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Abstract

In this paper, we study a general viscosity iterative method due to Aoyama and Kohsaka for the fixed
point problem of quasi-nonexpansive mappings in Hilbert space. First, we obtain a strong convergence
theorem for a sequence of quasi-nonexpansive mappings. Then we give two applications about variational
inequality problem to encourage our main theorem. Moreover, we give a numerical example to illustrate our
main theorem. c©2016 All rights reserved.
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1. Introduction

Throughout the present paper, let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖.
Let C be a nonempty closed convex subset of H and T : C → C be a mapping. In this paper, we denote
the fixed-point set of T by Fix(T ). A mapping T is said to be quasi-nonexpansive, if Fix(T ) 6= ∅ and
‖ Tx− p ‖≤‖ x− p ‖ for all x ∈ C and p ∈ Fix(T ). We know that if T : C → C is quasi-nonexpansive, then
Fix(T ) is closed and convex (see [3] for more general results). A mapping T is said to be nonexpansive, if
‖ Tx−Ty ‖≤‖ x− y ‖ for all x, y ∈ C. A mapping T is called demiclosed at 0, if any sequence {xn} weakly
converges to x, and if the sequence {Txn} strongly converges to 0, then Tx = 0.

The viscosity iterative method was proposed by Moudafi [11] firstly. Choose an arbitrary initial x0 ∈ H,
the sequence {xn} is constructed by:

xn+1 =
εn

1 + εn
f(xn) +

1

1 + εn
Txn, ∀n ≥ 0,
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where T is a nonexpansive mapping and f is a contraction with a coefficient α ∈ [0, 1) on H, the sequence
{εn} is in (0, 1), such that:

(i) limn→∞ εn = 0;

(ii)
∑∞

n=0 εn =∞;

(iii) limn→∞( 1
εn
− 1

εn+1
) = 0.

Then limn→∞ xn = x∗, where x∗ ∈ C(C = Fix(T )) is the unique solution of the variational inequality

〈(I − f)x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T ). (1.1)

Maingé considered the viscosity iterative method for quasi-nonexpansive mappings in Hilbert space in
[9]. His focus was on the following algorithm:

xn+1 = αnf(xn) + (1− αn)Tωxn,

where {αn} is a slow vanishing sequence, and ω ∈ (0, 1], Tω := (1− ω)I + ωT , T has two main conditions:

(i) T is quasi-nonexpansive;

(ii) I − T is demiclosed at 0.

He proved the sequence {xn} converges strongly to the unique solution of the variational inequality (1.1).
Tian and Jin considered the following iterative process in [13]:

xn+1 = αnγf(xn) + (I − αnA)Tωxn, ∀n ≥ 0,

where the sequence {αn} satisfies certain conditions, ω ∈ (0, 1
2), Tω = (1− ω)I + ωT , and T is also satisfied

the same conditions in Maingé [9] . Then they proved that {xn} converges strongly to the unique solution
of the variational inequality:

〈(γf −A)x∗, x− x∗〉 ≤ 0, ∀x ∈ Fix(T ).

Recently, Aoyama and Kohsaka considered the following general iterative method in [1]:

xn+1 = αnfn(xn) + (1− αn)Snxn,

where fn is a θ-contraction with respect to Ω = ∩∞n=1Fix(Sn) and {fn} is stable on Ω, and {Sn} is a
sequence of strongly quasi-nonexpansive mappings of C into C. That is to say, Sn is quasi-nonexpansive
and Snxn − xn → 0 whenever {xn} is a bounded sequence in C and ‖ xn − p ‖ − ‖ Snxn − p ‖→ 0 for some
point p ∈ Ω. Then they proved that if the sequence {αn} satisfies appropriate conditions, {xn} converges
strongly to the unique fixed point of a contraction PΩ ◦ f1.

Many various iterative algorithms have been studied and extended by many authors, especially about
quasi-nonexpansive mappings (see [1, 4, 6–13, 15]).

