5, (M, F,T}) is a PMT-space with K = 27.

Definition 1.7. Let (X, F,T) be a Menger PMT-space.

(1) A sequence {z,}, in X is said to be convergent to x in X, if for any € > 0 and X > 0, there exists a
positive integer N such that
Fp,o(e) >1—= X,

whenever n > N, which is denoted by lim, o =, = .

(2) A sequence {zy}, in X is called a Cauchy sequence, if for any € > 0 and A > 0, there exists a positive
integer N such that
an7$m (6) > 1- A?

whenever n,m > N.

(3) A Menger PMT-space (X, F,T) is said to be complete, if every Cauchy sequence in X is convergent
to a point in X.

Definition 1.8. Let (X, F,T) be a Menger PMT-space. For any p € X and A > 0, the strong \ —
neighborhood of p is the set
Ny(AN) ={qe X : F,,(\) >1— A},

and the strong neighborhood system for X is the union [,y NV, where N}, = {N,()) : A > 0}.

The strong neighborhood system for X determines a Hausdorff topology for X.
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Remark 1.9. In this paper, we assume that, if (X, F,T) is a PMT-space and {p,}, {¢.} are two sequences
such that p, — p and ¢, — ¢, then
lim Fp, q,(t) = Fpq(2).

n—o0

Remark 1.10. In certain situations, we assume the following:

Suppose that, for any p €]0, 1], there exists A €]0, 1] (which does not depend on n) such that
T =N 1=A)>1—p (1.2)

for each n € {1,2,---}.

Lemma 1.11. Let (X, F,T) be a Menger PMT-space. If we define Ex p : X*> — RT U {0} by

Exp(z,y) =inf{t > 0: f,(t) >1— A}
for all A € (0,1) and x,y € X, then we have the following:
(1) For any p € (0,1), there exists A € (0,1) such that
E, p(z1,7) < KE) p(71,22) + K*E) p(v2,23) + -+ + K" ' E)\ p(z)_1, 71)
for any x1,--- ,x € X.

(2) For any sequence {x,} in X, Fy, »(t) — 1, if and only if E) p(xyn,x) — 0. Also, the sequence {z,}
is a Cauchy sequence with respect to F', if and only if it is a Cauchy sequence with respect to Ey r.

Proof. (1) For any p € (0,1), we can find A € (0,1) such that
T 1= N- 1 =) >1—p
By the triangular inequality, we have

Fywn(KEy p(z1,22) + - + K" By p(zp—1,20) + Knd)

2 Tnil(f$17$2 (E)\,F(x17 er) + 5)? e 7F$n71737n (EA,F(IBTL_l’ xn) + 6))
STV M1 — A, 1= N >1—p

for any 6 > 0, which implies that
E, r(z1,2,) < K fyp(z1,22) + KQEA,F(xg, x3)+ -+ K”flE,\,F(:cn_l,a:n) + Kné.
Since & > 0 is arbitrary, we have
E,r(x1,2n) < KEy p(x1,22) + KQE)\,F(.TQ,xg) 4+ 4+ K"flEXF(a;n_l,a:n).

(2) It follows that
Froo(m)>1—=X <= E)\p(zn,z) <n

for any 1 > 0. This completes the proof. O
Remark 1.12. If (1.2]) holds, then the A in part (1) of Lemma does not depend on k (see [§]).

2. Common fixed point theorems

Now, we are in a position to prove some fixed point theorems in complete Menger PMT-spaces. We have
more general results which improve Theorem 2.3 in [8] (we do not need to assume )7, ¢"(t) < co for any
t>0).
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Definition 2.1. Let f and g be two mappings from a Menger PMT-space (X, F,T) into itself. The mappings
f and g are said to be weakly commuting, if

Frougfa(t) = Fruga(t)

for all z € X and ¢t > 0.

For the remainder of the paper, let ® be the set of all onto and strictly increasing functions
§Z5 : [0,00) — [07 00)7

which satisfy lim, . ¢"(t) = 0 for an ¢ > 0, where ¢"(¢) denotes the n-th iterative function of ¢(t).

