Research Article

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Journal of Nonlinear Science and Applications

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

Cuijie Zhang*, Yinan Wang

College of Science, Civil Aviation University of China, Tianjin 300300, China.

Communicated by Y. H. Yao

Abstract

In this paper, we study a general viscosity iterative method due to Aoyama and Kohsaka for the fixed point problem of quasi-nonexpansive mappings in Hilbert space. First, we obtain a strong convergence theorem for a sequence of quasi-nonexpansive mappings. Then we give two applications about variational inequality problem to encourage our main theorem. Moreover, we give a numerical example to illustrate our main theorem. ©2016 All rights reserved.

Keywords: Quasi-nonexpansive mapping, variational inequality, fixed point, viscosity iterative method. 2010 MSC: 47H10, 47J20.

1. Introduction

Throughout the present paper, let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. Let C be a nonempty closed convex subset of H and $T: C \to C$ be a mapping. In this paper, we denote the fixed-point set of T by Fix(T). A mapping T is said to be quasi-nonexpansive, if $Fix(T) \neq \emptyset$ and $\|Tx - p\| \leq \|x - p\|$ for all $x \in C$ and $p \in Fix(T)$. We know that if $T: C \to C$ is quasi-nonexpansive, then Fix(T) is closed and convex (see [3] for more general results). A mapping T is said to be nonexpansive, if $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in C$. A mapping T is called demiclosed at 0, if any sequence $\{x_n\}$ weakly converges to x, and if the sequence $\{Tx_n\}$ strongly converges to 0, then Tx = 0.

The viscosity iterative method was proposed by Moudafi [11] firstly. Choose an arbitrary initial $x_0 \in H$, the sequence $\{x_n\}$ is constructed by:

$$x_{n+1} = \frac{\varepsilon_n}{1 + \varepsilon_n} f(x_n) + \frac{1}{1 + \varepsilon_n} T x_n, \quad \forall n \ge 0,$$

^{*}Corresponding author

Email addresses: cuijie_zhang@126.com (Cuijie Zhang), yinan_wang@163.com (Yinan Wang)

where T is a nonexpansive mapping and f is a contraction with a coefficient $\alpha \in [0, 1)$ on H, the sequence $\{\varepsilon_n\}$ is in (0, 1), such that:

- (i) $\lim_{n\to\infty} \varepsilon_n = 0;$
- (ii) $\sum_{n=0}^{\infty} \varepsilon_n = \infty;$
- (iii) $\lim_{n\to\infty} \left(\frac{1}{\varepsilon_n} \frac{1}{\varepsilon_{n+1}}\right) = 0.$

Then $\lim_{n\to\infty} x_n = x^*$, where $x^* \in C(C = Fix(T))$ is the unique solution of the variational inequality

$$\langle (I-f)x^*, x-x^* \rangle \ge 0, \, \forall x \in Fix(T).$$

$$(1.1)$$

Maingé considered the viscosity iterative method for quasi-nonexpansive mappings in Hilbert space in [9]. His focus was on the following algorithm:

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) T_\omega x_n$$

where $\{\alpha_n\}$ is a slow vanishing sequence, and $\omega \in (0, 1], T_\omega := (1 - \omega)I + \omega T, T$ has two main conditions:

- (i) T is quasi-nonexpansive;
- (ii) I T is demiclosed at 0.

He proved the sequence $\{x_n\}$ converges strongly to the unique solution of the variational inequality (1.1). Tian and Jin considered the following iterative process in [13]:

$$x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n A) T_\omega x_n, \quad \forall n \ge 0,$$

where the sequence $\{\alpha_n\}$ satisfies certain conditions, $\omega \in (0, \frac{1}{2})$, $T_{\omega} = (1 - \omega)I + \omega T$, and T is also satisfied the same conditions in Maingé [9]. Then they proved that $\{x_n\}$ converges strongly to the unique solution of the variational inequality:

$$\langle (\gamma f - A)x^*, x - x^* \rangle \leq 0, \quad \forall x \in Fix(T).$$

Recently, Aoyama and Kohsaka considered the following general iterative method in [1]:

$$x_{n+1} = \alpha_n f_n(x_n) + (1 - \alpha_n) S_n x_n,$$

where f_n is a θ -contraction with respect to $\Omega = \bigcap_{n=1}^{\infty} Fix(S_n)$ and $\{f_n\}$ is stable on Ω , and $\{S_n\}$ is a sequence of strongly quasi-nonexpansive mappings of C into C. That is to say, S_n is quasi-nonexpansive and $S_n x_n - x_n \to 0$ whenever $\{x_n\}$ is a bounded sequence in C and $||x_n - p|| - ||S_n x_n - p|| \to 0$ for some point $p \in \Omega$. Then they proved that if the sequence $\{\alpha_n\}$ satisfies appropriate conditions, $\{x_n\}$ converges strongly to the unique fixed point of a contraction $P_{\Omega} \circ f_1$.

Many various iterative algorithms have been studied and extended by many authors, especially about quasi-nonexpansive mappings (see [1, 4, 6-13, 15]).

Motivated by the above results, we extend the iterative method to quasi-nonexpansive mappings. We consider the following iterative process:

$$x_{n+1} = \alpha_n f_n(x_n) + \sum_{i=1}^n (\alpha_{i-1} - \alpha_i) S_i^{\lambda_n} x_n,$$
(1.2)

where $S_i^{\lambda_n} = (1 - \lambda_n)I + \lambda_n S_i$, and $\{S_i\}_{i=1}^{\infty}$ is a sequence of quasi-nonexpansive mappings. Under the appropriate conditions, we establish the strong convergence of the sequence $\{x_n\}$ generated by (1.2).