Motivated by the above results, we extend the iterative method to quasi-nonexpansive mappings. We
consider the following iterative process:

xn+1 = αnfn(xn) +
n∑
i=1

(αi−1 − αi)Sλni xn, (1.2)

where Sλni = (1 − λn)I + λnSi, and {Si}∞i=1 is a sequence of quasi-nonexpansive mappings. Under the
appropriate conditions, we establish the strong convergence of the sequence {xn} generated by (1.2).
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2. Preliminaries

We denote the strong convergence and the weak convergence of {xn} to x ∈ H by xn → x and xn ⇀ x,
respectively.

Let f : C → C be a mapping, Ω is a nonempty subset of C, and θ is a real number in [0, 1). A mapping
f is said to be a θ-contraction with respect to Ω, if

‖ f(x)− f(z) ‖≤ θ ‖ x− z ‖, ∀x ∈ C, z ∈ Ω.

f is said to be a θ-contraction, if f is a θ-contraction with respect to C. The following lemmas are useful
for our main result.

Lemma 2.1 ([1]). Let Ω be a nonempty subset of C and f : C → C a θ-contraction with respect to Ω, where
0 ≤ θ < 1. If Ω is closed and convex, then PΩ ◦ f is a θ-contraction on Ω, where PΩ is the metric projection
of H onto Ω.

Lemma 2.2 ([1]). Let f : C → C be a θ-contraction, where 0 ≤ θ < 1 and T : C → C a quasi-nonexpansive
mapping. Then f ◦ T is a θ-contraction with respect to Fix(T ).

Let D be a nonempty subset of C. A sequence {fn} of mappings of C into H is said to be stable on D,
if {fn(z) : n ∈ N} is a singleton for every z ∈ D. It is clear that if {fn} is stable on D, then fn(z) = f1(z)
for all n ∈ N and z ∈ D.

Lemma 2.3 ([9]). Let Tω := (1− ω)I + ωT , with T be a quasi-nonexpansive mapping on H, Fix(T ) 6= φ,
and ω ∈ (0, 1], q ∈ Fix(T ). Then the following statements are reached:

(i) Fix(T ) = Fix(Tω);

(ii) Tω is a quasi-nonexpansive mapping;

(iii) ‖ Tωx− q ‖2≤‖ x− q ‖2 −ω(1− ω) ‖ Tx− x ‖2 for all x ∈ H.

Lemma 2.4 ([5]). Assume {sn} is a sequence of nonnegative real numbers such that

sn+1 ≤ (1− βn)sn + βnδn, n ≥ 0,

sn+1 ≤ sn − ηn + tn, n ≥ 0,

where {βn} is a sequence in (0, 1), ηn is a sequence of nonnegative real numbers, and {δn} and {tn} are two
sequences in R such that:

(i)
∑∞

n=0 βn =∞;

(ii) limn→∞ tn = 0;

(iii) limk→∞ ηnk
= 0 implies lim supk→∞ δnk

≤ 0 for any subsequence {nk} ⊂ {n}.

Then limn→∞ sn = 0.

Lemma 2.5 ([10]). Assume A is a strongly positive linear bounded operator on Hilbert space H with coeffi-
cient γ̄ > 0 and 0 < ρ ≤‖ A ‖−1. Then ‖ I − ρA ‖≤ 1− ργ̄.

3. Main results

In this section, we prove the following strong convergence theorem.

Theorem 3.1. Let H be a real Hilbert space, C a nonempty closed convex subset of H, {Sn} a sequence of
quasi-nonexpansive mappings of C into C such that Ω = ∩∞i=1Fix(Si) is nonempty, and I−Si is demiclosed
at 0. Assume that {fn} is a sequence of mappings of C into C such that each fn is a θ-contraction with
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respect to Ω and {fn} is stable on Ω, where 0 ≤ θ < 1. Let {xn} be a sequence defined by x1 ∈ C and

xn+1 = αnfn(xn) +
n∑
i=1

(αi−1 − αi)Sλni xn,

for n ∈ N, where Sλni = (1−λn)I+λnSi, λn ∈ (0, 1] and {λn} satisfies 0 < lim infn→∞ λn ≤ lim supn→∞ λn <
1. Suppose that {αn} is a sequence in (0, 1] such that α0 = 1, αn → 0,

∑∞
n=1 αn = ∞ and {αn} is strictly

decreasing. Then {xn} converges to ω ∈ Ω, where ω is the unique fixed point of a contraction PΩ ◦ f1.

