Strong convergence of a general iterative algorithm for asymptotically nonexpansive semigroups in Banach spaces

Lishan Liu ${ }^{\text {a,b,* }}$, Chun Liu ${ }^{\text {a }}$, Fang Wang ${ }^{\text {a }}$, Yonghong Wu ${ }^{\text {b }}$
${ }^{a}$ School of Mathematical Sciences, Qufu Normal University, 273165, Qufu, China.
${ }^{b}$ Department of Mathematics and Statistics, Curtin University, WA6845, Perth, Australia.

Communicated by R. Saadati

Abstract

In this paper, we study a general iterative process strongly converging to a common fixed point of an asymptotically nonexpansive semigroup $\left\{T(t): t \in \mathbb{R}^{+}\right\}$in the framework of reflexive and strictly convex spaces with a uniformly Gáteaux differentiable norm. The process also solves some variational inequalities. Our results generalize and extend many existing results in the research field. © 2016 All rights reserved. Keywords: Asymptotically nonexpansive semigroups, variational inequality, strong convergence, reflexive and strictly convex Banach spaces, fixed point.

2010 MSC: 47H09, 47H10, 49J30.

1. Introduction

Throughout this paper, we assume that E is a real Banach space, E^{*} is the dual space of E, C is a nonempty closed convex subset of E, and \mathbb{R}^{+}and \mathbb{N} are the set of nonnegative real numbers and positive integers, respectively. Let $J: E \rightarrow 2^{E^{*}}$ be the normalized duality mapping defined by

$$
J(x)=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\}, \quad \forall x \in E .
$$

Let $T: C \rightarrow C$ be a mapping. We use $F(T)$ to denote the set of fixed points of T. If $\left\{x_{n}\right\}$ is a sequence in E, we use $x_{n} \rightarrow x\left(x_{n} \rightharpoonup x\right)$ to denote strong (weak) convergence of the sequence $\left\{x_{n}\right\}$ to x.

[^0]Recall that a mapping $f: C \rightarrow C$ is a contraction on C if there exists a constant $\alpha \in(0,1)$ such that

$$
\|f(x)-f(y)\| \leq \alpha\|x-y\|, \quad \forall x, y \in C
$$

We use Π_{C} to denote the collection of mappings f verifying the above inequality. That is

$$
\Pi_{C}=\{f: C \rightarrow C \mid f \text { is a contraction with constant } \alpha\}
$$

Note that each $f \in \Pi_{C}$ has a unique fixed point in C.
A mapping $T: C \rightarrow C$ is said to be nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C
$$

$T: C \rightarrow C$ is said to be asymptotically nonexpansive (see [6]) if there exists a sequence $\left\{k_{n}\right\} \subset[1, \infty$) with $\lim _{n \rightarrow \infty} k_{n}=1$ such that

$$
\left\|T^{n} x-T^{n} y\right\| \leq k_{n}\|x-y\|, \quad \forall x, y \in C, \quad \forall n \geq 1
$$

Let H be a real Hilbert space, and assume that A is a strongly positive bounded linear operator (see [17]) on H, that is, there is a constant $\bar{\gamma}>0$ with property

$$
\langle A x, J(x)\rangle \geq \bar{\gamma}\|x\|^{2}, \quad \forall x, y \in H
$$

Then we can construct the following variational inequality problem with viscosity. Find $x^{*} \in C$ such that

$$
\left\langle(A-\gamma f) x^{*}, x-x^{*}\right\rangle \geq 0, \quad \forall x \in F(T)
$$

which is the optimality condition for the minimization problem

$$
\min _{x \in F(T)} \frac{1}{2}\langle A x, x\rangle-h(x)
$$

where h is a potential function for γf, and γ is a suitable positive constant.
Many investigations have been done on fixed point iterative algorithms (see [3, 5, 29, 10, 21, 24, 29, 34, 36, 40]), as it is an important subject in nonlinear operator theory in a Banach space or a Hilbert space and has application in many areas, in particular, in image recovery and signal processing (see [2, 19, 22, 35, 37, 38]). Early in 1967, Halpern [8] firstly introduced the following iteration scheme:

$$
\begin{equation*}
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) T x_{n}, \quad \forall n \geq 0 \tag{1.1}
\end{equation*}
$$

where T is a nonexpansive mapping from C into itself, u and $x_{0} \in C$ are both given points, and $x_{n+1} \in C$. The author proved that if $\left\{\alpha_{n}\right\}$ satisfies $\alpha_{n} \in(0,1), \lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$, then the sequence $\left\{x_{n}\right\}$ defined by (1.1) converges strongly to a fixed point of T. In 2004, Xu [31] studied the following iterative algorithm:

$$
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) T x_{n}, \quad \forall n \geq 0
$$

where $\alpha_{n} \in(0,1), x_{0} \in C, T$ is also a nonexpansive mapping and f is a contraction mapping from C into itself, $x_{n+1} \in C$. The author obtained a strong convergence theorem under some mild restrictions on the parameters by using the so-called viscosity approximation method introduced by Moudafi [18]. Afterward, Marino and Xu [17] considered the following iterative process on the basis of Xu [31]:

$$
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) T x_{n}, \quad \forall n \geq 0
$$

where T is a self-nonexpansive mapping on $H,\left\{\alpha_{n}\right\}$ satisfies certain conditions, and A is a strong positive bounded linear operator on H. They proved that the sequence defined by the above iterative process
converges strongly to a fixed point of T which is a unique solution of the variational inequality $\langle(A-$ $\left.\gamma f) x^{*}, x^{*}-x\right\rangle \leq 0$, for all $x \in F(T)$.

On the other hand, in 2008, Lou et al. [15] introduced the viscosity iteration process for an asymptotically nonexpansive mapping under the framework of a uniformly convex Banach space with a uniformly Gáteaux differentiable norm as follows:

$$
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\left(1-\alpha_{n}-\beta_{n}\right) T^{n} x_{n}, \quad \forall n \geq 0
$$

where $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are two sequences satisfying certain conditions.
In fact, the Lipschitzian semigroups are closely allied to nonexpansive mappings and asymptotically nonexpansive mappings of all time.

Recall that a one-parameter family $\mathcal{T}=\left\{T(t): t \in \mathbb{R}^{+}\right\}$is said to be a Lipschitzian semigroup on C (see [32]) if the following conditions are satisfied:
i) $T(0) x=x, \quad \forall x \in C$;
ii) $T(s+t) x=T(t) T(s) x, \quad \forall t, s \in \mathbb{R}^{+}, \quad \forall x \in C$;
iii) for each $x \in C$, the mapping $T(\cdot) x$ from \mathbb{R}^{+}into C is continuous;
iv) there exists a bounded measurable function $L_{t}:(0, \infty) \rightarrow[0, \infty)$ such that, for each $t>0$,

$$
\|T(t) x-T(t) y\| \leq L_{t}\|x-y\|, \quad \forall x, y \in C .
$$

A Lipschitzian semigroup \mathcal{T} is called a nonexpansive semigroup if $L_{t}=1$ for all $t>0$, and asymptotically nonexpansive semigroup if $\lim \sup _{t \rightarrow \infty} L_{t} \leq 1$. Note that for asymptotically nonexpansive semigroup \mathcal{T}, we can always assume that the Lipschitzian constants $\left\{L_{t}\right\}_{t>0}$ are such that $L_{t} \geq 1$ for each $t>0, L_{t}$ is nonincreasing in t, and $\lim _{t \rightarrow \infty} L_{t}=1$; otherwise we replace L_{t} for each $t>0$, by $\overline{L_{t}}:=\max \left\{\sup _{s \geq t} L_{s}, 1\right\}$. Moreover, if $t_{n}>0$ such that $\lim _{n \rightarrow \infty} t_{n}=\infty$, we obtain $L_{t_{n}} \rightarrow 1$ as $n \rightarrow \infty$. \mathcal{T} is said to have a fixed point if there exists $x_{0} \in C$ such that $T(t) x_{0}=x_{0}$, for all $t>0$. We denote by $F(\mathcal{T})$, the set of fixed points of \mathcal{T}, i.e., $F(\mathcal{T}):=\bigcap_{t \in \mathbb{R}^{+}} F(T(t))$.

A continuous operator of the semigroup \mathcal{T} is said to be uniformly asymptotically regular (in short u.a.r.) on C if for all $h \geq 0$ and any bounded subset D of $C, \lim _{t \rightarrow \infty} \sup _{x \in D}\|T(h) T(t) x-T(t) x\|=0$ (see [11]).

In 2008, Song and Xu [23] introduced the following iteration scheme for nonexpansive semigroups:

$$
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) T\left(t_{n}\right) x_{n}, \quad \forall n \geq 0,
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{t_{n}\right\}$ is a sequence of nonnegative real numbers divergent to infinity. Under certain restrictions to the sequence $\left\{\alpha_{n}\right\}$, they proved the strong convergence of $\left\{x_{n}\right\}$ to a member of $F(\mathcal{T})$ in a reflexive and strictly convex Banach space with a uniformly Gáteaux differentiable norm. Afterward, Zegeye and Shahzad [39] studied the sequence generated by the following algorithm

$$
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\left(1-\alpha_{n}-\beta_{n}\right) T\left(t_{n}\right) x_{n}, \quad \forall n \geq 0,
$$

and proved strong convergence of $\left\{x_{n}\right\}$ to a member of $F(\mathcal{T})$ in the same Banach space for asymptotically nonexpansive semigroups. Very recently, Yang [32] proposed a generalized algorithm as follows:

$$
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) T\left(t_{n}\right) x_{n}, \quad \forall n \geq 0,
$$

where f is a contraction mapping from C into itself and A is a strong positive bounded linear operator on C. Under certain conditions, on the basis of [17] and [23], the authors established strong convergence theorem for nonexpansive semigroups by using the above scheme in the framework of reflexive, smooth, and strictly convex Banach space with a uniformly Gáteaux differentiable norm. However, in the proof of Theorem 3.5 in [32], it is obviously impossible that

$$
\left(\left(\bar{\gamma} \alpha_{m}\right)^{2}-2 \bar{\gamma} \alpha_{m}\right)\left\|u_{m}-x_{n}\right\|^{2} \leq\left(\bar{\gamma} \alpha_{m}^{2}-2 \alpha_{m}\right)\left\langle A\left(u_{m}-x_{n}\right), j\left(u_{m}-x_{n}\right)\right\rangle
$$

with a control sequence $\left\{\alpha_{m}\right\}$ satisfying the condition $\lim _{m \rightarrow \infty} \alpha_{m}=0$ which were also occurred in [16, 20].
In this paper, inspired by the existing results, we propose the more generalized iterative algorithm as follows:

$$
\left\{\begin{align*}
x_{n+1} & =\alpha_{n} \gamma f_{n}\left(x_{n}\right)+\beta_{n} x_{n}+\delta_{n} u_{n}+\left(\left(1-\beta_{n}-\delta_{n}\right) I-\alpha_{n} A\right) T\left(t_{n}\right) y_{n} \tag{1.2}\\
y_{n} & =\left(1-c_{n}-\sigma_{n}\right) x_{n}+\sigma_{n} v_{n}+c_{n} T\left(t_{n}\right) x_{n}, \quad \forall n \geq 1
\end{align*}\right.
$$

where $\mathcal{T}=\left\{T(t): t \in \mathbb{R}^{+}\right\}$is an asymptotically nonexpansive semigroup, $\left\{f_{n}\right\}_{n=1}^{\infty}$ is an infinite family of contractive mappings from C into itself, A is a strong positive bounded linear operator, and $\left\{u_{n}\right\},\left\{v_{n}\right\}$ are two bounded sequences in C. We prove under certain appropriate assumptions on the sequences $\left\{\alpha_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\},\left\{c_{n}\right\},\left\{\sigma_{n}\right\}$, and $\left\{t_{n}\right\}$, that $\left\{x_{n}\right\}$ defined by 1.2 converges strongly to a member of $F(\mathcal{T})$ in the framework of a reflexive and strictly convex Banach space with a uniformly Gáteaux differentiable norm and correct the mistake above. Our results generalize and extend the corresponding results given by Marino and Xu [17], Lou et al. [15], Yang [32], Song and Xu [23], Zegeye and Shahzad [39], and many others.