2. Preliminaries

We denote the strong convergence and the weak convergence of $\{x_n\}$ to $x \in H$ by $x_n \to x$ and $x_n \to x$, respectively.

Let $f: C \to C$ be a mapping, Ω is a nonempty subset of C, and θ is a real number in [0, 1). A mapping f is said to be a θ -contraction with respect to Ω , if

$$\parallel f(x) - f(z) \parallel \le \theta \parallel x - z \parallel, \quad \forall x \in C, \ z \in \Omega$$

f is said to be a θ -contraction, if f is a θ -contraction with respect to C. The following lemmas are useful for our main result.

Lemma 2.1 ([1]). Let Ω be a nonempty subset of C and $f : C \to C$ a θ -contraction with respect to Ω , where $0 \le \theta < 1$. If Ω is closed and convex, then $P_{\Omega} \circ f$ is a θ -contraction on Ω , where P_{Ω} is the metric projection of H onto Ω .

Lemma 2.2 ([1]). Let $f : C \to C$ be a θ -contraction, where $0 \le \theta < 1$ and $T : C \to C$ a quasi-nonexpansive mapping. Then $f \circ T$ is a θ -contraction with respect to Fix(T).

Let D be a nonempty subset of C. A sequence $\{f_n\}$ of mappings of C into H is said to be stable on D, if $\{f_n(z) : n \in \mathbb{N}\}$ is a singleton for every $z \in D$. It is clear that if $\{f_n\}$ is stable on D, then $f_n(z) = f_1(z)$ for all $n \in \mathbb{N}$ and $z \in D$.

Lemma 2.3 ([9]). Let $T_{\omega} := (1 - \omega)I + \omega T$, with T be a quasi-nonexpansive mapping on H, $Fix(T) \neq \phi$, and $\omega \in (0, 1]$, $q \in Fix(T)$. Then the following statements are reached:

- (i) $Fix(T) = Fix(T_{\omega});$
- (ii) T_{ω} is a quasi-nonexpansive mapping;
- (iii) $|| T_{\omega}x q ||^2 \le || x q ||^2 \omega(1 \omega) || Tx x ||^2$ for all $x \in H$.

Lemma 2.4 ([5]). Assume $\{s_n\}$ is a sequence of nonnegative real numbers such that

$$s_{n+1} \le (1 - \beta_n)s_n + \beta_n \delta_n, \quad n \ge 0,$$

$$s_{n+1} \le s_n - \eta_n + t_n, \quad n \ge 0,$$

where $\{\beta_n\}$ is a sequence in (0, 1), η_n is a sequence of nonnegative real numbers, and $\{\delta_n\}$ and $\{t_n\}$ are two sequences in \mathbb{R} such that:

- (i) $\sum_{n=0}^{\infty} \beta_n = \infty;$
- (ii) $\lim_{n\to\infty} t_n = 0;$
- (iii) $\lim_{k\to\infty} \eta_{n_k} = 0$ implies $\lim_{k\to\infty} \delta_{n_k} \leq 0$ for any subsequence $\{n_k\} \subset \{n\}$.

Then $\lim_{n\to\infty} s_n = 0$.

Lemma 2.5 ([10]). Assume A is a strongly positive linear bounded operator on Hilbert space H with coefficient $\bar{\gamma} > 0$ and $0 < \rho \leq ||A||^{-1}$. Then $||I - \rho A|| \leq 1 - \rho \bar{\gamma}$.

3. Main results

In this section, we prove the following strong convergence theorem.

Theorem 3.1. Let H be a real Hilbert space, C a nonempty closed convex subset of H, $\{S_n\}$ a sequence of quasi-nonexpansive mappings of C into C such that $\Omega = \bigcap_{i=1}^{\infty} Fix(S_i)$ is nonempty, and $I - S_i$ is demiclosed at 0. Assume that $\{f_n\}$ is a sequence of mappings of C into C such that each f_n is a θ -contraction with

respect to Ω and $\{f_n\}$ is stable on Ω , where $0 \leq \theta < 1$. Let $\{x_n\}$ be a sequence defined by $x_1 \in C$ and

$$x_{n+1} = \alpha_n f_n(x_n) + \sum_{i=1}^n (\alpha_{i-1} - \alpha_i) S_i^{\lambda_n} x_n,$$

for $n \in \mathbb{N}$, where $S_i^{\lambda_n} = (1-\lambda_n)I + \lambda_n S_i$, $\lambda_n \in (0,1]$ and $\{\lambda_n\}$ satisfies $0 < \liminf_{n \to \infty} \lambda_n \le \limsup_{n \to \infty} \lambda_n < 1$. 1. Suppose that $\{\alpha_n\}$ is a sequence in (0,1] such that $\alpha_0 = 1$, $\alpha_n \to 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\{\alpha_n\}$ is strictly decreasing. Then $\{x_n\}$ converges to $\omega \in \Omega$, where ω is the unique fixed point of a contraction $P_{\Omega} \circ f_1$.