First, we show some lemmas, then we prove Theorem 3.1. In the rest of this section, we set

βn = αn(1 + (1− 2θ)(1− αn)),

and

γn = α2
n ‖ fn(xn)− ω ‖2 +2αn

n∑
i=1

(αi−1 − αi)〈Sλni xn − ω, f1(ω)− ω〉.

Lemma 3.2. {xn}, {Sixn} and {fn(xn)} are bounded, and moreover,

‖ xn+1 − ω ‖≤ αn ‖ fn(xn)− ω ‖ +
n∑
i=1

(αi−1 − αi) ‖ Sλni xn − ω ‖, (3.1)

and
‖ xn+1 − ω ‖2≤ (1− βn) ‖ xn − ω ‖2 +γn,

hold for every n ∈ N.

Proof. From Lemma 2.3, we know Sλni is quasi-nonexpansive and Fix(Si) = Fix(Sλni ) for all i ∈ N. Since
fn is a θ-contraction with respect to Ω, Sλni is quasi-nonexpansive, ω ∈ Ω ⊂ Fix(Si) = Fix(Sλni ), and {fn}
is stable on Ω, it follows that

‖ xn+1 − ω ‖ =‖ αnfn(xn) +
n∑
i=1

(αi−1 − αi)Sλni xn − ω ‖

≤ αn(‖ fn(xn)− fn(ω) ‖ + ‖ fn(ω)− ω ‖)

+

n∑
i=1

(αi−1 − αi) ‖ Sλni xn − ω ‖

≤ αnθ ‖ xn − ω ‖ +αn ‖ f1(ω)− ω ‖ +(1− αn) ‖ xn − ω ‖

= (1− αn(1− θ)) ‖ xn − ω ‖ +αn(1− θ)‖ f1(ω)− ω ‖
1− θ

(3.2)

for every n ∈ N. Thus, by the induction on n, for every i ∈ N, we have

‖ Sixn − ω ‖≤‖ xn − ω ‖≤ max{‖ x1 − ω ‖,
‖ f1(ω)− ω ‖

1− θ
}.

Therefore, it turns out that {xn} and {Sixn} are bounded, and moreover, {fn(xn)} is also bounded.
Equation (3.1) follows from (3.2).
By assumption, for every i ∈ N , it follows that

〈Sλni xn − ω, fn(xn)− ω〉 ≤‖ Sλni xn − ω ‖ · ‖ fn(xn)− fn(ω) ‖
+ 〈Sλni xn − ω, fn(ω)− ω〉
≤ θ ‖ xn − ω ‖2 +〈Sλni xn − ω, f1(ω)− ω〉,

(3.3)
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and thus

‖ xn+1 − ω ‖2 =‖ αn(fn(xn)− ω) +

n∑
i=1

(αi−1 − αi)(Sλni xn − ω) ‖2

= α2
n ‖ fn(xn)− ω ‖2 + ‖

n∑
i=1

(αi−1 − αi)(Sλni xn − ω) ‖2

+ 2αn〈
n∑
i=1

(αi−1 − αi)(Sλni xn − ω), fn(xn)− ω〉

≤ α2
n ‖ fn(xn)− ω ‖2 +(1− αn)2 ‖ xn − ω ‖2

+ 2αn

n∑
i=1

(αi−1 − αi)〈Sλni xn − ω, fn(xn)− ω〉

≤ α2
n ‖ fn(xn)− ω ‖2 +(1− αn)2 ‖ xn − ω ‖2 +2αn(1− αn)θ ‖ xn − ω ‖2

+ 2αn

n∑
i=1

(αi−1 − αi)〈Sλni xn − ω, f1(ω)− ω〉

= (1− βn) ‖ xn − ω ‖2 +γn

for every n ∈ N.

Lemma 3.3. The following hold:

• 0 < βn ≤ 1 for every n ∈ N;

• 2αn(1− αn)/βn → 1/(1− θ) and 2αn/βn → 1/(1− θ);

• α2
n ‖ fn(xn)− ω ‖2 /βn → 0;

•
∑∞

n=1 βn =∞.