2. Preliminaries and lemmas

Recall that a Banach space E is said to be strictly convex if $\|x\|=\|y\|=1$, and $x \neq y$ implies $\|x+y\|<2$. In a strictly convex Banach space E, we have that if $\|x\|=\|y\|=\|t x+(1-t) y\|$ for $t \in(0,1)$ and $x, y \in E$, then $x=y$.

Let E be a Banach space with $\operatorname{dim} E \geq 2$. The modulus of E is the function $\delta_{E}:(0,2] \rightarrow[0,1]$ defined by

$$
\delta_{E}(\varepsilon)=\inf \left\{1-\frac{\|x+y\|}{2}:\|x\|=\|y\|=1,\|x-y\|=\varepsilon\right\}
$$

A Banach space E is uniformly convex if and only if $\delta_{E}(\varepsilon)>0$ for all $\varepsilon \in(0,2]$. Let $S:=\{x \in E:\|x\|=1\}$ denote the unit sphere of the Banach space E. Then the Banach space E is said to be smooth provided the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{2.1}
\end{equation*}
$$

exists for each $x, y \in S$. In this case, the norm of E is said to be Gáteaux differentiable. The space E is said to have a uniformly Gáteaux differentiable norm if for each $y \in S$ the limit (2.1) is attained uniformly for $x \in S$. It is well-known that if E is uniformly convex then E is reflexive and strictly convex, and if E is smooth then any duality mapping on E is single-valued and norm-to-weak* continuous. If E has a uniformly Gáteaux differentiable norm then the duality mapping is norm-to-weak* uniformly continuous on bounded sets and also E is smooth.

Let μ be a continuous linear functional on l^{∞} and $\left(a_{0}, a_{1}, \ldots\right) \in l^{\infty}$. We write $\mu\left(a_{n}\right)$ instead of $\mu\left(\left(a_{0}, a_{1}, \ldots\right)\right)$. Recall that a Banach limit μ is a bounded functional on l^{∞} such that

$$
\|\mu\|=\mu(1)=1, \quad \liminf _{n \rightarrow \infty} a_{n} \leq \mu\left(a_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}, \quad \mu\left(a_{n+r}\right)=\mu\left(a_{n}\right)
$$

for any fixed positive integer r and for all $\left(a_{0}, a_{1}, \ldots\right) \in l^{\infty}$.
Let D be a nonempty subset of C. A sequence $\left\{f_{n}\right\}$ of mappings of C into E is said to be stable on D (see [1]) if $\left\{f_{n}(x): n \in \mathbb{N}\right\}$ is a singleton for every $x \in D$. It is clear that if $\left\{f_{n}\right\}$ is stable on D, then $f_{n}(x)=f_{1}(x)$ for all $n \in \mathbb{N}$ and $x \in D$.

In a smooth Banach space, we say an operator A is strongly positive if there exists a constant $\bar{\gamma}>0$ with the property

$$
\langle A x, J(x)\rangle \geq \bar{\gamma}\|x\|^{2}, \quad\|a I-b A\|=\sup _{\|x\| \leq 1}|\langle(a I-b A) x, J(x)\rangle|
$$

where I is the identity mapping, $a \in[0,1], b \in[-1,1]$, and J is normalized duality mapping.

Lemma 2.1 ([32, Lemma 2.1]). Assume that A is a strongly positive linear bounded operator on a smooth Banach space E with coefficient $\bar{\gamma}>0$ and $0<\rho \leq\|A\|^{-1}$, then $\|1-\rho A\| \leq 1-\rho \bar{\gamma}$.

Lemma 2.2 ([39, Theorem 3.1]). Let C be a nonempty closed convex subset of a reflexive and strictly convex real Banach space E with a uniformly Gáteaux differentiable norm. Suppose that $\left\{x_{n}\right\}$ is a bounded sequence in C, and $\mathcal{T}=\left\{T(t): t \in \mathbb{R}^{+}\right\}$is an asymptotically nonexpansive semigroup on C with a sequence $\left\{L_{t}\right\} \subset[1, \infty)$ such that $\lim _{n \rightarrow \infty}\left\|x_{n}-T(t) x_{n}\right\|=0$ for all $t \geq 0$. Define the set

$$
K=\left\{x \in C: \mu\left\|x_{n}-x\right\|^{2}=\min _{y \in C} \mu\left\|x_{n}-y\right\|^{2}\right\}
$$

If $F(\mathcal{T}) \neq \emptyset$, then $K \bigcap F(\mathcal{T}) \neq \emptyset$.
Lemma 2.3 ([7, Lemma 2.1]). Let C be a nonempty closed convex subset of a Banach space E with a uniformly Gáteaux differentiable norm and let S be a directed set. let $\left\{x_{\alpha}: \alpha \in S\right\}$ be a bounded set of E. Let $u \in C$. Then $\mu\left\|x_{\alpha}-z\right\|^{2}$ attains its minimum over C at u if and only if

$$
\mu\left(z-u, J\left(x_{\alpha}-u\right)\right) \leq 0
$$

for all $z \in C$, where J is the duality map of E.
Lemma 2.4 ([33, Lemma 2.3]). Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space E and let $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ with $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1$. Suppose $x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) y_{n}$ for all integers $n \geq 0$ and $\lim \sup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0$. Then $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.

In [12, 13], by using different methods, Liu proved the following lemma, and also see [14].
Lemma $2.5([12,13])$. Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ be three nonnegative real sequences and let $\left\{\alpha_{n}\right\}$ be a real sequence in $[0,1]$ such that $\sum_{n=1}^{\infty} \alpha_{n}=+\infty$. If there exists a positive integer n_{0} such that

$$
\begin{equation*}
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+b_{n}+c_{n}, \quad n \geq n_{0} \tag{2.2}
\end{equation*}
$$

where $b_{n}=\alpha_{n} a_{n}^{*}, \lim _{n \rightarrow \infty} a_{n}^{*}=0$, and $\sum_{n=0}^{\infty} c_{n}<+\infty$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Corollary 2.6 ([30, Lemma 2.5]). Let $\left\{\alpha_{n}\right\}$ and $\left\{c_{n}\right\}$ be two nonnegative real sequences and let $\left\{\alpha_{n}\right\}$ be a real sequence in $[0,1]$ such that $\sum_{n=1}^{\infty} \alpha_{n}=+\infty$. If there exists a positive integer n_{0} such that

$$
\begin{equation*}
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} \sigma_{n}+c_{n}, \quad n \geq n_{0} \tag{2.3}
\end{equation*}
$$

where $\left\{\sigma_{n}\right\}$ is a real sequence with $\limsup _{n \rightarrow \infty} \sigma_{n} \leq 0$ and $\sum_{n=0}^{\infty} c_{n}<+\infty$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Proof. In fact, let

$$
a_{n}^{*}= \begin{cases}\sigma_{n}, & \sigma_{n} \geq 0 \\ 0, & \sigma_{n}<0\end{cases}
$$

Then $a_{n}^{*} \geq 0(n=1,2,3 \ldots)$ and $\sigma_{n} \leq a_{n}^{*}(n=1,2,3 \ldots)$. By $\lim \sup _{n \rightarrow \infty} \sigma_{n} \leq 0$, we can easily get $\lim _{n \rightarrow \infty} a_{n}^{*}=0$. It follows from (2.2) that (2.3) holds. Hence, by Lemma 2.5, we see that $\lim _{n \rightarrow \infty} a_{n}=0$. That is, Corollary 2.6 holds.

3. Main results

Lemma 3.1. Let C be a nonempty closed convex subset of a reflexive and strictly convex Banach space E with a uniformly Gáteaux differentiable norm, $C \pm C \subset C$. Let $\mathcal{T}=\left\{T(t): t \in \mathbb{R}^{+}\right\}$be a u.a.r. nonexpansive semigroup on C with a sequence $\left\{L_{t}\right\} \subset[1, \infty)$ such that $F(\mathcal{T}) \neq \emptyset$, and $\left\{f_{n}\right\} \subset \Pi_{C}$ is stable on $F(\mathcal{T})$.

Let A be a strongly positive linear bounded self-adjoint operator with coefficient $\bar{\gamma}, A(C) \subset C$. Assume that $0<\gamma<\frac{\bar{\gamma}}{\alpha}$, and α is contraction constant of all f_{n}. Let $\left\{x_{n}\right\}$ be a sequence defined by

$$
\begin{equation*}
x_{n}=\alpha_{n} \gamma f_{n}\left(x_{n}\right)+\left(I-\alpha_{n} A\right) T\left(t_{n}\right) x_{n}, \forall n \geq 1 \tag{3.1}
\end{equation*}
$$

such that $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1), \lim _{n \rightarrow \infty} t_{n}=\infty$, and $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \frac{L_{t_{n}}-1}{\alpha_{n}}=0$. Then the sequence $\left\{x_{n}\right\}$ converges strongly, as $n \rightarrow \infty$, to a point x^{*} of $F(\mathcal{T})$ which satisfies the variational inequality:

$$
\begin{equation*}
\left\langle\left(A-\gamma f_{1}\right) x^{*}, j\left(x^{*}-p\right)\right\rangle \leq 0, \quad p \in F(\mathcal{T}), \quad f_{1} \in \Pi_{C} \tag{3.2}
\end{equation*}
$$

Proof. Since $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \frac{L_{t_{n}}-1}{\alpha_{n}}=0$, we may assume, without loss of generality, that

$$
\alpha_{n}<\min \left\{\|A\|^{-1}, \quad \frac{2}{\bar{\gamma}-\gamma \alpha}\right\}, \quad \frac{L_{t_{n}}-1}{\alpha_{n}} \leq \frac{\bar{\gamma}-\gamma \alpha}{2}, \quad \forall n \geq 1
$$

For each $n \geq 1$ and $t_{n} \geq 0$, define a mapping $S_{n}: C \rightarrow E$ by

$$
S_{n} x=\alpha_{n} \gamma f_{n}(x)+\left(I-\alpha_{n} A\right) T\left(t_{n}\right) x, \quad \forall x \in C .
$$

Since $C \pm C \subset C$, it is easy to see $S_{n}: C \rightarrow C$. For all $x, y \in C$, by Lemma 2.1, we have

$$
\begin{aligned}
\left\|S_{n} x-S_{n} y\right\| & =\left\|\alpha_{n} \gamma\left(f_{n}(x)-f_{n}(y)\right)+\left(I-\alpha_{n} A\right)\left(T\left(t_{n}\right) x-T\left(t_{n}\right) y\right)\right\| \\
& \leq \alpha_{n} \gamma\left\|f_{n}(x)-f_{n}(y)\right\|+\left\|I-\alpha_{n} A\right\|\left\|T\left(t_{n}\right) x-T\left(t_{n}\right) y\right\| \\
& \leq \alpha_{n} \gamma \alpha\|x-y\|+\left(1-\alpha_{n} \bar{\gamma}\right) L_{t_{n}}\|x-y\| \\
& =\left[1-\alpha_{n}(\bar{\gamma}-\gamma \alpha)+\left(L_{t_{n}}-1\right)\left(1-\alpha_{n} \bar{\gamma}\right)\right]\|x-y\| \\
& \leq\left[1-\frac{\alpha_{n}(\bar{\gamma}-\gamma \alpha)\left(1+\alpha_{n} \bar{\gamma}\right)}{2}\right]\|x-y\| \\
& \leq\left[1-\frac{\alpha_{n}(\bar{\gamma}-\gamma \alpha)}{2}\right]\|x-y\| .
\end{aligned}
$$