First, we show some lemmas, then we prove Theorem 3.1. In the rest of this section, we set

$$\beta_n = \alpha_n (1 + (1 - 2\theta)(1 - \alpha_n))$$

and

$$\gamma_n = \alpha_n^2 \parallel f_n(x_n) - \omega \parallel^2 + 2\alpha_n \sum_{i=1}^n (\alpha_{i-1} - \alpha_i) \langle S_i^{\lambda_n} x_n - \omega, f_1(\omega) - \omega \rangle.$$

Lemma 3.2. $\{x_n\}, \{S_ix_n\}$ and $\{f_n(x_n)\}$ are bounded, and moreover,

$$\|x_{n+1} - \omega\| \le \alpha_n \|f_n(x_n) - \omega\| + \sum_{i=1}^n (\alpha_{i-1} - \alpha_i) \|S_i^{\lambda_n} x_n - \omega\|,$$
(3.1)

and

$$||x_{n+1} - \omega||^2 \le (1 - \beta_n) ||x_n - \omega||^2 + \gamma_n,$$

hold for every $n \in \mathbb{N}$.

Proof. From Lemma 2.3, we know $S_i^{\lambda_n}$ is quasi-nonexpansive and $Fix(S_i) = Fix(S_i^{\lambda_n})$ for all $i \in \mathbb{N}$. Since f_n is a θ -contraction with respect to Ω , $S_i^{\lambda_n}$ is quasi-nonexpansive, $\omega \in \Omega \subset Fix(S_i) = Fix(S_i^{\lambda_n})$, and $\{f_n\}$ is stable on Ω , it follows that

$$\| x_{n+1} - \omega \| = \| \alpha_n f_n(x_n) + \sum_{i=1}^n (\alpha_{i-1} - \alpha_i) S_i^{\lambda_n} x_n - \omega \|$$

$$\leq \alpha_n (\| f_n(x_n) - f_n(\omega) \| + \| f_n(\omega) - \omega \|)$$

$$+ \sum_{i=1}^n (\alpha_{i-1} - \alpha_i) \| S_i^{\lambda_n} x_n - \omega \|$$

$$\leq \alpha_n \theta \| x_n - \omega \| + \alpha_n \| f_1(\omega) - \omega \| + (1 - \alpha_n) \| x_n - \omega \|$$

$$= (1 - \alpha_n (1 - \theta)) \| x_n - \omega \| + \alpha_n (1 - \theta) \frac{\| f_1(\omega) - \omega \|}{1 - \theta}$$
(3.2)

for every $n \in \mathbb{N}$. Thus, by the induction on n, for every $i \in \mathbb{N}$, we have

$$|| S_i x_n - \omega || \le || x_n - \omega || \le \max\{|| x_1 - \omega ||, \frac{|| f_1(\omega) - \omega ||}{1 - \theta}\}.$$

Therefore, it turns out that $\{x_n\}$ and $\{S_ix_n\}$ are bounded, and moreover, $\{f_n(x_n)\}$ is also bounded. Equation (3.1) follows from (3.2).

By assumption, for every $i \in \mathbb{N}$, it follows that

$$\langle S_i^{\lambda_n} x_n - \omega, f_n(x_n) - \omega \rangle \leq \| S_i^{\lambda_n} x_n - \omega \| \cdot \| f_n(x_n) - f_n(\omega) \| + \langle S_i^{\lambda_n} x_n - \omega, f_n(\omega) - \omega \rangle \leq \theta \| x_n - \omega \|^2 + \langle S_i^{\lambda_n} x_n - \omega, f_1(\omega) - \omega \rangle,$$

$$(3.3)$$

and thus

$$\| x_{n+1} - \omega \|^{2} = \| \alpha_{n}(f_{n}(x_{n}) - \omega) + \sum_{i=1}^{n} (\alpha_{i-1} - \alpha_{i})(S_{i}^{\lambda_{n}}x_{n} - \omega) \|^{2}$$

$$= \alpha_{n}^{2} \| f_{n}(x_{n}) - \omega \|^{2} + \| \sum_{i=1}^{n} (\alpha_{i-1} - \alpha_{i})(S_{i}^{\lambda_{n}}x_{n} - \omega) \|^{2}$$

$$+ 2\alpha_{n} \langle \sum_{i=1}^{n} (\alpha_{i-1} - \alpha_{i})(S_{i}^{\lambda_{n}}x_{n} - \omega), f_{n}(x_{n}) - \omega \rangle$$

$$\leq \alpha_{n}^{2} \| f_{n}(x_{n}) - \omega \|^{2} + (1 - \alpha_{n})^{2} \| x_{n} - \omega \|^{2}$$

$$+ 2\alpha_{n} \sum_{i=1}^{n} (\alpha_{i-1} - \alpha_{i}) \langle S_{i}^{\lambda_{n}}x_{n} - \omega, f_{n}(x_{n}) - \omega \rangle$$

$$\leq \alpha_{n}^{2} \| f_{n}(x_{n}) - \omega \|^{2} + (1 - \alpha_{n})^{2} \| x_{n} - \omega \|^{2} + 2\alpha_{n}(1 - \alpha_{n})\theta \| x_{n} - \omega \|^{2}$$

$$+ 2\alpha_{n} \sum_{i=1}^{n} (\alpha_{i-1} - \alpha_{i}) \langle S_{i}^{\lambda_{n}}x_{n} - \omega, f_{1}(\omega) - \omega \rangle$$

$$= (1 - \beta_{n}) \| x_{n} - \omega \|^{2} + \gamma_{n}$$

for every $n \in \mathbb{N}$.