Remark 2.2. First, notice that, if ¢ € ®, then ¢(t) < ¢ for any t > 0. To see this, suppose that there exists
to > 0 with ¢y < ¢(to). Then, since ¢ is nondecreasing, we have tg < ¢"(tp) for each n € {1,2,---}, which
is a contradiction. Note also that ¢(0) = 0.

Lemma 2.3 ([8]). Suppose that a Menger PMT-space (X, F,T) satisfies the following condition:
Fpy(t)=0C
for allt > 0. Then we have C = £¢(t) and z = y.

Theorem 2.4. Let (X, F,T) be a complete Menger PMT-space and f, g be weakly commuting self-mappings
of X satisfying the following conditions:

(a) f(X)Cg(X);
(b) f or g is continuous;
(©) Frapy(¢(1) = Fya gy, (1), where ¢ € .
Then we have the following:
(1) If holds and there exists xo € X such that

Ep(gzo, fro) = sup{Ey,r(gz0, f2o) : v € (0,1)} < oo,
then f and g have a unique common fized point.
(2) If (1.2) holds, then f and g have a unique common fized point.

Proof. (1) Choose z¢ € X with Er(gzo, fzg) < oo and, next, choose x1 € X with fzg = gx;. Iteratively,
choose z,4+1 € X such that fx, = gx,+1. Now, we have

Ffmn,fwnﬂ (¢n+1(t)) > Fga:n7ga:n+1 (¢n(t)) = Ffwnfl,frn (¢n(t)) > 2 ng’o,gm (t)

Note (see Lemma 1.9. of [§]) that, for any A € (0,1),

Eyp(fTn, fons1) =nf{¢" T () >0 Frpy o (0"TH(#)) > 1= A}
< inf{@"TH(t) > 01 Fypy o (t) > 1= A}
< @"PH(Anf{t > 0 Fypy puo () > 1= A})
= ¢"T(E) (920, f20))
< ¢""(Er(gxo, fx0)),
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and so
Exp(fn, frns) < ¢"TH(Er(gzo, fr0))

for all A € (0,1), which implies that
Ep(fan, feai1) < ¢" T (Er(gzo, fx0))-

Let € > 0 and choose n € {1,2,---} so that

e o)
K

EF(fmnv fxn+1) <
Thus, for any A € (0, 1), there exists p € (0,1) such that

Exp(fon, fony2) < KE, p(fon, fons1) + KE,p(frnit, fTng)
< KE,r(frn, frnm) + o(KE, p(fon, font1))
< KEF(fl'na fxn-H) + ¢(KEF(fxm f$n+1))

<e.
We can do this argument for each A € (0,1) so that

EF(fﬂZn, f$n+2) <e

For any A € (0,1), there exists p € (0,1) such that

Exrp(frn, vny3) < KE, p(fon, fong1) + KE, p(fragt, fones)
< KE#,F(fxn, fiUnJrl) + Qs(KEu,F(fxm f$n+2))
< KEp(frn, foni1) + O(KER(fon, frni2))
<e—o(e) + ¢(e)

= 6’
where note that we used the fact that

Ftap i fonys(0) = Foun iy gonrs(t) = Fray, faon, (1),
and so
Exp(font1, [Tnt3) < G(Eup(fTn, foni2)).
Thus we have
Ep(fn, frngs) <e
By the induction, it follows that
Ep(fn, fentr) <€,

for each k € {1,2,---}. Thus {fz,} is a Cauchy sequence in X and so, by the completeness of X, {fx,}
converges to a point in X, say it z. Also, {gx,} converges to z € X.