Thus, $S_{n}: C \rightarrow C$ is a contractive mapping. By the Banach contraction mapping principle, it yields a unique fixed point $x_{n} \in C$ such that

$$
x_{n}=\alpha_{n} \gamma f_{n}\left(x_{n}\right)+\left(I-\alpha_{n} A\right) T\left(t_{n}\right) x_{n}, \quad \forall n \geq 1
$$

Let $p \in F(\mathcal{T})$, then

$$
\begin{aligned}
\left\|x_{n}-p\right\| & =\left\|\alpha_{n}\left(\gamma f_{n}\left(x_{n}\right)-A p\right)+\left(I-\alpha_{n} A\right)\left(T\left(t_{n}\right) x_{n}-p\right)\right\| \\
& =\left\|\alpha_{n}\left(\gamma f_{n}\left(x_{n}\right)-\gamma f_{n}(p)\right)+\left(I-\alpha_{n} A\right)\left(T\left(t_{n}\right) x_{n}-p\right)+\alpha_{n}\left(\gamma f_{n}(p)-A p\right)\right\| \\
& \leq \alpha_{n} \gamma \alpha\left\|x_{n}-p\right\|+\left(1-\alpha_{n} \bar{\gamma}\right) L_{t_{n}}\left\|x_{n}-p\right\|+\alpha_{n}\left\|\gamma f_{n}(p)-A p\right\| .
\end{aligned}
$$

It follows that

$$
\left[(\bar{\gamma}-\gamma \alpha)-\frac{L_{t_{n}}-1}{\alpha_{n}}\left(1-\alpha_{n} \bar{\gamma}\right)\right]\left\|x_{n}-p\right\| \leq\left\|\gamma f_{n}(p)-A p\right\|
$$

Since $\left\{f_{n}\right\}$ is stable on $F(\mathcal{T})$, that is $f_{n}(p)=f_{1}(p)$ for all $n \in \mathbb{N}$, therefore,

$$
\left\|x_{n}-p\right\| \leq \frac{2\left\|\gamma f_{1}(p)-A p\right\|}{\bar{\gamma}-\gamma \alpha}
$$

This implies that $\left\{x_{n}\right\}$ is bounded, and so are $\left\{T\left(t_{n}\right) x_{n}\right\}$ and $\left\{f_{n}\left(x_{n}\right)\right\}$. Moreover, it follows from (3.1) and $\lim _{n \rightarrow \infty} \alpha_{n}=0$ that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\|=\lim _{n \rightarrow \infty} \alpha_{n}\left\|\gamma f_{n}\left(x_{n}\right)-A T\left(t_{n}\right) x_{n}\right\|=0
$$

Since $\left\{T(t): t \in \mathbb{R}^{+}\right\}$is u.a.r. on C and $\lim _{n \rightarrow \infty} t_{n}=\infty$, then for any $t \geq 0$,

$$
\lim _{n \rightarrow \infty}\left\|T(t) T\left(t_{n}\right) x_{n}-T\left(t_{n}\right) x_{n}\right\| \leq \lim _{n \rightarrow \infty} \sup _{x \in D}\left\|T(t) T\left(t_{n}\right) x-T\left(t_{n}\right) x\right\|=0
$$

where D is any bounded subset of C containing $\left\{x_{n}\right\}$. Hence

$$
\begin{aligned}
\left\|x_{n}-T(t) x_{n}\right\| & \leq\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\|+\left\|T\left(t_{n}\right) x_{n}-T(t) T\left(t_{n}\right) x_{n}\right\|+\left\|T(t) T\left(t_{n}\right) x_{n}-T(t) x_{n}\right\| \\
& \leq\left(1+L_{t}\right)\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\|+\left\|T\left(t_{n}\right) x_{n}-T(t) T\left(t_{n}\right) x_{n}\right\|
\end{aligned}
$$

and therefore, $\left\|x_{n}-T(t) x_{n}\right\| \rightarrow 0$, as $n \rightarrow \infty$. Define the set

$$
K=\left\{x \in C: \mu\left\|x_{n}-x\right\|^{2}=\min _{y \in C} \mu\left\|x_{n}-y\right\|^{2}\right\}
$$

By Lemma 2.2 we get that there exists $x^{*} \in K$ such that $x^{*} \in K \bigcap F(\mathcal{T})$. Since $C \pm C \subset C$, we have $x^{*}+\gamma f_{1}\left(x^{*}\right)-A x^{*} \in C$, and then it follows from Lemma 2.3 that

$$
\mu\left\langle x^{*}+\gamma f_{1}\left(x^{*}\right)-A x^{*}-x^{*}, j\left(x_{n}-x^{*}\right)\right\rangle \leq 0
$$

which implies that

$$
\begin{equation*}
\mu\left\langle\gamma f_{1}\left(x^{*}\right)-A x^{*}, j\left(x_{n}-x^{*}\right)\right\rangle \leq 0 \tag{3.3}
\end{equation*}
$$

Notice that

$$
\begin{aligned}
\left\|x_{n}-x^{*}\right\|^{2} & =\left\langle\alpha_{n} \gamma f_{n}\left(x_{n}\right)+\left(I-\alpha_{n} A\right) T\left(t_{n}\right) x_{n}-x^{*}, j\left(x_{n}-x^{*}\right)\right\rangle \\
& =\left\langle\alpha_{n}\left(\gamma f_{n}\left(x_{n}\right)-\gamma f_{n}\left(x^{*}\right)\right)+\left(I-\alpha_{n} A\right)\left(T\left(t_{n}\right) x_{n}-x^{*}\right)+\alpha_{n}\left(\gamma f_{n}\left(x^{*}\right)-A x^{*}\right), j\left(x_{n}-x^{*}\right)\right\rangle \\
& \leq \alpha_{n} \gamma \alpha\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n} \bar{\gamma}\right) L_{t_{n}}\left\|x_{n}-x^{*}\right\|^{2}+\alpha_{n}\left\langle\gamma f_{n}\left(x^{*}\right)-A x^{*}, j\left(x_{n}-x^{*}\right)\right\rangle
\end{aligned}
$$

Since $\left\{f_{n}\right\}$ is stable on $F(\mathcal{T})$, that is $f_{n}\left(x^{*}\right)=f_{1}\left(x^{*}\right)$ for all $n \in \mathbb{N}$, we derive that

$$
\left[\alpha_{n}(\bar{\gamma}-\gamma \alpha)-\left(L_{t_{n}}-1\right)\left(1-\alpha_{n} \bar{\gamma}\right)\right]\left\|x_{n}-x^{*}\right\|^{2} \leq \alpha_{n}\left\langle\gamma f_{1}\left(x^{*}\right)-A x^{*}, j\left(x_{n}-x^{*}\right)\right\rangle
$$

Therefore,

$$
\left\|x_{n}-x^{*}\right\|^{2} \leq \frac{2}{\bar{\gamma}-\gamma \alpha}\left\langle\gamma f_{1}\left(x^{*}\right)-A x^{*}, j\left(x_{n}-x^{*}\right)\right\rangle
$$

This together with (3.3) implies that

$$
\mu\left\|x_{n}-x^{*}\right\|^{2} \leq \frac{2}{\bar{\gamma}-\gamma \alpha} \mu\left\langle\gamma f_{1}\left(x^{*}\right)-A x^{*}, j\left(x_{n}-x^{*}\right)\right\rangle \leq 0
$$

Hence, there exists a subsequence $\left\{x_{n_{k}}\right\} \subset\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightarrow x^{*}$ as $k \rightarrow \infty$. Again, since

$$
x_{n}=\alpha_{n} \gamma f_{n}\left(x_{n}\right)+\left(I-\alpha_{n} A\right) T\left(t_{n}\right) x_{n}
$$

we derive that

$$
\left(A-\gamma f_{n}\right) x_{n}=-\frac{1}{\alpha_{n}}\left(I-\alpha_{n} A\right)\left(I-T\left(t_{n}\right)\right) x_{n}
$$

Notice that

$$
\begin{aligned}
\left\langle\left(I-T\left(t_{n}\right)\right) x_{n}-\left(I-T\left(x_{n}\right)\right) p, j\left(x_{n}-p\right)\right\rangle & =\left\|x_{n}-p\right\|^{2}-\left\langle T\left(t_{n}\right) x_{n}-T\left(x_{n}\right) p, j\left(x_{n}-p\right)\right\rangle \\
& \geq\left\|x_{n}-p\right\|^{2}-L_{t_{n}}\left\|x_{n}-p\right\|^{2} \\
& =-\left(L_{t_{n}}-1\right)\left\|x_{n}-p\right\|^{2}
\end{aligned}
$$

it follows that, for all $p \in F(\mathcal{T})$,

$$
\begin{align*}
\left\langle\left(A-\gamma f_{n_{k}}\right) x_{n_{k}}, j\left(x_{n_{k}}-p\right)\right\rangle= & -\frac{1}{\alpha_{n_{k}}}\left\langle\left(I-\alpha_{n_{k}} A\right)\left(I-T\left(t_{n_{k}}\right)\right) x_{n_{k}}, j\left(x_{n_{k}}-p\right)\right\rangle \\
= & -\frac{1}{\alpha_{n_{k}}}\left\langle\left(I-T\left(t_{n_{k}}\right)\right) x_{n_{k}}-\left(I-T\left(t_{n_{k}}\right)\right) p, j\left(x_{n_{k}}-p\right)\right\rangle \tag{3.4}\\
& +\left\langle A\left(I-T\left(t_{n_{k}}\right)\right) x_{n_{k}}, j\left(x_{n_{k}}-p\right)\right\rangle \\
\leq & \frac{L_{t_{n_{k}}}-1}{\alpha_{n_{k}}}\left\|x_{n_{k}}-p\right\|^{2}+\left\langle A\left(I-T\left(t_{n_{k}}\right)\right) x_{n_{k}}, j\left(x_{n_{k}}-p\right)\right\rangle .
\end{align*}
$$

On the other hand, as $\left\{f_{n}\right\}$ is stable on $F(\mathcal{T})$, that is, $f_{n}\left(x^{*}\right)=f_{1}\left(x^{*}\right)$ for all $n \in \mathbb{N}$, we have

$$
\begin{align*}
\left\langle\left(A-\gamma f_{1}\right) x^{*}, j\left(x^{*}-p\right)\right\rangle= & \left\langle\left(A-\gamma f_{1}\right) x^{*}, j\left(x^{*}-p\right)-j\left(x_{n_{k}}-p\right)\right\rangle \\
& +\left\langle\left(A-\gamma f_{n_{k}}\right) x^{*}-\left(A-\gamma f_{n_{k}}\right) x_{n_{k}}, j\left(x_{n_{k}}-p\right)\right\rangle \tag{3.5}\\
& +\left\langle\left(A-\gamma f_{n_{k}}\right) x_{n_{k}}, j\left(x_{n_{k}}-p\right)\right\rangle .
\end{align*}
$$

