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Abstract

In this paper, we study a general iterative process strongly converging to a common fixed point of an
asymptotically nonexpansive semigroup {T (t) : t ∈ R+} in the framework of reflexive and strictly convex
spaces with a uniformly Gáteaux differentiable norm. The process also solves some variational inequalities.
Our results generalize and extend many existing results in the research field. c©2016 All rights reserved.
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1. Introduction

Throughout this paper, we assume that E is a real Banach space, E∗ is the dual space of E, C is a
nonempty closed convex subset of E, and R+ and N are the set of nonnegative real numbers and positive
integers, respectively. Let J : E → 2E

∗
be the normalized duality mapping defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2}, ∀x ∈ E.

Let T : C → C be a mapping. We use F (T ) to denote the set of fixed points of T . If {xn} is a sequence in
E, we use xn → x ( xn ⇀ x) to denote strong (weak) convergence of the sequence {xn} to x.
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Recall that a mapping f : C → C is a contraction on C if there exists a constant α ∈ (0, 1) such that

||f(x)− f(y)|| ≤ α||x− y||, ∀x, y ∈ C.

We use ΠC to denote the collection of mappings f verifying the above inequality. That is

ΠC = {f : C → C | f is a contraction with constant α}.

Note that each f ∈ ΠC has a unique fixed point in C.
A mapping T : C → C is said to be nonexpansive if

||Tx− Ty|| ≤ ||x− y||, ∀x, y ∈ C.

T : C → C is said to be asymptotically nonexpansive (see [6]) if there exists a sequence {kn} ⊂ [1,∞) with
limn→∞ kn = 1 such that

||Tnx− Tny|| ≤ kn||x− y||, ∀x, y ∈ C, ∀n ≥ 1.

Let H be a real Hilbert space, and assume that A is a strongly positive bounded linear operator (see
[17]) on H, that is, there is a constant γ > 0 with property

〈Ax, J(x)〉 ≥ γ||x||2, ∀x, y ∈ H.

Then we can construct the following variational inequality problem with viscosity. Find x∗ ∈ C such that

〈(A− γf)x∗, x− x∗〉 ≥ 0, ∀x ∈ F (T ),

which is the optimality condition for the minimization problem

min
x∈F (T )

1

2
〈Ax, x〉 − h(x),

where h is a potential function for γf , and γ is a suitable positive constant.
Many investigations have been done on fixed point iterative algorithms (see [3–5, 9, 10, 21, 24–29, 34, 36,

40]), as it is an important subject in nonlinear operator theory in a Banach space or a Hilbert space and has
application in many areas, in particular, in image recovery and signal processing (see [2, 19, 22, 35, 37, 38]).
Early in 1967, Halpern [8] firstly introduced the following iteration scheme:

xn+1 = αnu+ (1− αn)Txn, ∀n ≥ 0, (1.1)

where T is a nonexpansive mapping from C into itself, u and x0 ∈ C are both given points, and xn+1 ∈ C.
The author proved that if {αn} satisfies αn ∈ (0, 1), limn→∞ αn = 0 and

∑∞
n=0 αn = ∞, then the sequence

{xn} defined by (1.1) converges strongly to a fixed point of T . In 2004, Xu [31] studied the following iterative
algorithm:

xn+1 = αnf(xn) + (1− αn)Txn, ∀n ≥ 0,

where αn ∈ (0, 1), x0 ∈ C, T is also a nonexpansive mapping and f is a contraction mapping from C into
itself, xn+1 ∈ C. The author obtained a strong convergence theorem under some mild restrictions on the
parameters by using the so-called viscosity approximation method introduced by Moudafi [18]. Afterward,
Marino and Xu [17] considered the following iterative process on the basis of Xu [31]:

xn+1 = αnγf(xn) + (I − αnA)Txn, ∀n ≥ 0,

where T is a self-nonexpansive mapping on H, {αn} satisfies certain conditions, and A is a strong positive
bounded linear operator on H. They proved that the sequence defined by the above iterative process
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converges strongly to a fixed point of T which is a unique solution of the variational inequality 〈(A −
γf)x∗, x∗ − x〉 ≤ 0, for all x ∈ F (T ).