Suppose that the mapping f is continuous. Then lim,,_,~ ffz, = fz and lim,, fgz,, = fz. Furthermore,
since f and g are weakly commuting, we have

ngwn,gfwn (t) 2 Ff$n79$n (75)

By letting n — oo in the above inequality, we have lim,,_, o, gfx, = fz by the continuity of F.
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Now, we prove that z = fz, that is, z is a fixed point of f. Suppose z # fz. By (c), it follows that, for
any t > 0,
fonvffxn (¢k+1(t)) 2 ngnvgfxn (¢k(t))

for each k € N. Let n — oo in the above inequality, then we have

Fop2(6"71(t) > Fu 20" (2).
Also, we get

Fe p2(08(1) > Fe p2(671(1)),

and
Fop2(0(1) 2 Fr p:().
Therefore, we obtain
e p2(6"1(1) 2 Fepa(1).

On the other hand, we observe (see Remark

Fz,fz((karl(t)) < Fz,fz(t)-

Then F, f.(t) = C and by Lemma z = fz. Since f(X) C ¢g(X), we can find z; € X such that
z = fz = gz. Now, we see
EFtpun a1 (t) 2 Fyfrngn (qﬁil(t))'

By taking the limit as n — oo, we have

Fpa gy () 2 Fiage, (071(1) = e0(1),

which implies that fz = fz1, e, 2 = fz = fz1 = gz1. Also, for any ¢ > 0, since f and g are weakly
commuting, we obtain
Frzg:(t) = Frgzgpa (1) = Fizy g2, (1) = €0(t),

which again implies that fz = gz. Thus 2 is a common fixed point of f and g.
Now, to prove the uniqueness of the common fixed point z, suppose that 2z’ # z is another common fixed
point of f and g. Then, for any ¢ > 0 and n € N, we have

Fz,z’(d)nJrl (t)) = Ffz,fz’(¢n+1(t)) > gz,gz’(¢n(t)) = Fz,z’(d)n(t))

Also, we infer
Foo(¢"(t) > Fe (0" (1)),
and
F, 2 (o(t) = F ().

Therefore, we obtain

Fz,z/(¢n+1(t)) > FZ,Z’ (t)
On the other hand, we have

F.(t) < Fo (6" (1)

Then we have F, ,/(t) = C and so, by Lemma z = 2/, which is a contradiction. Therefore, z is the
unique common fixed point of f and g.

(2) The argument is as in the case (1) except in this case we use Remark 1.11 in [§]. This completes the
proof. O

In Theorem if we take g = I'x (the identity on X)), then we have the following:
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Corollary 2.5. Let (X, F,T) be a complete Menger PMT-space and f be a self-mapping of X satisfying
the following conditions:

(a) f is continuous;

(b) Fiapy(0(t)) > Fry, (t), where ¢ € ®.

Then we have the following:

(1) If (1.1) holds and there exists xo € X such that

EF($07 fxO) = Sup{E%F(:z:o, f(lf()) Y€ (07 1)} < 00,
then f has a unique common fixed point.

(2) If (1.2) holds, then f has a unique common fized point.

3. Applications on solutions of integral equations

Let X = C([1, 3], (—o0,2.1443888)) and define

0 ift<o0
F,,(t)={ . e, A
w(®) { infyepy g 7t+(r(€)t—y(é))2’ ift > 0,

for all x,y € X. It is easily seen that (X, F, min) is a complete PTM-space with K = 2.
Define a mapping 7' : X — X by

L
T(x(¢)) =4 -|—/1 (z(u) —u?) ' ~“du.

Put g(z) = T(x) and f(z) = T?(x). Since fg = gf, f and g are (weakly) commuting. Now, it follows
that, for z,y € X and t > 0,

Fpa,1y(t) = Fr(ra(e)) 7(1y(0))(t)

= inf 7 !

3t + | [ (Ta(u) — Ty(u)) e'~“dul?
> T3 !

t+ zl i (Tx(u) — Ty(u))dul?
= Fye gy (1),

and hence
t
fo,fy <e4> > ng,gy(t)-

Thus all the conditions of Theorem are satisfied for ¢(t) = e% and so f and g have a unique common
fixed point, which is a unique solution of the integral equations:

14
= z(u) — u?) e "du
o) =4+ [ (alw) =) 1,
and

x(g) — (1 _ e)Qel—é + /15 /1u(x<’l)) _ ’U2> 62_(u+v)d1}du.
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