Substituting (3.4) into (3.5) and letting $k \rightarrow \infty$, we have

$$
\begin{equation*}
\left\langle\left(A-\gamma f_{1}\right) x^{*}, j\left(x^{*}-p\right)\right\rangle \leq 0 \tag{3.6}
\end{equation*}
$$

that is, $x^{*} \in F(\mathcal{T})$ is a solution of (3.2).
Let $\left\{x_{n_{i}}\right\} \subset\left\{x_{n}\right\}$ be another subsequence such that $x_{n_{i}} \rightarrow p \in F(\mathcal{T})$ as $i \rightarrow \infty$. Then from (3.6) we get

$$
\begin{equation*}
\left\langle\left(A-\gamma f_{1}\right) p, j\left(p-x^{*}\right)\right\rangle \leq 0 \tag{3.7}
\end{equation*}
$$

Adding up (3.6) and (3.7), we have that

$$
\begin{aligned}
0 & \geq\left\langle\left(A-\gamma f_{1}\right) x^{*}-\left(A-\gamma f_{1}\right) p, j\left(x^{*}-q\right)\right\rangle \\
& =\left\langle A\left(x^{*}-p\right), j\left(x^{*}-p\right)\right\rangle-\gamma\left\langle f_{1}\left(x^{*}\right)-f_{1}(p), j\left(x^{*}-p\right)\right\rangle \\
& \geq \bar{\gamma}\left\|x^{*}-p\right\|^{2}-\gamma\left\|f_{1}\left(x^{*}\right)-f_{1}(p)\right\|\left\|x^{*}-p\right\| \\
& \geq(\bar{\gamma}-\gamma \alpha)\left\|x^{*}-p\right\|^{2} .
\end{aligned}
$$

Hence $p=x^{*}$. The proof is completed.
Theorem 3.2. Let C be a nonempty closed convex subset of a reflexive and strictly convex Banach space E with a uniformly Gáteaux differentiable norm, $C \pm C \subset C$. Let $\mathcal{T}=\left\{T(t): t \in \mathbb{R}^{+}\right\}$be a u.a.r. nonexpansive semigroup on C with a sequence $\left\{L_{t}\right\} \subset[1, \infty)$ such that $F(\mathcal{T}) \neq \emptyset$, and $\left\{f_{n}\right\} \subset \Pi_{C}$ is stable on $F(\mathcal{T})$. Let A be a strongly positive linear bounded self-adjoint operator with coefficient $\bar{\gamma}, A(C) \subset C$. Assume that $0<\gamma<\frac{\bar{\gamma}}{\alpha}$. Let $\left\{x_{n}\right\}$ be a sequence defined by

$$
\left\{\begin{align*}
x_{n+1} & =\alpha_{n} \gamma f_{n}\left(x_{n}\right)+\beta_{n} x_{n}+\delta_{n} u_{n}+\left(\left(1-\beta_{n}-\delta_{n}\right) I-\alpha_{n} A\right) T\left(t_{n}\right) y_{n} \tag{3.8}\\
y_{n} & =\left(1-c_{n}-\sigma_{n}\right) x_{n}+\sigma_{n} v_{n}+c_{n} T\left(t_{n}\right) x_{n}, \quad \forall n \geq 1
\end{align*}\right.
$$

satisfying
(1) $\alpha_{n} \in(0,1), \lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \frac{L_{t_{n}-1}}{\alpha_{n}}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(2) $\beta_{n} \in(0,1), 0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$;
(3) $\delta_{n}, \sigma_{n} \in[0,1], \sum_{n=1}^{\infty} \delta_{n}<\infty, \sum_{n=1}^{\infty} \sigma_{n}<\infty$;
(4) $h, t_{n} \geq 0, t_{n+1}=t_{n}+h, \lim _{n \rightarrow \infty} t_{n}=\infty$;
(5) $c_{n} \in[0,1], \lim _{n \rightarrow \infty}\left|c_{n+1}-c_{n}\right|=0, \limsup _{n \rightarrow \infty} c_{n}<1$.

Suppose $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are bounded in C, then as $n \rightarrow \infty$, the sequence $\left\{x_{n}\right\}$ defined by (3.8) converges strongly to some common fixed point x^{*} of $F(\mathcal{T})$ which is the unique solution in $F(\mathcal{T})$ to the variational inequality (3.2).
Proof. By the conditions (1) and (2), we may assume, with no loss of generality, that $\alpha_{n} \leq\left(1-\beta_{n}-\delta_{n}\right)\|A\|^{-1}$ and $\frac{L_{t_{n}}-1}{\alpha_{n}} \leq \frac{\bar{\gamma}-\gamma \alpha}{6}$ for all $n \geq 1$. Since A is a linear bounded self-adjoint operator on E, then $\|A\|=$ $\sup \{|\langle A x, J(x)\rangle|: x \in E,\|x\|=1\}$. When $\|x\|=1$, as

$$
\begin{aligned}
\left\langle\left(\left(1-\beta_{n}-\delta_{n}\right) I-\alpha_{n} A\right) x, J(x)\right\rangle & =1-\beta_{n}-\delta_{n}-\alpha_{n}\langle A x, J(x)\rangle \\
& \geq 1-\beta_{n}-\delta_{n}-\alpha_{n}\|A\| \\
& \geq 0
\end{aligned}
$$

we have

$$
\begin{aligned}
\left\|\left(1-\beta_{n}-\delta_{n}\right) I-\alpha_{n} A\right\| & =\sup \left\{\left\langle\left(\left(1-\beta_{n}-\delta_{n}\right) I-\alpha_{n} A\right) x, J(x)\right\rangle: x \in E,\|x\|=1\right\} \\
& =\sup \left\{1-\beta_{n}-\delta_{n}-\alpha_{n}\langle A x, J(x)\rangle: x \in E,\|x\|=1\right\} \\
& \leq 1-\beta_{n}-\delta_{n}-\alpha_{n} \bar{\gamma}
\end{aligned}
$$

Taking a point $p \in F(\mathcal{T})$, from (3.8), we obtain

$$
\begin{align*}
\left\|y_{n}-p\right\| & =\left\|\left(1-c_{n}-\sigma_{n}\right)\left(x_{n}-p\right)+\sigma_{n}\left(v_{n}-p\right)+c_{n}\left(T\left(t_{n}\right) x_{n}-p\right)\right\| \\
& \leq\left(1-c_{n}-\sigma_{n}\right)\left\|x_{n}-p\right\|+\sigma_{n}\left\|v_{n}-p\right\|+c_{n} L_{t_{n}}\left\|x_{n}-p\right\| \tag{3.9}\\
& \leq\left[1+c_{n}\left(L_{t_{n}}-1\right)\right]\left\|x_{n}-p\right\|+\sigma_{n}\left\|v_{n}-p\right\| .
\end{align*}
$$

By condition (1), there exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\bar{\gamma}-\gamma \alpha-\frac{2\left(L_{t_{n}}-1\right)}{\alpha_{n}}-\frac{\left(L_{t_{n}}-1\right)^{2}}{\alpha_{n}^{2}} \geq \frac{\bar{\gamma}-\gamma \alpha}{2}, \quad n \geq n_{0} \tag{3.10}
\end{equation*}
$$

It then follows from the definition of $\left\{x_{n}\right\},(3.9)$ and (3.10) that

$$
\begin{aligned}
&\left\|x_{n+1}-p\right\|= \| \alpha_{n}\left(\gamma f_{n}\left(x_{n}\right)-A p\right)+\beta_{n}\left(x_{n}-p\right)+\delta_{n}\left(u_{n}-p\right) \\
&+\left[\left(1-\beta_{n}-\delta_{n}\right) I-\alpha_{n} A\right]\left(T\left(t_{n}\right) y_{n}-p\right) \| \\
&= \| \alpha_{n}\left(\gamma f_{n}\left(x_{n}\right)-\gamma f_{n}(p)\right)+\beta_{n}\left(x_{n}-p\right)+\delta_{n}\left(u_{n}-p\right) \\
&+\left[\left(1-\beta_{n}-\delta_{n}\right) I-\alpha_{n} A\right]\left(T\left(t_{n}\right) y_{n}-p\right)+\alpha_{n}\left(\gamma f_{n}(p)-A p\right) \| \\
& \leq \alpha_{n} \gamma \alpha\left\|x_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|+\delta_{n}\left\|u_{n}-p\right\| \\
&+\left(1-\beta_{n}-\delta_{n}-\alpha_{n} \bar{\gamma}\right) L_{t_{n}}\left\|y_{n}-p\right\|+\alpha_{n}\left\|\gamma f_{n}(p)-A p\right\| \\
& \leq \alpha_{n} \gamma \alpha\left\|x_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|+\alpha_{n}\left\|\gamma f_{n}(p)-A p\right\| \\
&+\left(1-\beta_{n}-\delta_{n}-\alpha_{n} \bar{\gamma}\right)\left[1+c_{n}\left(L_{t_{n}}-1\right)\right] L_{t_{n}}\left\|x_{n}-p\right\| \\
&+\left(1-\beta_{n}-\delta_{n}-\alpha_{n} \bar{\gamma}\right) \sigma_{n} L_{t_{n}}\left\|v_{n}-p\right\|+\delta_{n}\left\|u_{n}-p\right\| \\
&= \alpha_{n} \gamma \alpha\left\|x_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|+\alpha_{n}\left\|\gamma f_{n}(p)-A p\right\| \\
&+\left(1-\beta_{n}-\delta_{n}-\alpha_{n} \bar{\gamma}\right)\left[1+c_{n}\left(L_{t_{n}}-1\right)\right]\left[1+\left(L_{t_{n}}-1\right)\right]\left\|x_{n}-p\right\| \\
&+\left(1-\beta_{n}-\delta_{n}-\alpha_{n} \bar{\gamma}\right) \sigma_{n} L_{t_{n}}\left\|v_{n}-p\right\|+\delta_{n}\left\|u_{n}-p\right\| \\
& \leq\left[1-\alpha_{n}(\bar{\gamma}-\gamma \alpha)\right]\left\|x_{n}-p\right\|+\left[\left(c_{n}+1\right)\left(L_{t_{n}}-1\right)\right. \\
&\left.+c_{n}\left(L_{t_{n}}-1\right)^{2}\right]\left\|x_{n}-p\right\|+\alpha_{n}\left\|\gamma f_{n}(p)-A p\right\|+\sigma_{n} L_{t_{n}}\left\|v_{n}-p\right\|+\delta_{n}\left\|u_{n}-p\right\| \\
& \leq {\left[1-\alpha_{n}(\bar{\gamma}-\gamma \alpha)\right]\left\|x_{n}-p\right\|+\left[2\left(L_{t_{n}}-1\right)\right.} \\
&\left.+\left(L_{t_{n}}-1\right)^{2}\right]\left\|x_{n}-p\right\|+\alpha_{n}\left\|\gamma f_{n}(p)-A p\right\|+\sigma_{n} L_{t_{n}}\left\|v_{n}-p\right\|+\delta_{n}\left\|u_{n}-p\right\| \\
& \leq {\left[1-\alpha_{n}\left(\bar{\gamma}-\gamma \alpha-\frac{2\left(L_{t_{n}}-1\right)}{\alpha_{n}}-\frac{\left(L_{t_{n}}-1\right)^{2}}{\alpha_{n}^{2}}\right)\right]\left\|x_{n}-p\right\| }
\end{aligned}
$$

$$
\begin{aligned}
& +\alpha_{n}\left\|\gamma f_{n}(p)-A p\right\|+\sigma_{n} L_{t_{n}}\left\|v_{n}-p\right\|+\delta_{n}\left\|u_{n}-p\right\| \\
\leq & {\left[1-\frac{\alpha_{n}(\bar{\gamma}-\gamma \alpha)}{2}\right]\left\|x_{n}-p\right\|+\frac{\alpha_{n}(\bar{\gamma}-\gamma \alpha)}{2}\left\|\frac{2\left(\gamma f_{1}(p)-A p\right)}{\bar{\gamma}-\gamma \alpha}\right\|+\sigma_{n} L_{t_{n}}\left\|v_{n}-p\right\|+\delta_{n}\left\|u_{n}-p\right\| } \\
\leq & \max \left\{\left\|x_{n}-p\right\|,\left\|\frac{2\left(\gamma f_{1}(p)-A p\right)}{\bar{\gamma}-\gamma \alpha}\right\|\right\}+\sigma_{n} L_{t_{1}}\left\|v_{n}-p\right\|+\delta_{n}\left\|u_{n}-p\right\|, \quad n \geq n_{0} .
\end{aligned}
$$