Proof. Since 0 < αn ≤ 1 and −1 < 1− 2θ ≤ 1, we know that

0 < α2
n = αn(1 + (−1)(1− αn)) < βn ≤ αn(1 + (1− αn)) = αn(2− αn) ≤ 1.

From αn → 0 we have 2αn(1−αn)/βn → 1/(1− θ) and 2αn/βn → 1/(1− θ). Since {fn(xn)} is bounded
and

α2
n

βn
=

αn
1 + (1− 2θ)(1− αn)

→ 0,

it follows that α2
n ‖ fn(xn)− ω ‖2 /βn → 0.

Finally, we prove
∑∞

n=1 βn =∞. Suppose that 1−2θ ≥ 0. Then it follows that βn ≥ αn for every n ∈ N.
Thus,

∑∞
n=1 βn = ∞. Next, we suppose that 1 − 2θ < 0. Then βn > 2(1 − θ)αn for every n ∈ N. Thus,∑∞

n=1 βn ≥ 2(1− θ)
∑∞

n=1 αn =∞. This completes the proof.

Proof of Theorem 3.1. By Lemma 2.1, it implies that PΩ ◦ f1 is a θ-contraction on Ω and hence it has a
unique fixed point on Ω.

From Lemma 3.2, we know that

‖ xn+1 − ω ‖2 ≤ (1− βn) ‖ xn − ω ‖2 +α2
n ‖ fn(xn)− ω ‖2

+ 2αn

n∑
i=1

(αi−1 − αi)〈Sλni xn − ω, f1(ω)− ω〉
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= (1− βn) ‖ xn − ω ‖2 +α2
n ‖ fn(xn)− ω ‖2

+ 2αn

n∑
i=1

(αi−1 − αi)〈λn(Sixn − xn), f1(ω)− ω〉

+ 2αn

n∑
i=1

(αi−1 − αi)〈xn − ω, f1(ω)− ω〉,

which implies that

‖ xn+1 − ω ‖2 ≤ (1− βn) ‖ xn − ω ‖2 +βn

[α2
n ‖ fn(xn)− ω ‖2

βn

+
2αn
βn

λn

n∑
i=1

(αi−1 − αi) ‖ xn − Sixn ‖ · ‖ f1(ω)− ω ‖

+
2αn
βn

(1− αn)〈xn − ω, f1(ω)− ω〉
]
.

(3.4)

On the other hand, we obtain from Lemma 2.3 (iii) that

‖ xn+1 − ω ‖2 =‖ αn(fn(xn)− ω) +

n∑
i=1

(αi−1 − αi)(Sλni xn − ω) ‖2

= α2
n ‖ fn(xn)− ω ‖2 + ‖

n∑
i=1

(αi−1 − αi)(Sλni xn − ω) ‖2

+ 2αn〈
n∑
i=1

(αi−1 − αi)Sλni xn − ω, fn(xn)− ω〉

≤ α2
n ‖ fn(xn)− ω ‖2 +(1− αn)2 ‖ xn − ω ‖2

− (1− αn)λn(1− λn)
n∑
i=1

(αi−1 − αi) ‖ Sixn − xn ‖2

+ 2αn

n∑
i=1

(αi−1 − αi)〈Sλni xn − ω, fn(xn)− ω〉.

(3.5)

By using (3.3), we have

(1− αn)2 ‖ xn − ω ‖2 +2αn

n∑
i=1

(αi−1 − αi)〈Sλni xn − ω, fn(xn)− ω〉

≤ (1− αn)2 ‖ xn − ω ‖2 +2αn(1− αn)θ ‖ xn − ω ‖2

+ 2αn

n∑
i=1

(αi−1 − αi)〈Sλni xn − ω, f1(ω)− ω〉)

≤ (1− βn) ‖ xn − ω ‖2 +2αn(1− αn) ‖ xn − ω ‖ · ‖ f1(ω)− ω ‖ .

(3.6)

Since Sλni is quasi-nonexpansive, from (3.5) and (3.6), it follows that

‖ xn+1 − ω ‖2 ≤‖ xn − ω ‖2 +α2
n ‖ fn(xn)− ω ‖2 +2αn(1− αn) ‖ xn − ω ‖ · ‖ f1(ω)− ω ‖

− (1− αn)λn(1− λn)
n∑
i=1

(αi−1 − αi) ‖ Sixn − xn ‖2 .