Lemma 3.3. The following hold:

- $0 < \beta_n \leq 1$ for every $n \in \mathbb{N}$;
- $2\alpha_n(1-\alpha_n)/\beta_n \to 1/(1-\theta)$ and $2\alpha_n/\beta_n \to 1/(1-\theta)$;
- $\alpha_n^2 \parallel f_n(x_n) \omega \parallel^2 /\beta_n \to 0;$

•
$$\sum_{n=1}^{\infty} \beta_n = \infty$$

Proof. Since $0 < \alpha_n \leq 1$ and $-1 < 1 - 2\theta \leq 1$, we know that

$$0 < \alpha_n^2 = \alpha_n (1 + (-1)(1 - \alpha_n)) < \beta_n \le \alpha_n (1 + (1 - \alpha_n)) = \alpha_n (2 - \alpha_n) \le 1.$$

From $\alpha_n \to 0$ we have $2\alpha_n(1-\alpha_n)/\beta_n \to 1/(1-\theta)$ and $2\alpha_n/\beta_n \to 1/(1-\theta)$. Since $\{f_n(x_n)\}$ is bounded and

$$\frac{\alpha_n^2}{\beta_n} = \frac{\alpha_n}{1 + (1 - 2\theta)(1 - \alpha_n)} \to 0,$$

it follows that $\alpha_n^2 \parallel f_n(x_n) - \omega \parallel^2 /\beta_n \to 0$. Finally, we prove $\sum_{n=1}^{\infty} \beta_n = \infty$. Suppose that $1 - 2\theta \ge 0$. Then it follows that $\beta_n \ge \alpha_n$ for every $n \in \mathbb{N}$. Thus, $\sum_{n=1}^{\infty} \beta_n = \infty$. Next, we suppose that $1 - 2\theta < 0$. Then $\beta_n > 2(1 - \theta)\alpha_n$ for every $n \in \mathbb{N}$. Thus, $\sum_{n=1}^{\infty} \beta_n \ge 2(1 - \theta) \sum_{n=1}^{\infty} \alpha_n = \infty$. This completes the proof.

Proof of Theorem 3.1. By Lemma 2.1, it implies that $P_{\Omega} \circ f_1$ is a θ -contraction on Ω and hence it has a unique fixed point on Ω .

From Lemma 3.2, we know that

$$\|x_{n+1} - \omega\|^2 \le (1 - \beta_n) \|x_n - \omega\|^2 + \alpha_n^2 \|f_n(x_n) - \omega\|^2 + 2\alpha_n \sum_{i=1}^n (\alpha_{i-1} - \alpha_i) \langle S_i^{\lambda_n} x_n - \omega, f_1(\omega) - \omega \rangle$$

$$= (1 - \beta_n) || x_n - \omega ||^2 + \alpha_n^2 || f_n(x_n) - \omega ||^2$$

+ $2\alpha_n \sum_{i=1}^n (\alpha_{i-1} - \alpha_i) \langle \lambda_n(S_i x_n - x_n), f_1(\omega) - \omega \rangle$
+ $2\alpha_n \sum_{i=1}^n (\alpha_{i-1} - \alpha_i) \langle x_n - \omega, f_1(\omega) - \omega \rangle,$

which implies that

$$\|x_{n+1} - \omega\|^{2} \leq (1 - \beta_{n}) \|x_{n} - \omega\|^{2} + \beta_{n} \left[\frac{\alpha_{n}^{2} \|f_{n}(x_{n}) - \omega\|^{2}}{\beta_{n}} + \frac{2\alpha_{n}}{\beta_{n}}\lambda_{n}\sum_{i=1}^{n}(\alpha_{i-1} - \alpha_{i}) \|x_{n} - S_{i}x_{n}\| \cdot \|f_{1}(\omega) - \omega\| + \frac{2\alpha_{n}}{\beta_{n}}(1 - \alpha_{n})\langle x_{n} - \omega, f_{1}(\omega) - \omega\rangle\right].$$

$$(3.4)$$

On the other hand, we obtain from Lemma 2.3 (iii) that

$$\| x_{n+1} - \omega \|^{2} = \| \alpha_{n}(f_{n}(x_{n}) - \omega) + \sum_{i=1}^{n} (\alpha_{i-1} - \alpha_{i})(S_{i}^{\lambda_{n}}x_{n} - \omega) \|^{2}$$

$$= \alpha_{n}^{2} \| f_{n}(x_{n}) - \omega \|^{2} + \| \sum_{i=1}^{n} (\alpha_{i-1} - \alpha_{i})(S_{i}^{\lambda_{n}}x_{n} - \omega) \|^{2}$$

$$+ 2\alpha_{n} \langle \sum_{i=1}^{n} (\alpha_{i-1} - \alpha_{i})S_{i}^{\lambda_{n}}x_{n} - \omega, f_{n}(x_{n}) - \omega \rangle$$

$$\leq \alpha_{n}^{2} \| f_{n}(x_{n}) - \omega \|^{2} + (1 - \alpha_{n})^{2} \| x_{n} - \omega \|^{2}$$

$$- (1 - \alpha_{n})\lambda_{n}(1 - \lambda_{n}) \sum_{i=1}^{n} (\alpha_{i-1} - \alpha_{i}) \| S_{i}x_{n} - x_{n} \|^{2}$$

$$+ 2\alpha_{n} \sum_{i=1}^{n} (\alpha_{i-1} - \alpha_{i}) \langle S_{i}^{\lambda_{n}}x_{n} - \omega, f_{n}(x_{n}) - \omega \rangle.$$
(3.5)