By the induction, we have

$$
\left\|x_{n+1}-p\right\| \leq \max \left\{\left\|x_{n_{0}}-p\right\|,\left\|\frac{2\left(f_{1}(p)-A p\right)}{\bar{\gamma}-\gamma \alpha}\right\|\right\}+\left(\sum_{n=1}^{\infty} \delta_{n} L_{t_{1}}+\sum_{n=1}^{\infty} \sigma_{n}\right) M, \quad \forall n \geq 1
$$

where $M=\max _{n \in \mathbb{N}}\left\{\left\|u_{n}-p\right\|,\left\|v_{n}-p\right\|\right\}$. Hence $\left\{x_{n}\right\}$ is bounded, and so are $\left\{f_{n}\left(x_{n}\right)\right\},\left\{T\left(t_{n}\right) x_{n}\right\},\left\{y_{n}\right\}$, $\left\{T\left(t_{n}\right) y_{n}\right\}$. Now we claim that

$$
\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
$$

Putting $\left\{l_{n}\right\}$ as a sequence that

$$
\begin{equation*}
l_{n}=\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}}, \quad \forall n \geq 1 \tag{3.11}
\end{equation*}
$$

then, we get

$$
\begin{align*}
l_{n+1}-l_{n}= & \frac{x_{n+2}-\beta_{n+1} x_{n+1}}{1-\beta_{n+1}}-\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}} \\
= & \frac{\alpha_{n+1} \gamma f_{n+1}\left(x_{n+1}\right)+\delta_{n+1} u_{n+1}+\left(\left(1-\beta_{n+1}-\delta_{n+1}\right) I-\alpha_{n+1} A\right) T\left(t_{n+1}\right) y_{n+1}}{1-\beta_{n+1}} \\
& -\frac{\alpha_{n} \gamma f_{n}\left(x_{n}\right)+\delta_{n} u_{n}+\left(\left(1-\beta_{n}-\delta_{n}\right) I-\alpha_{n} A\right) T\left(t_{n}\right) y_{n}}{1-\beta_{n}} \tag{3.12}\\
= & \frac{\alpha_{n+1}\left(\gamma f_{n+1}\left(x_{n+1}\right)-A T\left(t_{n+1}\right) y_{n+1}\right)}{1-\beta_{n+1}}+\frac{\delta_{n+1}\left(u_{n+1}-T\left(t_{n+1}\right) y_{n+1}\right)}{1-\beta_{n+1}} \\
& -\frac{\alpha_{n}\left(\gamma f_{n}\left(x_{n}\right)-A T\left(t_{n}\right) y_{n}\right)}{1-\beta_{n}}-\frac{\delta_{n}\left(u_{n}-T\left(t_{n}\right) y_{n}\right)}{1-\beta_{n}}+T\left(t_{n+1}\right) y_{n+1}-T\left(t_{n}\right) y_{n}
\end{align*}
$$

and notice that

$$
\begin{align*}
y_{n+1}-y_{n}= & \left(1-c_{n+1}-\sigma_{n+1}\right) x_{n+1}+\sigma_{n+1} v_{n+1}+c_{n+1} T\left(t_{n+1}\right) x_{n+1}-\left(1-c_{n}-\sigma_{n}\right) x_{n} \\
& -\sigma_{n} v_{n}-c_{n} T\left(t_{n}\right) x_{n} \\
= & \left(1-c_{n+1}\right) x_{n+1}-\left(1-c_{n}\right) x_{n}+c_{n+1} T\left(t_{n+1}\right) x_{n+1}-c_{n} T\left(t_{n}\right) x_{n} \\
& +\sigma_{n+1}\left(v_{n+1}-x_{n+1}\right)+\sigma_{n}\left(x_{n}-v_{n}\right) \\
= & \left(1-c_{n+1}\right)\left(x_{n+1}-x_{n}\right)+\left(c_{n}-c_{n+1}\right) x_{n}+c_{n+1}\left(T\left(t_{n+1}\right) x_{n+1}-T\left(t_{n}\right) x_{n}\right) \tag{3.13}\\
& +\left(c_{n+1}-c_{n}\right) T\left(t_{n}\right) x_{n}+\sigma_{n+1}\left(v_{n+1}-x_{n+1}\right)+\sigma_{n}\left(x_{n}-v_{n}\right) \\
= & \left(1-c_{n+1}\right)\left(x_{n+1}-x_{n}\right)+\left(c_{n}-c_{n+1}\right) x_{n}+c_{n+1}\left(T\left(t_{n+1}\right) x_{n+1}-T\left(t_{n+1}\right) x_{n}\right) \\
& +c_{n+1}\left(T\left(t_{n+1}\right) x_{n}-T\left(t_{n}\right) x_{n}\right)+\left(c_{n+1}-c_{n}\right) T\left(t_{n}\right) x_{n} \\
& +\sigma_{n+1}\left(v_{n+1}-x_{n+1}\right)+\sigma_{n}\left(x_{n}-v_{n}\right)
\end{align*}
$$

Substituting (3.13) into (3.12), we have

$$
\begin{aligned}
\left\|l_{n+1}-l_{n}\right\| \leq & \left.\frac{\alpha_{n+1}}{1-\beta_{n+1}} \| \gamma f_{n+1}\left(x_{n+1}\right)-A T\left(t_{n+1}\right) y_{n+1}\right)\left\|+\frac{\delta_{n}}{1-\beta_{n}}\right\| u_{n}-T\left(t_{n}\right) y_{n} \| \\
& +\frac{\alpha_{n}}{1-\beta_{n}}\left\|\gamma f_{n}\left(x_{n}\right)-A T\left(t_{n}\right) y_{n}\right\|+\frac{\delta_{n+1}}{1-\beta_{n+1}}\left\|u_{n+1}-T\left(t_{n+1}\right) y_{n+1}\right\| \\
& +\left\|T\left(t_{n+1}\right) y_{n+1}-T\left(t_{n}\right) y_{n}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left\|T\left(t_{n+1}\right) y_{n+1}-T\left(t_{n+1}\right) y_{n}\right\|+\left\|T\left(t_{n+1}\right) y_{n}-T\left(t_{n}\right) y_{n}\right\|+F_{n} \\
& \leq L_{t_{n+1}}\left\|y_{n+1}-y_{n}\right\|+\left\|T\left(t_{n}+h\right) y_{n}-T\left(t_{n}\right) y_{n}\right\|+F_{n} \\
&=\left\|y_{n+1}-y_{n}\right\|+\left(L_{t_{n+1}}-1\right)\left\|y_{n+1}-y_{n}\right\|+\left\|T(h) T\left(t_{n}\right) y_{n}-T\left(t_{n}\right) y_{n}\right\|+F_{n} \\
& \leq \leq\left(1-c_{n+1}\right)\left\|x_{n+1}-x_{n}\right\|+\left|c_{n}-c_{n+1}\| \| x_{n}\left\|+\mid c_{n+1}-c_{n}\right\| T\left(t_{n}\right) x_{n} \|\right. \\
&+c_{n+1}\left\|T\left(t_{n+1}\right) x_{n}-T\left(t_{n}\right) x_{n}\right\|+c_{n+1}\left\|T\left(t_{n+1}\right) x_{n+1}-T\left(t_{n+1}\right) x_{n}\right\| \\
& \quad+\sigma_{n+1}\left\|v_{n+1}-x_{n+1}\right\|+\sigma_{n}\left\|x_{n}-v_{n}\right\|+\left(L_{t_{n+1}}-1\right)\left\|y_{n+1}-y_{n}\right\| \\
& \quad+\left\|T(h) T\left(t_{n}\right) y_{n}-T\left(t_{n}\right) y_{n}\right\|+F_{n} \\
& \leq\left(1-c_{n+1}\right)\left\|x_{n+1}-x_{n}\right\|+\left|c_{n}-c_{n+1}\left\|| | x_{n}\right\|+c_{n+1} L_{t_{n+1}}\left\|x_{n+1}-x_{n}\right\|\right. \\
& \quad+c_{n+1}\left\|T(h) T\left(t_{n}\right) x_{n}-T\left(t_{n}\right) x_{n}\right\|+\mid c_{n+1}-c_{n}\left\|T\left(t_{n}\right) x_{n}\right\| \\
& \quad+\sigma_{n+1}\left\|v_{n+1}-x_{n+1}\right\|+\sigma_{n}\left\|x_{n}-v_{n}\right\|+\left(L_{t_{n+1}}-1\right)\left\|y_{n+1}-y_{n}\right\| \\
& \quad+\left\|T(h) T\left(t_{n}\right) y_{n}-T\left(t_{n}\right) y_{n}\right\|+F_{n} \\
& \leq\left\|x_{n+1}-x_{n}\right\|+c_{n+1}\left\|T(h) T\left(t_{n}\right) x_{n}-T\left(t_{n}\right) x_{n}\right\| \\
& \quad+\left\|T(h) T\left(t_{n}\right) y_{n}-T\left(t_{n}\right) y_{n}\right\|+c_{n+1}\left(L_{\left.t_{n+1}-1\right)\left\|x_{n+1}-x_{n}\right\|} \quad+\left(L_{t_{n+1}}-1\right)\left\|y_{n+1}-y_{n}\right\|+\left|c_{n+1}-c_{n}\right|\left(\left\|x_{n}\right\|+\left\|T\left(t_{n}\right) x_{n}\right\|\right)\right. \\
& \quad+\sigma_{n+1}\left\|v_{n+1}-x_{n+1}\right\|+\sigma_{n}\left\|x_{n}-v_{n}\right\|+F_{n} \\
& \leq\left\|x_{n+1}-x_{n}\right\|+c_{n+1}\left\|T(h) T\left(t_{n}\right) x_{n}-T\left(t_{n}\right) x_{n}\right\| \\
& \quad+\left\|T(h) T\left(t_{n}\right) y_{n}-T\left(t_{n}\right) y_{n}\right\|+F_{n}+G_{n},
\end{aligned}
$$

where

$$
\begin{aligned}
F_{n}= & \left.\frac{\alpha_{n+1}}{1-\beta_{n+1}} \| \gamma f_{n+1}\left(x_{n+1}\right)-A T\left(t_{n+1}\right) y_{n+1}\right)\left\|+\frac{\delta_{n+1}}{1-\beta_{n+1}}\right\| u_{n+1}-T\left(t_{n+1}\right) y_{n+1} \| \\
& +\frac{\alpha_{n}}{1-\beta_{n}}\left\|\gamma f_{n}\left(x_{n}\right)-A T\left(t_{n}\right) y_{n}\right\|+\frac{\delta_{n}}{1-\beta_{n}}\left\|u_{n}-T\left(t_{n}\right) y_{n}\right\|, \\
G_{n}= & c_{n+1}\left(L_{t_{n+1}}-1\right)\left\|x_{n+1}-x_{n}\right\|+\left(L_{t_{n+1}}-1\right)\left\|y_{n+1}-y_{n}\right\|+\sigma_{n}\left\|x_{n}-v_{n}\right\| \\
& +\left|c_{n+1}-c_{n}\right|\left(\left\|x_{n}\right\|+\left\|T\left(t_{n}\right) x_{n}\right\|\right)+\sigma_{n+1}\left\|v_{n+1}-x_{n+1}\right\| .
\end{aligned}
$$