Suppose that M is a positive constant such that

M ≥ sup{αn ‖ fn(xn)− ω ‖2 +2(1− αn) ‖ xn − ω ‖ · ‖ f1(ω)− ω ‖, n ∈ N}.
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So we have

‖ xn+1 − ω ‖2≤‖ xn − ω ‖2 +αnM − (1− αn)λn(1− λn)
n∑
i=1

(αi−1 − αi) ‖ Sixn − xn ‖2 . (3.7)

Set
sn =‖ xn − ω ‖2, tn = αnM,

δn =
α2
n ‖ fn(xn)− ω ‖2

βn
+

2αn
βn

λn

n∑
i=1

(αi−1 − αi) ‖ xn − Sixn ‖ · ‖ f1(ω)− ω ‖

+
2αn
βn

(1− αn)〈xn − ω, f1(ω)− ω〉,

ηn = (1− αn)λn(1− λn)
n∑
i=1

(αi−1 − αi) ‖ Sixn − xn ‖2 .

Then (3.4) and (3.7) can be rewritten as the following forms, respectively,

sn+1 ≤ (1− βn)sn + βnδn, sn+1 ≤ sn − ηn + tn.

Finally, we observe that the condition limn→∞ αn = 0 and Lemma 3.3 imply limn→∞ tn = 0 and∑∞
n=1 βn =∞, respectively. In order to complete the proof by using Lemma 2.4, it suffices to verify that

lim
k→∞

ηnk
= 0,

implies
lim sup
k→∞

δnk
≤ 0,

for any subsequence {nk} ⊂ {n}.
In fact, for every i ∈ N, if ηnk

→ 0 as k →∞, then

(1− αnk
)λnk

(1− λnk
)

nk∑
i=1

(αi−1 − αi) ‖ Sixnk
− xnk

‖2→ 0 .

And since 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1, there exist λ > 0 and λ > 0, such that 0 < λ ≤
λn ≤ λ < 1. Since limn→∞ αn = 0, there exist some positive integer n0 and α < 1, such that αn < α, when
n > n0, then

(1− α)λ(1− λ)(αi−1 − αi) ‖ Sixnk
− xnk

‖2 ≤ (1− α)λ(1− λ)

nk∑
i=1

(αi−1 − αi) ‖ Sixnk
− xnk

‖2

≤ (1− αnk
)λnk

(1− λnk
)

nk∑
i=1

(αi−1 − αi) ‖ Sixnk
− xnk

‖2→ 0 .

Therefore, since {αn} is strictly decreasing, it follows that

‖ Sixnk
− xnk

‖→ 0 and

nk∑
i=1

(αi−1 − αi) ‖ Sixnk
− xnk

‖2→ 0

for every i ∈ N.
By using the condition that I − Si is demiclosed at 0, we obtain ωw(xnk

) ⊂ F = ∩∞i=1Fix(Si). From
Lemma 3.3, it turns out that

lim sup
k→∞

2αnk
(1− αnk

)

βnk

〈xnk
− ω, f1(ω)− ω〉 =

1

1− θ
lim sup
k→∞

〈xnk
− ω, f1(ω)− ω〉

=
1

1− θ
sup

z∈ωw(xnk
)
〈z − ω, f1(ω)− ω〉 ≤ 0 .
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Since limn→∞ αn = 0,
∑nk

i=1 (αi−1 − αi) ‖ Sixnk
− xnk

‖2→ 0 and {fn(xn)}, {Sixn} are bounded, it is
easy to see that lim supk→∞ δnk

≤ 0. From Lemma 2.4, we conclude that xn → ω.

Remark 3.4. When Sn = S, we can remove the following conditions: α0 = 1 and {αn} is strictly decreasing.
In fact, the above conditions guarantee the coefficients αi−1 − αi greater than 0 for every i ∈ N.

The following corollary is the direct consequence of Theorem 3.1.