By using (3.3), we have

$$(1 - \alpha_n)^2 \parallel x_n - \omega \parallel^2 + 2\alpha_n \sum_{i=1}^n (\alpha_{i-1} - \alpha_i) \langle S_i^{\lambda_n} x_n - \omega, f_n(x_n) - \omega \rangle$$

$$\leq (1 - \alpha_n)^2 \parallel x_n - \omega \parallel^2 + 2\alpha_n (1 - \alpha_n) \theta \parallel x_n - \omega \parallel^2$$

$$+ 2\alpha_n \sum_{i=1}^n (\alpha_{i-1} - \alpha_i) \langle S_i^{\lambda_n} x_n - \omega, f_1(\omega) - \omega \rangle)$$

$$\leq (1 - \beta_n) \parallel x_n - \omega \parallel^2 + 2\alpha_n (1 - \alpha_n) \parallel x_n - \omega \parallel \cdot \parallel f_1(\omega) - \omega \parallel.$$

$$(3.6)$$

Since $S_i^{\lambda_n}$ is quasi-nonexpansive, from (3.5) and (3.6), it follows that

$$\| x_{n+1} - \omega \|^{2} \leq \| x_{n} - \omega \|^{2} + \alpha_{n}^{2} \| f_{n}(x_{n}) - \omega \|^{2} + 2\alpha_{n}(1 - \alpha_{n}) \| x_{n} - \omega \| \cdot \| f_{1}(\omega) - \omega \| - (1 - \alpha_{n})\lambda_{n}(1 - \lambda_{n})\sum_{i=1}^{n} (\alpha_{i-1} - \alpha_{i}) \| S_{i}x_{n} - x_{n} \|^{2}.$$

Suppose that M is a positive constant such that

 $M \ge \sup\{\alpha_n \parallel f_n(x_n) - \omega \parallel^2 + 2(1 - \alpha_n) \parallel x_n - \omega \parallel \cdot \parallel f_1(\omega) - \omega \parallel, n \in \mathbb{N}\}.$

So we have

$$\|x_{n+1} - \omega\|^2 \le \|x_n - \omega\|^2 + \alpha_n M - (1 - \alpha_n)\lambda_n (1 - \lambda_n) \sum_{i=1}^n (\alpha_{i-1} - \alpha_i) \|S_i x_n - x_n\|^2.$$
(3.7)

Set

$$s_{n} = \| x_{n} - \omega \|^{2}, \ t_{n} = \alpha_{n}M,$$

$$\delta_{n} = \frac{\alpha_{n}^{2} \| f_{n}(x_{n}) - \omega \|^{2}}{\beta_{n}} + \frac{2\alpha_{n}}{\beta_{n}}\lambda_{n}\sum_{i=1}^{n}(\alpha_{i-1} - \alpha_{i}) \| x_{n} - S_{i}x_{n} \| \cdot \| f_{1}(\omega) - \omega |$$

$$+ \frac{2\alpha_{n}}{\beta_{n}}(1 - \alpha_{n})\langle x_{n} - \omega, f_{1}(\omega) - \omega \rangle,$$

$$\eta_{n} = (1 - \alpha_{n})\lambda_{n}(1 - \lambda_{n})\sum_{i=1}^{n}(\alpha_{i-1} - \alpha_{i}) \| S_{i}x_{n} - x_{n} \|^{2}.$$

Then (3.4) and (3.7) can be rewritten as the following forms, respectively,

$$s_{n+1} \le (1-\beta_n)s_n + \beta_n \delta_n, \qquad s_{n+1} \le s_n - \eta_n + t_n.$$

Finally, we observe that the condition $\lim_{n\to\infty} \alpha_n = 0$ and Lemma 3.3 imply $\lim_{n\to\infty} t_n = 0$ and $\sum_{n=1}^{\infty} \beta_n = \infty$, respectively. In order to complete the proof by using Lemma 2.4, it suffices to verify that

$$\lim_{k\to\infty}\eta_{n_k}=0,$$

implies

$$\limsup_{k \to \infty} \delta_{n_k} \le 0$$

for any subsequence $\{n_k\} \subset \{n\}$.

In fact, for every $i \in \mathbb{N}$, if $\eta_{n_k} \to 0$ as $k \to \infty$, then

$$(1 - \alpha_{n_k})\lambda_{n_k}(1 - \lambda_{n_k})\sum_{i=1}^{n_k} (\alpha_{i-1} - \alpha_i) \parallel S_i x_{n_k} - x_{n_k} \parallel^2 \to 0.$$