It follows that

$$
\begin{align*}
\left\|l_{n+1}-l_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \leq & c_{n+1}\left\|T(h) T\left(t_{n}\right) x_{n}-T\left(t_{n}\right) x_{n}\right\| \tag{3.14}\\
& +\left\|T(h) T\left(t_{n}\right) y_{n}-T\left(t_{n}\right) y_{n}\right\|+F_{n}+G_{n} .
\end{align*}
$$

Since $\left\{T(t): t \in \mathbb{R}^{+}\right\}$is u.a.r. and $\lim _{n \rightarrow \infty} t_{n}=\infty$, it follows that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|T(h) T\left(t_{n}\right) x_{n}-T\left(t_{n}\right) x_{n}\right\| \leq \lim _{t \rightarrow \infty} \sup _{x \in B}\|T(h) T(t) x-T(t) x\|=0, \\
& \lim _{n \rightarrow \infty}\left\|T(h) T\left(t_{n}\right) y_{n}-T\left(t_{n}\right) y_{n}\right\| \leq \lim _{t \rightarrow \infty} \sup _{x \in B}\|T(h) T(t) x-T(t) x\|=0,
\end{aligned}
$$

where B is any bounded set containing $\left\{x_{n}\right\}$. Moreover, since $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{T\left(t_{n}\right) x_{n}\right\},\left\{T\left(t_{n}\right) y_{n}\right\},\left\{f_{n}\left(x_{n}\right)\right\}$, $\left\{u_{n}\right\},\left\{v_{n}\right\}$ are bounded, by conditions (1), (2), (3), (5), (3.14) implies that

$$
\limsup _{n \rightarrow \infty}\left(\left\|l_{n+1}-l_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Hence by Lemma 2.4, we have $\lim _{n \rightarrow \infty}\left\|l_{n}-x_{n}\right\|=0$. Consequently, it follows from (3.11) that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right)\left\|l_{n}-x_{n}\right\|=0$. Again since

$$
\begin{aligned}
\left\|y_{n}-x_{n}\right\| & =\left\|\left(1-c_{n}-\sigma_{n}\right) x_{n}+\sigma_{n} v_{n}+c_{n} T\left(t_{n}\right) x_{n}-x_{n}\right\| \\
& \leq \sigma_{n}\left\|v_{n}-x_{n}\right\|+c_{n}\left\|T\left(t_{n}\right) x_{n}-x_{n}\right\|,
\end{aligned}
$$

we have

$$
\begin{aligned}
\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\| \leq & \left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-T\left(t_{n}\right) x_{n}\right\| \\
= & \left\|x_{n}-x_{n+1}\right\|+\left\|\alpha_{n} \gamma f_{n}\left(x_{n}\right)+\beta_{n} x_{n}+\delta_{n} u_{n}+\left(\left(1-\beta_{n}-\delta_{n}\right) I-\alpha_{n} A\right) T\left(t_{n}\right) y_{n}-T\left(t_{n}\right) x_{n}\right\| \\
= & \left\|x_{n}-x_{n+1}\right\|+\| \alpha_{n}\left(\gamma f_{n}\left(x_{n}\right)-A T\left(t_{n}\right) x_{n}\right)+\beta_{n}\left(x_{n}-T\left(t_{n}\right) x_{n}\right) \\
& \left.+\delta_{n}\left(u_{n}-T\left(t_{n}\right) x_{n}\right)+\left(1-\beta_{n}-\delta_{n}\right) I-\alpha_{n} A\right)\left(T\left(t_{n}\right) y_{n}-T\left(t_{n}\right) x_{n}\right) \| \\
\leq & \left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|\gamma f_{n}\left(x_{n}\right)-A T\left(t_{n}\right) x_{n}\right\|+\beta_{n}\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\| \\
& \quad+\delta_{n}\left\|u_{n}-T\left(t_{n}\right) x_{n}\right\|+\left(1-\beta_{n}-\delta_{n}-\alpha_{n} \bar{\gamma}\right) L_{t_{n}}\left\|y_{n}-x_{n}\right\| \\
\leq & \left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|\gamma f_{n}\left(x_{n}\right)-A T\left(t_{n}\right) x_{n}\right\|+\beta_{n}\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\| \\
& +\delta_{n}\left\|u_{n}-T\left(t_{n}\right) x_{n}\right\|+\left(1-\beta_{n}-\delta_{n}-\alpha_{n} \bar{\gamma}\right) L_{t_{n}}\left(\sigma_{n}\left\|v_{n}-x_{n}\right\|+c_{n}\left\|T\left(t_{n}\right) x_{n}-x_{n}\right\|\right) \\
\leq & {\left[\beta_{n}+\left(1-\beta_{n}\right) c_{n} L_{t_{n}}\right]\left\|T\left(t_{n}\right) x_{n}-x_{n}\right\|+\left\|x_{n}-x_{n+1}\right\| } \\
& +\alpha_{n}\left\|\gamma f_{n}\left(x_{n}\right)-A T\left(t_{n}\right) x_{n}\right\|+\delta_{n}\left\|u_{n}-T\left(t_{n}\right) x_{n}\right\|+\sigma_{n} L_{t_{n}}\left\|v_{n}-x_{n}\right\|,
\end{aligned}
$$

it then follows that

$$
\begin{aligned}
\left(1-\beta_{n}\right)\left(1-c_{n} L_{t_{n}}\right)\left\|T\left(t_{n}\right) x_{n}-x_{n}\right\| \leq & \left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|\gamma f_{n}\left(x_{n}\right)-A T\left(t_{n}\right) x_{n}\right\| \\
& +\delta_{n}\left\|u_{n}-T\left(t_{n}\right) x_{n}\right\|+\sigma_{n} L_{t_{n}}\left\|v_{n}-x_{n}\right\| .
\end{aligned}
$$

By the conditions (2) and (5), it is easy to see that there exists $N \geq 0$, we have

$$
\left(1-\beta_{n}\right)\left(1-c_{n} L_{t_{n}}\right) \geq c>0, n \geq N
$$

where c is a constant. It follows that

$$
\lim _{n \rightarrow \infty}\left\|T\left(t_{n}\right) x_{n}-x_{n}\right\|=0
$$

and hence for any $t \geq 0$,

$$
\begin{aligned}
\left\|x_{n}-T(t) x_{n}\right\| & \leq\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\|+\left\|T\left(t_{n}\right) x_{n}-T(t) T\left(t_{n}\right) x_{n}\right\|+\left\|T(t) T\left(t_{n}\right) x_{n}-T(t) x_{n}\right\| \\
& \leq\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\|+\left\|T\left(t_{n}\right) x_{n}-T(t) T\left(t_{n}\right) x_{n}\right\|+L_{t}\left\|x_{n}-T\left(t_{n}\right) x_{n}\right\| \rightarrow 0, n \rightarrow \infty,
\end{aligned}
$$

that is $\left\|x_{n}-T(t) x_{n}\right\| \rightarrow 0, n \rightarrow \infty$. For each $m \geq 1$, let $z_{m} \in C$ be the unique fixed point of the contraction mapping

$$
S_{m} x=\alpha_{m} \gamma f_{m}(x)+\left(I-\alpha_{m} A\right) T\left(t_{m}\right) x,
$$

where t_{m} and α_{m} satisfy the conditions of Lemma3.1. Then it follows from Lemma 3.1 that $\lim _{m \rightarrow \infty} z_{m}=x^{*}$. Since

$$
\begin{aligned}
\left\|z_{m}-x_{n+1}\right\|^{2}= & \left\langle\alpha_{m} \gamma f_{m}\left(z_{m}\right)+\left(I-\alpha_{m} A\right) T\left(t_{m}\right) z_{m}-x_{n+1}, j\left(z_{m}-x_{n+1}\right)\right\rangle \\
= & \left\langle\alpha_{m}\left(\gamma f_{m}\left(z_{m}\right)-A z_{m}\right)+\alpha_{m}\left(A z_{m}-A T\left(t_{m}\right) z_{m}\right)\right. \\
& \left.+\left(T\left(t_{m}\right) z_{m}-T\left(t_{m}\right) x_{n+1}\right)+\left(T\left(t_{m}\right) x_{n+1}-x_{n+1}\right), j\left(z_{m}-x_{n+1}\right)\right\rangle \\
\leq & \alpha_{m}\left\langle\gamma f_{m}\left(z_{m}\right)-A z_{m}, j\left(z_{m}-x_{n+1}\right)\right\rangle+L_{t_{m}}\left\|z_{m}-x_{n+1}\right\|^{2} \\
& +\alpha_{m}\|A\|\left\|z_{m}-T\left(t_{m}\right) z_{m} \mid\right\|\left\|z_{m}-x_{n+1}\right\|+\left\|T\left(t_{m}\right) x_{n+1}-x_{n+1}\right\|\left\|z_{m}-x_{n+1}\right\|,
\end{aligned}
$$

we have

$$
\begin{align*}
\left\langle\gamma f_{m}\left(z_{m}\right)-A z_{m}, j\left(x_{n+1}-z_{m}\right)\right\rangle \leq & \|A \mid\|\left\|z_{m}-T\left(t_{m}\right) z_{m}\right\|\left\|z_{m}-x_{n+1}\right\| \\
& +\frac{1}{\alpha_{m}}\left\|T\left(t_{m}\right) x_{n+1}-x_{n+1}\right\|\left\|z_{m}-x_{n+1}\right\| \\
& +\frac{L_{t_{m}}-1}{\alpha_{m}}\left\|z_{m}-x_{n+1}\right\|^{2} \tag{3.15}\\
\leq & \frac{L_{t_{m}}-1}{\alpha_{m}} M^{2}+\|A\|\left\|z_{m}-T\left(t_{m}\right) z_{m}\right\| M \\
& +\frac{1}{\alpha_{m}}\left\|T\left(t_{m}\right) x_{n+1}-x_{n+1}\right\| M
\end{align*}
$$

where $M>0$ is a constant such that $M \geq\left\|z_{m}-x_{n+1}\right\|$. Therefore, firstly, taking upper limit as $n \rightarrow \infty$, and then as $m \rightarrow \infty$ in (3.15), we obtain that

$$
\begin{equation*}
\limsup _{m \rightarrow \infty} \limsup _{n \rightarrow \infty}\left\langle\gamma f_{m}\left(z_{m}\right)-A z_{m}, j\left(x_{n+1}-z_{m}\right)\right\rangle \leq 0 \tag{3.16}
\end{equation*}
$$

On the other hand, since $\lim _{m \rightarrow \infty} z_{m}=x^{*}$ due to the fact that the duality map J is single-valued and norm topology to weak* topology uniformly continuous on bounded sets of E, we obtain $\lim _{m \rightarrow \infty}\left(x_{n+1}-\right.$ $\left.z_{m}\right)=x_{n+1}-x^{*}$, thus

$$
\left\langle\gamma f_{1}\left(x^{*}\right)-A x^{*}, j\left(x_{n+1}-z_{m}\right)\right\rangle \rightarrow\left\langle\gamma f_{1}\left(x^{*}\right)-A x^{*}, j\left(x_{n+1}-x^{*}\right)\right\rangle \text { uniformly for } n, \text { as } m \rightarrow \infty
$$