Corollary 3.5. Let H be a real Hilbert space, C a nonempty closed convex subset of H, S : C → C a
quasi-nonexpansive mapping, such that Fix(S) 6= ∅ and I − S is demiclosed at 0. Assume that αn → 0,∑∞

n=1 αn = ∞, and fn satisfies the same conditions of Theorem 3.1. Let {xn} be a sequence defined by
x1 ∈ C and

xn+1 = αnfn(xn) + (1− αn)Sλnxn (3.8)

for n ∈ N, where Sλn = (1− λn)I + λnS, and {λn} also satisfies the same conditions of Theorem 3.1. Then
{xn} converges to ω ∈ Ω, where ω is the unique fixed point of a contraction PΩ ◦ f1.

Remark 3.6. If fn = f and λn = λ for all n ∈ N, (3.8) becomes the viscosity approximation process which
is introduced by Maingé (see [9]).

4. Application to variational inequality problem

In this section, by applying Theorem 3.1 and Corollary 3.5, first we study the following variational
inequality problem, which is to find a point x∗ ∈ Ω, such that

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ Ω, (4.1)

where Ω is a nonempty closed convex subset of a real Hilbert space H, and F : H → H is a nonlinear
operator.

The problem (4.1) is denoted by V I(Ω, F ). It is well-known that V I(Ω, F ) is equivalent to the fixed
point problem (see, [7]). If the solution set of V I(Ω, F ) is denoted by Γ, we know that Γ = Fix(PΩ(I−λF )),
where λ > 0 is an arbitrary constant, PΩ is the metric projection onto Ω, and I is the identity operator on
H.

Assume that, F is η-strongly monotone and L-Lipschitzian continuous, that is, F satisfies the conditions

〈Fx− Fy, x− y〉 ≥ η ‖ x− y ‖2, ∀x, y ∈ Ω,

‖ Fx− Fy ‖≤ L ‖ x− y ‖, ∀x, y ∈ Ω.

By using Corollary 3.5, we obtain the following convergence theorem for solving the problem V I(Ω, F ).

Theorem 4.1. Let F be η-strongly monotone and L-Lipschitzian continuous with η > 0, L > 0. Assume
that S is a quasi-nonexpansive operator with Ω = Fix(S) 6= ∅, and I − S is demiclosed at 0. And {αn} is a
sequence in (0, 1] such that αn → 0,

∑∞
n=1 αn =∞. Let {xn} be a sequence defined by x1 ∈ H and

xn+1 = (I − µαnF )Sλnxn, (4.2)

where Sλn = (1− λn)I + λnS, λn ∈ (0, 1], 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1, and 0 < µ < 2η
L2 . Then

{xn} converges strongly to the unique solution of V I(Ω, F ).

Proof. Set fn = (I − µF )Sλn for n ∈ N and θ =
√

1− 2µη + µ2L2. Note that

‖ (I − µF )x− (I − µF )y ‖2 =‖ x− y ‖2 −2µ〈x− y, Fx− Fy〉+ µ2 ‖ Fx− Fy ‖2

≤‖ x− y ‖2 −2µη ‖ x− y ‖2 +µ2L2 ‖ x− y ‖2

= (1− µ(2η − µL2)) ‖ x− y ‖2 .
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From 0 < µ < 2η
L2 , we obtain that I−µF is a θ-contraction. Since S is quasi-nonexpansive, from Lemma

2.3, Sλn is quasi-nonexpansive. By Lemma 2.2, fn is a θ-contraction with respect to Fix(S), and it is stable
on Ω. Moreover, it follows from (4.2) that

xn+1 = αnfn(xn) + (1− αn)Sλnxn

for n ∈ N. Thus from Corollary 3.5, we have that {xn} converges strongly to ω = PFix(S) ◦ f1(ω) =
PFix(S)(I − µF )ω, which is the unique solution of V I(Ω, F ).

Remark 4.2. The iteration (4.2) is called the hybrid steepest descent method, (see[2, 14] for more details).

Finally, we study the following variational inequality problem, which is to find a point x∗ ∈ Fix(S), such
that

〈(γf −A)x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(S), (4.3)

where f is a α-contraction and A is strongly positive, that is, there exists a constant γ̄ > 0 such that
〈Ax, x〉 ≥ γ̄ ‖ x ‖2 for all x ∈ H. Assume that 0 < γ < γ̄/α. The problem (4.3) is denoted by V IP , where
x∗ is the unique solution of V IP , and we have x∗ = PFix(S)(I −A+ γf)x∗.