And since $0 < \liminf_{n \to \infty} \lambda_n \leq \limsup_{n \to \infty} \lambda_n < 1$, there exist $\underline{\lambda} > 0$ and $\overline{\lambda} > 0$, such that $0 < \underline{\lambda} \leq \lambda_n \leq \overline{\lambda} < 1$. Since $\lim_{n \to \infty} \alpha_n = 0$, there exist some positive integer n_0 and $\overline{\alpha} < 1$, such that $\alpha_n < \overline{\alpha}$, when $n > n_0$, then

$$(1-\overline{\alpha})\underline{\lambda}(1-\overline{\lambda})(\alpha_{i-1}-\alpha_i) \parallel S_i x_{n_k} - x_{n_k} \parallel^2 \leq (1-\overline{\alpha})\underline{\lambda}(1-\overline{\lambda})\sum_{i=1}^{n_k} (\alpha_{i-1}-\alpha_i) \parallel S_i x_{n_k} - x_{n_k} \parallel^2 \\ \leq (1-\alpha_{n_k})\lambda_{n_k}(1-\lambda_{n_k})\sum_{i=1}^{n_k} (\alpha_{i-1}-\alpha_i) \parallel S_i x_{n_k} - x_{n_k} \parallel^2 \to 0$$

Therefore, since $\{\alpha_n\}$ is strictly decreasing, it follows that

$$|| S_i x_{n_k} - x_{n_k} || \to 0 \text{ and } \sum_{i=1}^{n_k} (\alpha_{i-1} - \alpha_i) || S_i x_{n_k} - x_{n_k} ||^2 \to 0$$

for every $i \in \mathbb{N}$.

By using the condition that $I - S_i$ is demiclosed at 0, we obtain $\omega_w(x_{n_k}) \subset F = \bigcap_{i=1}^{\infty} Fix(S_i)$. From Lemma 3.3, it turns out that

$$\limsup_{k \to \infty} \frac{2\alpha_{n_k}(1 - \alpha_{n_k})}{\beta_{n_k}} \langle x_{n_k} - \omega, f_1(\omega) - \omega \rangle = \frac{1}{1 - \theta} \limsup_{k \to \infty} \langle x_{n_k} - \omega, f_1(\omega) - \omega \rangle$$
$$= \frac{1}{1 - \theta} \sup_{z \in \omega_w(x_{n_k})} \langle z - \omega, f_1(\omega) - \omega \rangle \le 0.$$

Since $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{i=1}^{n_k} (\alpha_{i-1} - \alpha_i) \parallel S_i x_{n_k} - x_{n_k} \parallel^2 \to 0$ and $\{f_n(x_n)\}, \{S_i x_n\}$ are bounded, it is easy to see that $\limsup_{k\to\infty} \delta_{n_k} \leq 0$. From Lemma 2.4, we conclude that $x_n \to \omega$.

Remark 3.4. When $S_n = S$, we can remove the following conditions: $\alpha_0 = 1$ and $\{\alpha_n\}$ is strictly decreasing. In fact, the above conditions guarantee the coefficients $\alpha_{i-1} - \alpha_i$ greater than 0 for every $i \in \mathbb{N}$.

The following corollary is the direct consequence of Theorem 3.1.

Corollary 3.5. Let H be a real Hilbert space, C a nonempty closed convex subset of H, $S : C \to C$ a quasi-nonexpansive mapping, such that $Fix(S) \neq \emptyset$ and I - S is demiclosed at 0. Assume that $\alpha_n \to 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$, and f_n satisfies the same conditions of Theorem 3.1. Let $\{x_n\}$ be a sequence defined by $x_1 \in C$ and

$$x_{n+1} = \alpha_n f_n(x_n) + (1 - \alpha_n) S^{\lambda_n} x_n \tag{3.8}$$

for $n \in \mathbb{N}$, where $S^{\lambda_n} = (1 - \lambda_n)I + \lambda_n S$, and $\{\lambda_n\}$ also satisfies the same conditions of Theorem 3.1. Then $\{x_n\}$ converges to $\omega \in \Omega$, where ω is the unique fixed point of a contraction $P_{\Omega} \circ f_1$.

Remark 3.6. If $f_n = f$ and $\lambda_n = \lambda$ for all $n \in \mathbb{N}$, (3.8) becomes the viscosity approximation process which is introduced by Maingé (see [9]).

4. Application to variational inequality problem

In this section, by applying Theorem 3.1 and Corollary 3.5, first we study the following variational inequality problem, which is to find a point $x^* \in \Omega$, such that

$$\langle F(x^*), x - x^* \rangle \ge 0, \quad \forall x \in \Omega,$$

$$(4.1)$$

where Ω is a nonempty closed convex subset of a real Hilbert space H, and $F : H \to H$ is a nonlinear operator.

The problem (4.1) is denoted by $VI(\Omega, F)$. It is well-known that $VI(\Omega, F)$ is equivalent to the fixed point problem (see, [7]). If the solution set of $VI(\Omega, F)$ is denoted by Γ , we know that $\Gamma = Fix(P_{\Omega}(I - \lambda F))$, where $\lambda > 0$ is an arbitrary constant, P_{Ω} is the metric projection onto Ω , and I is the identity operator on H.

Assume that, F is η -strongly monotone and L-Lipschitzian continuous, that is, F satisfies the conditions

$$\langle Fx - Fy, x - y \rangle \ge \eta \parallel x - y \parallel^2, \quad \forall x, y \in \Omega$$
$$\parallel Fx - Fy \parallel \le L \parallel x - y \parallel, \quad \forall x, y \in \Omega.$$

By using Corollary 3.5, we obtain the following convergence theorem for solving the problem $VI(\Omega, F)$.