Therefore

$$
\lim _{m \rightarrow \infty} H\left(x_{n}, z_{m}\right)=0 \text { uniformly for } n
$$

where $H\left(x_{n}, z_{m}\right)=\left\langle\gamma f_{1}\left(x^{*}\right)-A x^{*}, j\left(x_{n+1}-x^{*}\right)-j\left(x_{n+1}-z_{m}\right)\right\rangle$. Moreover, by $f_{m}\left(x^{*}\right)=f_{1}\left(x^{*}\right)$ for all $m \in \mathbb{N}$, we have

$$
\begin{aligned}
& \left\langle\gamma f_{1}\left(x^{*}\right)-A x^{*}, j\left(x_{n+1}-x^{*}\right)\right\rangle=\left\langle\gamma f_{1}\left(x^{*}\right)-A x^{*}, j\left(x_{n+1}-x^{*}\right)-j\left(x_{n+1}-z_{m}\right)\right\rangle \\
& +\left\langle\gamma f_{m}\left(x^{*}\right)-\gamma f_{m}\left(z_{m}\right), j\left(x_{n+1}-z_{m}\right)\right\rangle+\left\langle\gamma f_{m}\left(z_{m}\right)-A z_{m}, j\left(x_{n+1}-z_{m}\right)\right\rangle \\
& +\left\langle A z_{m}-A x^{*}, j\left(x_{n+1}-z_{m}\right)\right\rangle \\
& \leq\left\langle\gamma f_{1}\left(x^{*}\right)-A x^{*}, j\left(x_{n+1}-x^{*}\right)-j\left(x_{n+1}-z_{m}\right)\right\rangle \\
& +\left\langle\gamma f_{m}\left(z_{m}\right)-A z_{m}, j\left(x_{n+1}-z_{m}\right)\right\rangle+\gamma \alpha\left\|z_{m}-x^{*}\left|\left\|\mid z_{m}-x_{n+1}\right\|\right.\right. \\
& +\|A\|\left\|z_{m}-x^{*}\left|\left\|\mid z_{m}-x_{n+1}\right\| .\right.\right.
\end{aligned}
$$

Now we prove

$$
\limsup _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} H\left(x_{n}, z_{m}\right)=0
$$

Since $\lim \sup _{m \rightarrow \infty} \lim \sup _{n \rightarrow \infty} H\left(x_{n}, z_{m}\right)$ exists, we can assume that there exist $\left\{x_{n_{k}}\right\} \subset\left\{x_{n}\right\},\left\{z_{m_{j}}\right\} \subset\left\{z_{m}\right\}$ such that

$$
\limsup _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} H\left(x_{n}, z_{m}\right)=\lim _{j \rightarrow \infty} \lim _{k \rightarrow \infty} H\left(x_{n_{k}}, z_{m_{j}}\right)
$$

and we can define

$$
\lim _{k \rightarrow \infty} H\left(x_{n_{k}}, z_{m_{j}}\right)=W_{j} .
$$

Since

$$
\lim _{j \rightarrow \infty} H\left(x_{n_{k}}, z_{m_{j}}\right)=0, \text { uniformly for } k
$$

there exists $J \in \mathbb{N}$, when $j>J$, we have

$$
\left|H\left(x_{n_{k}}, z_{m_{j}}\right)\right|<\varepsilon, \text { uniformly for } k
$$

which means

$$
\left|W_{j}\right| \leq \varepsilon, \quad k \rightarrow \infty
$$

Therefore

$$
\begin{equation*}
\limsup _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} H\left(x_{n}, z_{m}\right)=\lim _{j \rightarrow \infty} W_{j}=0 \tag{3.17}
\end{equation*}
$$

Combining (3.16) and (3.17), we get

$$
\limsup _{m \rightarrow \infty} \limsup _{n \rightarrow \infty}\left\langle\left(\gamma f_{1}-A\right) x^{*}, j\left(x_{n+1}-x^{*}\right)\right\rangle \leq 0
$$

Thus

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle\left(\gamma f_{1}-A\right) x^{*}, j\left(x_{n+1}-x^{*}\right)\right\rangle \leq 0 \tag{3.18}
\end{equation*}
$$

Now, it follows form (3.9) that

$$
\left\|y_{n}-x^{*}\right\| \leq\left[1+c_{n}\left(L_{t_{n}}-1\right)\right]\left\|x_{n}-x^{*}\right\|+\sigma_{n}\left\|v_{n}-x^{*}\right\|,
$$

which together with the iterative process (3.8) implies the following estimates

$$
\begin{aligned}
& \left\|x_{n+1}-x^{*}\right\|^{2}=\left\langle\alpha_{n}\left(\gamma f_{n}\left(x_{n}\right)-A x^{*}\right)+\beta_{n}\left(x_{n}-x^{*}\right)+\left(\left(1-\beta_{n}-\delta_{n}\right) I\right.\right. \\
& \left.\left.-\alpha_{n} A\right)\left(T\left(t_{n}\right) y_{n}-x^{*}\right)+\delta_{n}\left(u_{n}-x^{*}\right), j\left(x_{n+1}-x^{*}\right)\right\rangle \\
& =\left\langle\alpha_{n}\left(\gamma f_{n}\left(x_{n}\right)-\gamma f_{n}\left(x^{*}\right)\right)+\beta_{n}\left(x_{n}-x^{*}\right)+\left(\left(1-\beta_{n}-\delta_{n}\right) I\right.\right. \\
& \left.\left.-\alpha_{n} A\right)\left(T\left(t_{n}\right) y_{n}-x^{*}\right)+\delta_{n}\left(u_{n}-x^{*}\right)+\alpha_{n}\left(\gamma f_{n}\left(x^{*}\right)-A x^{*}\right), j\left(x_{n+1}-x^{*}\right)\right\rangle \\
& \leq \alpha_{n} \gamma \alpha\left\|x_{n}-x^{*}\left|\| \| x_{n+1}-x^{*}\left\|+\beta_{n}\right\| x_{n}-x^{*}\right|\right\| \mid x_{n+1}-x^{*} \| \\
& +\delta_{n} \| u_{n}-x^{*}| || | x_{n+1}-x^{*}| |+\alpha_{n}\left\langle\left(\gamma f_{1}\left(x^{*}\right)-A x^{*}\right), j\left(x_{n+1}-x^{*}\right)\right\rangle \\
& +\left(1-\beta_{n}-\delta_{n}-\alpha_{n} \bar{\gamma}\right) L_{t_{n}}| | y_{n}-x^{*}| || | x_{n+1}-x^{*}| | \\
& \leq \alpha_{n} \gamma \alpha\left\|x_{n}-x^{*}\right\|\left\|x_{n+1}-x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\left|\left\|\mid x_{n+1}-x^{*}\right\|\right.\right. \\
& +\delta_{n} \| u_{n}-x^{*}| || | x_{n+1}-x^{*}| |+\alpha_{n}\left\langle\left(\gamma f_{1}\left(x^{*}\right)-A x^{*}\right), j\left(x_{n+1}-x^{*}\right)\right\rangle \\
& +\left(1-\beta_{n}-\delta_{n}-\alpha_{n} \bar{\gamma}\right) \sigma_{n} L_{t_{n}} \| v_{n}-x^{*}| || | x_{n+1}-x^{*}| | \\
& +\left(1-\beta_{n}-\delta_{n}-\alpha_{n} \bar{\gamma}\right)\left[1+c_{n}\left(L_{t_{n}}-1\right)\right][1 \\
& \left.+\left(L_{t_{n}}-1\right)\right]\left|\left|x_{n}-x^{*}\right|\right|\left|\left|x_{n+1}-x^{*}\right|\right| \\
& \leq\left[1-\alpha_{n}(\bar{\gamma}-\gamma \alpha)\right]\left\|x_{n}-x^{*}\left|\left\|\mid x_{n+1}-x^{*}\right\|+\left(L_{t_{n}}-1\right)(1\right.\right. \\
& \left.+c_{n} L_{t_{n}}\right)\left|\left|x_{n}-x^{*}\right|\right|\left|\left|x_{n+1}-x^{*}\right|\right|+\alpha_{n}\left\langle\left(\gamma f_{1}\left(x^{*}\right)-A x^{*}\right), j\left(x_{n+1}-x^{*}\right)\right\rangle \\
& +\delta_{n}\left\|u_{n}-x^{*}\left|\| \| x_{n+1}-x^{*}\left\|+\sigma_{n} L_{t_{n}}\right\| v_{n}-x^{*}\right|\right\| \mid x_{n+1}-x^{*} \| \\
& \leq\left[1-\alpha_{n}(\bar{\gamma}-\gamma \alpha)\right] \frac{\left\|x_{n}-x^{*}\right\|^{2}+\left\|x_{n+1}-x^{*}\right\|^{2}}{2} \\
& +\left(L_{t_{n}}-1\right)\left(1+c_{n} L_{t_{n}}\right)| | x_{n}-x^{*}\left|\left\|\mid x_{n+1}-x^{*}\right\|+\alpha_{n}\left\langle\left(\gamma f_{1}\left(x^{*}\right)-A x^{*}\right), j\left(x_{n+1}-x^{*}\right)\right\rangle\right. \\
& +\delta_{n}\left\|u_{n}-x^{*}| |\right\| x_{n+1}-x^{*}\left\|+\sigma_{n} L_{t_{n}}\right\| v_{n}-x^{*}\left|\left\|\mid x_{n+1}-x^{*}\right\|\right. \text {, }
\end{aligned}
$$

and thus

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & {\left[1-\alpha_{n}(\bar{\gamma}-\gamma \alpha)\right]\left\|x_{n}-x^{*}\right\|^{2} } \\
& +2 \alpha_{n}\left[\left(L_{t_{n}}-1\right) \alpha_{n}^{-1}\left(1+L_{t_{1}}\right)\left\|x_{n}-x^{*}\right\|\left\|x_{n+1}-x^{*}\right\|\right. \\
& \left.+\left\langle\left(\gamma f_{1}\left(x^{*}\right)-A x^{*}\right), j\left(x_{n+1}-x^{*}\right)\right\rangle\right]+2 \delta_{n} M^{\prime}+2 \sigma_{n} L_{t_{1}} M^{\prime}
\end{aligned}
$$

where $M^{\prime}=\max _{n}\left\{\left\|u_{n}-x^{*}\left|\left\|| | x_{n+1}-x^{*}| |,\right\| v_{n}-x^{*}\right| \mid\right\| x_{n+1}-x^{*} \|\right\} \geq 0$. Consequently, by Corollary 2.6 and (3.18), we obtain that

$$
\lim _{n \rightarrow \infty} x_{n}=x^{*}
$$

The proof is completed.

Remark 3.3.

(i) Theorem 3.2 extends Theorem 3.4 of Marino and Xu [17] from a real Hilbert space to a reflexive and strictly convex Banach space with a uniformly Gáteaux differentiable norm and from nonexpansive mappings to asymptotically nonexpansive semigroups.
(ii) Theorem 3.2 extends Theorem 4.2 of Song and Xu [23] from nonexpansive semigroups to asymptotically nonexpansive semigroups.
(iii) Taking $T\left(t_{1}\right)=T, h=t_{1}, \delta_{n}=c_{n}=\sigma_{n} \equiv 0, A=I, \gamma=1$, and $f_{n} \equiv f_{1}$ in Theorem 3.2 and then $C \pm C \subset C$ is not necessary. We get Theorem 2.2 of Lou et al. 15] and generalize it from a uniformly convex Banach space to a reflexive and strictly convex Banach space.
(iv) Taking $\delta_{n}=c_{n}=\sigma_{n} \equiv 0, A=I, \gamma=1$, and $f_{n} \equiv u$ in Theorem 3.2 and then $C \pm C \subset C$ is not necessary. We get Theorem 3.3 of Zegeye and Shahzad [39].
(v) Our results completely generalize the results of Yang 32].