Theorem 4.3. Assume that S : H → H is a quasi-nonexpansive operator with Ω = Fix(S) 6= ∅, and I − S
is demiclosed at 0. Let {xn} be a sequence defined by x1 ∈ H and

xn+1 = αnγtf(xn) + (I − αntA)Sλnxn, ∀n ≥ 0, (4.4)

where Sλn = (1− λn)I + λnS, and 0 < t < 1
‖A‖ , {λn} and {αn} satisfy the same conditions of Theorem 4.1.

Then {xn} converges strongly to the unique solution of the V IP .

Proof. Set fn = tγf + (I − tA)Sλn . By using Lemma 2.5, note that

‖ fn(x)− fn(p) ‖= ‖ (tγf + (I − tA)Sλn)x− (tγf + (I − tA)Sλn)p ‖
≤tγα ‖ x− p ‖ +(1− tγ) ‖ x− p ‖
=(1− t(γ̄ − γα)) ‖ x− p ‖ .

From 0 < γ < γ̄/α, we obtain that fn is a θ-contraction with respect to Fix(S), and it is stable on
Fix(S). Moreover, it follows from (4.4) that

xn+1 = αnfn(xn) + (1− αn)Sλnxn

for n ∈ N. Thus from Corollary 3.5, we have that {xn} converges strongly to the unique solution of V IP .

Remark 4.4. Let ξn = αnt, since αn → 0 and
∑∞

n=1 αn =∞, we have ξn → 0 and
∑∞

n=1 ξn =∞, then (4.4)
become that

xn+1 = ξnγf(xn) + (I − ξnA)Sλnxn,

which is introduced by Tian and Jin (see [13]).

5. Numerical example

In this section, we give an example to support Theorem 3.1.

Example 5.1. In Theorem 3.1, we assume that H = R. Take fn(x) = x
n , Six = x cos xi , where x ∈ [−π, π].

Given the parameter λn = 3+2n
6n for every n ∈ N.

By the definitions of Si, we have ∩ni=1Fix(Si) = {0}. Si is a quasi-nonexpansive mapping since, if
x ∈ [−π, π] and q = 0, then

‖ Six− q ‖=‖ Six− 0 ‖=| x | · | cos
x

i
|≤| x |=| x− q | .
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From Theorem 3.1, we can conclude that the sequence {xn} converges strongly to 0, as n→∞. We can
rewrite (1.2) as follows

xn+1 =
1

n
αnxn +

n∑
i=1

(αi−1 − αi)(
4n− 3

6n
xn +

3 + 2n

6n
xn cos

xn
i

). (5.1)

Next, we give the parameter αn has three different expressions in (5.1), that is to say, we set α
(1)
n = 1

n+1 ,

α
(2)
n = 1

2n+1 , α
(3)
n = 1√

n+1
. Then, through taking a distinct initial guess x1 = 3, by using software Matlab,

we obtain the numerical experiment results in Table 1, where n is the iterative number, and the expression
of error we take |xn+1−xn|

|xn| .

Table 1: The values of {xn}.

n
α

(1)
n α

(2)
n α

(3)
n

xn error xn error xn error

50 0.0313 1.97×10−2 -0.0699 1.04×10−2 0.0001 1.38×10−1

100 0.0159 9.90×10−3 -0.0488 5.20×10−3 0.0000 9.89×10−2

500 0.0032 2.00×10−3 -0.0210 1.10×10−3

1000 0.0016 9.99×10−4 -0.0146 5.24×10−4

5000 0.0003 1.99×10−4 -0.0063 1.04×10−4

10000 0.0002 9.99×10−5 -0.0044 5.22×10−5

From Table 1, we can easily see that with iterative number increases, {xn} approaches to the unique fixed
point 0 and the errors gradually approach to zero. And with the change of αn, the convergent speed of the

sequence {xn} will be changed, when αn = α
(3)
n , the speed of the sequence {xn} is more faster than others,

and when αn = α
(2)
n the convergent speed of the sequence {xn} become slower. Through this example, we

can conclude that our algorithm is feasible.
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