Theorem 4.1. Let F be η -strongly monotone and L-Lipschitzian continuous with $\eta > 0$, L > 0. Assume that S is a quasi-nonexpansive operator with $\Omega = Fix(S) \neq \emptyset$, and I - S is demiclosed at 0. And $\{\alpha_n\}$ is a sequence in (0,1] such that $\alpha_n \to 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$. Let $\{x_n\}$ be a sequence defined by $x_1 \in H$ and

$$x_{n+1} = (I - \mu \alpha_n F) S^{\lambda_n} x_n, \tag{4.2}$$

where $S^{\lambda_n} = (1 - \lambda_n)I + \lambda_n S$, $\lambda_n \in (0, 1]$, $0 < \liminf_{n \to \infty} \lambda_n \le \limsup_{n \to \infty} \lambda_n < 1$, and $0 < \mu < \frac{2\eta}{L^2}$. Then $\{x_n\}$ converges strongly to the unique solution of $VI(\Omega, F)$.

Proof. Set $f_n = (I - \mu F)S^{\lambda_n}$ for $n \in \mathbb{N}$ and $\theta = \sqrt{1 - 2\mu\eta + \mu^2 L^2}$. Note that

$$\begin{split} \| (I - \mu F)x - (I - \mu F)y \|^2 &= \| x - y \|^2 - 2\mu \langle x - y, Fx - Fy \rangle + \mu^2 \| Fx - Fy \|^2 \\ &\leq \| x - y \|^2 - 2\mu\eta \| x - y \|^2 + \mu^2 L^2 \| x - y \|^2 \\ &= (1 - \mu(2\eta - \mu L^2)) \| x - y \|^2 . \end{split}$$

From $0 < \mu < \frac{2\eta}{L^2}$, we obtain that $I - \mu F$ is a θ -contraction. Since S is quasi-nonexpansive, from Lemma 2.3, S^{λ_n} is quasi-nonexpansive. By Lemma 2.2, f_n is a θ -contraction with respect to Fix(S), and it is stable on Ω . Moreover, it follows from (4.2) that

$$x_{n+1} = \alpha_n f_n(x_n) + (1 - \alpha_n) S^{\lambda_n} x_n$$

for $n \in \mathbb{N}$. Thus from Corollary 3.5, we have that $\{x_n\}$ converges strongly to $\omega = P_{Fix(S)} \circ f_1(\omega) = P_{Fix(S)}(I - \mu F)\omega$, which is the unique solution of $VI(\Omega, F)$.

Remark 4.2. The iteration (4.2) is called the hybrid steepest descent method, (see [2, 14] for more details).

Finally, we study the following variational inequality problem, which is to find a point $x^* \in Fix(S)$, such that

$$\langle (\gamma f - A)x^*, x - x^* \rangle \ge 0, \quad \forall x \in Fix(S),$$

$$(4.3)$$

where f is a α -contraction and A is strongly positive, that is, there exists a constant $\bar{\gamma} > 0$ such that $\langle Ax, x \rangle \geq \bar{\gamma} \parallel x \parallel^2$ for all $x \in H$. Assume that $0 < \gamma < \bar{\gamma}/\alpha$. The problem (4.3) is denoted by VIP, where x^* is the unique solution of VIP, and we have $x^* = P_{Fix(S)}(I - A + \gamma f)x^*$.

Theorem 4.3. Assume that $S : H \to H$ is a quasi-nonexpansive operator with $\Omega = Fix(S) \neq \emptyset$, and I - S is demiclosed at 0. Let $\{x_n\}$ be a sequence defined by $x_1 \in H$ and

$$x_{n+1} = \alpha_n \gamma t f(x_n) + (I - \alpha_n t A) S^{\lambda_n} x_n, \quad \forall n \ge 0,$$
(4.4)

where $S^{\lambda_n} = (1 - \lambda_n)I + \lambda_n S$, and $0 < t < \frac{1}{\|A\|}$, $\{\lambda_n\}$ and $\{\alpha_n\}$ satisfy the same conditions of Theorem 4.1. Then $\{x_n\}$ converges strongly to the unique solution of the VIP.

Proof. Set $f_n = t\gamma f + (I - tA)S^{\lambda_n}$. By using Lemma 2.5, note that

$$\| f_n(x) - f_n(p) \| = \| (t\gamma f + (I - tA)S^{\lambda_n})x - (t\gamma f + (I - tA)S^{\lambda_n})p \|$$

$$\leq t\gamma \alpha \| x - p \| + (1 - t\gamma) \| x - p \|$$

$$= (1 - t(\bar{\gamma} - \gamma \alpha)) \| x - p \|.$$

From $0 < \gamma < \overline{\gamma}/\alpha$, we obtain that f_n is a θ -contraction with respect to Fix(S), and it is stable on Fix(S). Moreover, it follows from (4.4) that

$$x_{n+1} = \alpha_n f_n(x_n) + (1 - \alpha_n) S^{\lambda_n} x_n$$

for $n \in \mathbb{N}$. Thus from Corollary 3.5, we have that $\{x_n\}$ converges strongly to the unique solution of VIP. \Box

Remark 4.4. Let $\xi_n = \alpha_n t$, since $\alpha_n \to 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$, we have $\xi_n \to 0$ and $\sum_{n=1}^{\infty} \xi_n = \infty$, then (4.4) become that

$$x_{n+1} = \xi_n \gamma f(x_n) + (I - \xi_n A) S^{\lambda_n} x_n,$$

which is introduced by Tian and Jin (see [13]).

5. Numerical example

In this section, we give an example to support Theorem 3.1.