Corollary 3.4. Let C be a nonempty closed convex subset of a uniformly convex Banach space E with a uniformly Gáteaux differentiable norm, $C \pm C \subset C$. Let $\mathcal{T}=\left\{T(t): t \in \mathbb{R}^{+}\right\}$be a u.a.r. nonexpansive semigroup on C with a sequence $\left\{L_{t}\right\} \subset[1, \infty)$ such that $F(\mathcal{T}) \neq \emptyset$, and $\left\{f_{n}\right\} \subset \Pi_{C}$ is stable on $F(\mathcal{T})$. Let A be a strongly positive linear bounded self-adjoint operator with coefficient $\bar{\gamma}, A(C) \subset C$. Assume that $0<\gamma<\frac{\bar{\gamma}}{\alpha}$. Let $\left\{x_{n}\right\}$ be a sequence defined by (3.8) satisfying
(1) $\alpha_{n} \in(0,1), \lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \frac{L_{t_{n}}-1}{\alpha_{n}}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(2) $\beta_{n} \in(0,1), 0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1$;
(3) $\delta_{n}, \sigma_{n} \in[0,1], \sum_{n=1}^{\infty} \delta_{n}<\infty, \sum_{n=1}^{\infty} \sigma_{n}<\infty$;
(4) $h, t_{n} \geq 0, t_{n+1}=t_{n}+h, \lim _{n \rightarrow \infty} t_{n}=\infty$;
(5) $c_{n} \in[0,1], \lim _{n \rightarrow \infty}\left|c_{n+1}-c_{n}\right|=0, \lim \sup _{n \rightarrow \infty} c_{n}<1$.

Suppose $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are bounded in C, then as $n \rightarrow \infty$, the sequence $\left\{x_{n}\right\}$ converges strongly to some common fixed point x^{*} of $F(\mathcal{T})$ which is the unique solution in $F(\mathcal{T})$ to the variational inequality (3.2).
Corollary 3.5. Let C be a nonempty closed convex subset of a Hilbert space $H, C \pm C \subset C$. Let $\mathcal{T}=$ $\left\{T(t): t \in \mathbb{R}^{+}\right\}$be a u.a.r. nonexpansive semigroup on C with a sequence $\left\{L_{t}\right\} \subset[1, \infty)$ such that $F(\mathcal{T}) \neq \emptyset$, and $\left\{f_{n}\right\} \subset \Pi_{C}$ is stable on $F(\mathcal{T})$. Let A be a strongly positive linear bounded self-adjoint operator with coefficient $\bar{\gamma}, A(C) \subset C$. Assume that $0<\gamma<\frac{\bar{\gamma}}{\alpha}$. Let $\left\{x_{n}\right\}$ be a sequence defined by (3.8) satisfying
(1) $\alpha_{n} \in(0,1), \lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \frac{L_{t_{n}}-1}{\alpha_{n}}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(2) $\beta_{n} \in(0,1), 0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$;
(3) $\delta_{n}, \sigma_{n} \in[0,1], \sum_{n=1}^{\infty} \delta_{n}<\infty, \sum_{n=1}^{\infty} \sigma_{n}<\infty$;
(4) $h, t_{n} \geq 0, t_{n+1}=t_{n}+h, \lim _{n \rightarrow \infty} t_{n}=\infty$;
(5) $c_{n} \in[0,1], \lim _{n \rightarrow \infty}\left|c_{n+1}-c_{n}\right|=0, \limsup _{n \rightarrow \infty} c_{n}<1$.

Suppose $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are bounded in C, then as $n \rightarrow \infty$, the sequence $\left\{x_{n}\right\}$ converges strongly to some common fixed point x^{*} of $F(\mathcal{T})$ which is the unique solution in $F(\mathcal{T})$ to the variational inequality (3.2).
Remark 3.6. Since every nonexpansive semigroup is asymptotically nonexpansive semigroup, our theorems hold for the case when $\mathcal{T}=\left\{T(t): t \in \mathbb{R}^{+}\right\}$is simply nonexpansive semigroup.

Acknowledgment

The authors would like to thank the referee for his/her very important comments that improved the results and the quality of the paper. The authors were supported financially by the National Natural Science Foundation of China (11371221, 11571296).

References

[1] K. Aoyama, F. Kohsaka, Viscosity approximation process for a sequence of quasinonexpansive mappings, Fixed Point Theory Appl., 2014 (2014), 11 pages. 2
[2] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 20 (2004), 103-120. 1
[3] G. Cai, S. Q. Bu, A viscosity approximation scheme for finite mixed equilibrium problems and variational inequality problems and fixed point problems, Comput. Math. Appl., 62 (2011), 440-454. 1
[4] G. Cai, S. Q. Bu, Convergence analysis for variational inequality problems and fixed point problems in 2-uniformly smooth and uniformly convex Banach spaces, Math. Comput. Modelling, 55 (2012), 538-546.
[5] G. Cai, S. Q. Bu, A viscosity scheme for mixed equilibrium problems, variational inequality problems and fixed point problems, Math. Comput. Modelling, 57 (2013), 1212-1226. 1
[6] K. Goebel, W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171-174. 1
[7] K. S. Ha, J. S. Jung, On generators and nonlinear semigroups in Banach spaces, J. Korean Math. Soc., 25 (1988), 245-257. 2.3
[8] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957-961. 1
[9] I. Inchan, S. Plubtieng, Strong convergence theorems of hybrid methods for two asymptotically nonexpansive mappings in Hilbert spaces, Nonlinear Anal. Hybrid Syst., 2 (2008), 1125-1135. 1
[10] A. R. Khan, H. Fukhar-ud-din, A. Kalsoom, B. S. Lee, Convergence of a general algorithm of asymptotically nonexpansive maps in uniformly convex hyperbolic spaces, Appl. Math. Comput., $238(2014), 547-556.1$
[11] X. N. Li, J. S. Gu, Strong convergence of modified Ishikawa iteration for a nonexpansive semigroup in Banach spaces, Nonlinear Anal., 73 (2010), 1085-1092. 1
[12] L. S. Liu, Fixed points of local strictly pseudo-contractive mappings using Mann and Ishikawa iteration with errors, Indian J. Pure Appl. Math., 26 (1995), 649-659. $2,2.5$
[13] L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., 194 (1995), 114-125. 2.2 .5
[14] L. S. Liu, Ishikawa-type and Mann-type iterative processes with errors for constructing solutions of nonlinear equations involving m-accretive operators in Banach spaces, Nonlinear Anal., 34 (1998), 307-317. 2
[15] J. Lou, L.-J. Zhang, Z. He, Viscosity approximation methods for asymptotically nonexpansive mappings, Appl. Math. Comput., 203 (2008), 171-177. 1, 3.3
[16] G. Marino, V. Colao, X. L. Qin, S. M. Kang, Strong convergence of the modified Mann iterative method for strict pseudo-contractions, Comput. Math. Appl., 57 (2009), 455-465. 1
[17] G. Marino, H.-K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 318 (2006), 43-52. 1, 1, 3.3
[18] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46-55. 1
[19] C. I. Podilchuk, R. J. Mammone, Image recovery by convex projections using a least-squares constrain, J. Optical Soc. Amer. A, 7 (1990), 517-521 1
[20] X. L. Qin, M. J. Shang, S. M. Kang, Strong convergence theorems of modified Mann iterative process for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 70 (2009), 1257-1264. 1
[21] G. S. Saluja, M. Postolache, A. Kurdi, Convergence of three-step iterations for nearly asymptotically nonexpansive mappings in CAT (k) spaces, J. Inequal. Appl., 2015 (2015), 18 pages. 1
[22] M. I. Sezan, H. Stark, Applications of convex projection theory to image recovery in tomography and related areas, H. Stark (Ed.), Image Recovery: Theory and Applications, Academic, New York, (1987), 415-462 1
[23] Y. S. Song, S. M. Xu, Strong convergence theorems for nonexpansive semigroup in Banach spaces, J. Math. Anal. Appl., 338 (2008), 152-161. 1, 3.3
[24] Y. F. Su, S. H. Li, Strong convergence theorems on two iterative method for non-expansive mappings, Appl. Math. Comput., 181 (2006), 331-341. 1
[25] B. S. Thakur, R. Dewangan, M. Postolache, Strong convergence of new iteration process for a strongly continuous semigroup of asymptotically pseudocontractive mappings, Numer. Funct. Anal. Optim., 34 (2013), 1418-1431.
[26] D. Thakur, B. S. Thakur, M. Postolache, New iteration scheme for numerical reckoning fixed points of nonexpansive mappings, J. Inequal. Appl., 2014 (2014), 15 pages.
[27] B. S. Thakur, D. Thakur, M. Postolache, A new iteration scheme for approximating fixed points of nonexpansive mappings, Filomat, (in press).
[28] S. Thianwan, Common fixed points of new iterations for two asymptotically nonexpansive nonself-mappings in a Banach space, J. Comput. Appl. Math., 224 (2009), 688-695.
[29] Y. X. Tian, S. S. Chang, J. L. Huang, On the approximation problem of common fixed points for a finite family of non-self asymptotically quasi-nonexpansive-type mappings in Banach spaces, Comput. Math. Appl., 53 (2007), 1847-1853. 1
[30] H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240-256. 2.6
[31] H.-K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298 (2004), 279291. 1,1
[32] L.-P. Yang, The general iterative scheme for semigroups of nonexpansive mappings and variational inequalities with applications, Math. Comput. Modelling, 57 (2013), 1289-1297. 1, 2.1, 3.3
[33] L.-P. Yang, W.-M. Kong, A general iterative algorithm for semigroups of nonexpansive mappings with generalized contractive mapping, Appl. Math. Comput., 222 (2013), 671-679. 2.4
[34] Y. H. Yao, M. Postolache, Iterative methods for pseudomonotone variational inequalities and fixed-point problems, J. Optim. Theory Appl., 155 (2012), 273-287. 1
[35] Y. H. Yao, M. Postolache, Y.-C. Liou, Strong convergence of a self-adaptive method for the split feasibility problem, Fixed Point Theory Appl., 2013 (2013), 12 pages. 1
[36] Y. H. Yao, M. Postolache, Y.-C. Liou, Variant extragradient-type method for monotone variational inequalities, Fixed Point Theory Appl., 2013 (2013), 15 pages. 1
[37] D. C. Youla, Mathematical theory of image restoration by the method of convex projections, H. Stark (Ed.), Image Recovery: Theory and Applications, Academic, New York, (1987), 29-77. 1
[38] D. C. Youla, On deterministic convergence of iterations of relaxed projection operators, J. Vis. Commun. Image Represent., 1 (1990), 12-20. 1
[39] H. Zegeye, N. Shahzad, Convergence theorems for strongly continuous semi-groups of asymptotically nonexpansive mappings, Nonlinear Anal., 71 (2009), 2308-2315. 1. 2.2 , 3.3
[40] H. Zegeye, N. Shahzad, Convergence of Mann's type iteration method for generalized asymptotically nonexpansive mappings, Comput. Math. Appl., 62 (2011), 4007-4014. 1

[^0]: *Corresponding author
 Email addresses: mathlls@163.com (Lishan Liu), liuchunjn@aliyun.com (Chun Liu), wf178624@163.com (Fang Wang), yhwu@maths.curtin.edu.au (Yonghong Wu)