Example 5.1. In Theorem 3.1, we assume that H = R. Take $f_n(x) = \frac{x}{n}$, $S_i x = x \cos \frac{x}{i}$, where $x \in [-\pi, \pi]$. Given the parameter $\lambda_n = \frac{3+2n}{6n}$ for every $n \in \mathbb{N}$.

By the definitions of S_i , we have $\bigcap_{i=1}^n Fix(S_i) = \{0\}$. S_i is a quasi-nonexpansive mapping since, if $x \in [-\pi, \pi]$ and q = 0, then

$$|| S_i x - q || = || S_i x - 0 || = |x| \cdot |\cos \frac{x}{i} | \le |x| = |x - q|.$$

From Theorem 3.1, we can conclude that the sequence $\{x_n\}$ converges strongly to 0, as $n \to \infty$. We can rewrite (1.2) as follows

$$x_{n+1} = \frac{1}{n}\alpha_n x_n + \sum_{i=1}^n (\alpha_{i-1} - \alpha_i)(\frac{4n-3}{6n}x_n + \frac{3+2n}{6n}x_n \cos\frac{x_n}{i}).$$
(5.1)

Next, we give the parameter α_n has three different expressions in (5.1), that is to say, we set $\alpha_n^{(1)} = \frac{1}{n+1}$, $\alpha_n^{(2)} = \frac{1}{2n+1}$, $\alpha_n^{(3)} = \frac{1}{\sqrt{n+1}}$. Then, through taking a distinct initial guess $x_1 = 3$, by using software Matlab, we obtain the numerical experiment results in Table 1, where *n* is the iterative number, and the expression of error we take $\frac{|x_{n+1}-x_n|}{|x_n|}$.

Table 1: The values of $\{x_n\}$.						
n	$\alpha_n^{(1)}$		$\alpha_n^{(2)}$		$\alpha_n^{(3)}$	
	x_n	error	x_n	error	x_n	error
50	0.0313	$1.97{\times}10^{-2}$	-0.0699	1.04×10^{-2}	0.0001	1.38×10^{-1}
100	0.0159	9.90×10^{-3}	-0.0488	5.20×10^{-3}	0.0000	9.89×10^{-2}
500	0.0032	2.00×10^{-3}	-0.0210	1.10×10^{-3}		
1000	0.0016	$9.99 { imes} 10^{-4}$	-0.0146	5.24×10^{-4}		
5000	0.0003	$1.99{\times}10^{-4}$	-0.0063	1.04×10^{-4}		
10000	0.0002	9.99×10^{-5}	-0.0044	5.22×10^{-5}		

From Table 1, we can easily see that with iterative number increases, $\{x_n\}$ approaches to the unique fixed point 0 and the errors gradually approach to zero. And with the change of α_n , the convergent speed of the sequence $\{x_n\}$ will be changed, when $\alpha_n = \alpha_n^{(3)}$, the speed of the sequence $\{x_n\}$ is more faster than others, and when $\alpha_n = \alpha_n^{(2)}$ the convergent speed of the sequence $\{x_n\}$ become slower. Through this example, we can conclude that our algorithm is feasible.

Acknowledgment

The first author is supported by the Fundamental Science Research Funds for the Central Universities (Program No. 3122014k010).

References

- K. Aoyama, F. Kohsaka, Viscosity approximation process for a sequence of quasinonexpansive mappings, Fixed Point Theory Appl., 2014 (2014), 11 pages. 1, 2.1, 2.2
- [2] A. Cegielski, R. Zalas, Methods for variational inequality problem over the intersection of fixed point sets of quasi-nonexpansive operators, Numer. Funct. Anal. Optim., 34 (2013), 255–283. 4.2
- [3] W. G. Doson, Fixed points of quasi-nonexpansive mappings, J. Austral. Math. Soc., 13 (1972), 167–170. 1
- [4] M. K. Ghosh, L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl., 207 (1997), 96–103. 1
- [5] S. N. He, C. P. Yang, Solving the variational inequality problem defined on intersection of finite level sets, Abstr. Appl. Anal., 2013 (2013), 8 pages. 2.4
- [6] G. E. Kim, Weak and strong convergence for quasi-nonexpansive mappings in Banach spaces, Bull. Korean. Math. Soc., 49 (2012), 799–813.
- [7] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, (1980).
 4
- [8] R. Li, Z. H. He, A new iterative algorithm for split solution problems of quasi-nonexpansive mappings, J. Inequal. Appl., 2015 (2015), 12 pages.

- P. E. Maingé, The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces, Comput. Math. Appl., 59 (2010), 74–79. 1, 2.3, 3.6
- [10] G. Marino, H.-K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 318 (2006), 43–52. 2.5
- [11] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46–55.
- [12] W. V. Petryshyn, T. E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl., 43 (1973), 459–497.
- [13] M. Tian, X. Jin, A general iterative method for quasi-nonexpansive mappings in Hilbert space, J. Inequal. Appl., 2012 (2012), 8 pages. 1, 4.4
- [14] I. Yamada, N. Ogura, Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings, Numer. Funct. Anal. Optim., 25 (2006), 619–655. 4.2
- [15] J. Zhao, S. N. He, Strong convergence of the viscosity approximation process for the split common fixed-point problem of quasi-nonexpansive mappings, J. Appl. Math., 2012 (2012), 12 pages. 1