On the other hand, in 2008, Lou et al. [15] introduced the viscosity iteration process for an asymptotically
nonexpansive mapping under the framework of a uniformly convex Banach space with a uniformly Gáteaux
differentiable norm as follows:

xn+1 = αnf(xn) + βnxn + (1− αn − βn)Tnxn, ∀n ≥ 0,

where {αn} and {βn} are two sequences satisfying certain conditions.
In fact, the Lipschitzian semigroups are closely allied to nonexpansive mappings and asymptotically

nonexpansive mappings of all time.
Recall that a one-parameter family T = {T (t) : t ∈ R+} is said to be a Lipschitzian semigroup on C

(see [32]) if the following conditions are satisfied:

i) T (0)x = x, ∀x ∈ C;

ii) T (s+ t)x = T (t)T (s)x, ∀t, s ∈ R+, ∀x ∈ C;

iii) for each x ∈ C, the mapping T (·)x from R+ into C is continuous;

iv) there exists a bounded measurable function Lt : (0,∞)→ [0,∞) such that, for each t > 0,

||T (t)x− T (t)y|| ≤ Lt||x− y||, ∀x, y ∈ C.

A Lipschitzian semigroup T is called a nonexpansive semigroup if Lt = 1 for all t > 0, and asymptotically
nonexpansive semigroup if lim supt→∞ Lt ≤ 1. Note that for asymptotically nonexpansive semigroup T ,
we can always assume that the Lipschitzian constants {Lt}t>0 are such that Lt ≥ 1 for each t > 0, Lt is
nonincreasing in t, and limt→∞ Lt = 1; otherwise we replace Lt for each t > 0, by Lt := max{sups≥t Ls, 1}.
Moreover, if tn > 0 such that limn→∞ tn =∞, we obtain Ltn → 1 as n→∞. T is said to have a fixed point
if there exists x0 ∈ C such that T (t)x0 = x0, for all t > 0. We denote by F (T ), the set of fixed points of T ,
i.e., F (T ) :=

⋂
t∈R+ F (T (t)).

A continuous operator of the semigroup T is said to be uniformly asymptotically regular (in short u.a.r.)
on C if for all h ≥ 0 and any bounded subset D of C, limt→∞ supx∈D ||T (h)T (t)x− T (t)x|| = 0 (see [11]).

In 2008, Song and Xu [23] introduced the following iteration scheme for nonexpansive semigroups:

xn+1 = αnf(xn) + (1− αn)T (tn)xn, ∀n ≥ 0,

where {αn} is a sequence in (0, 1) and {tn} is a sequence of nonnegative real numbers divergent to infinity.
Under certain restrictions to the sequence {αn}, they proved the strong convergence of {xn} to a member
of F (T ) in a reflexive and strictly convex Banach space with a uniformly Gáteaux differentiable norm.
Afterward, Zegeye and Shahzad [39] studied the sequence generated by the following algorithm

xn+1 = αnu+ βnxn + (1− αn − βn)T (tn)xn, ∀n ≥ 0,

and proved strong convergence of {xn} to a member of F (T ) in the same Banach space for asymptotically
nonexpansive semigroups. Very recently, Yang [32] proposed a generalized algorithm as follows:

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)T (tn)xn, ∀n ≥ 0,

where f is a contraction mapping from C into itself and A is a strong positive bounded linear operator on C.
Under certain conditions, on the basis of [17] and [23], the authors established strong convergence theorem
for nonexpansive semigroups by using the above scheme in the framework of reflexive, smooth, and strictly
convex Banach space with a uniformly Gáteaux differentiable norm. However, in the proof of Theorem 3.5
in [32], it is obviously impossible that

((γαm)2 − 2γαm)||um − xn||2 ≤ (γα2
m − 2αm)〈A(um − xn), j(um − xn)〉
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with a control sequence {αm} satisfying the condition limm→∞ αm = 0 which were also occurred in [16, 20].
In this paper, inspired by the existing results, we propose the more generalized iterative algorithm as

follows: {
xn+1 = αnγfn(xn) + βnxn + δnun + ((1− βn − δn)I − αnA)T (tn)yn,

yn = (1− cn − σn)xn + σnvn + cnT (tn)xn, ∀n ≥ 1,
(1.2)

where T = {T (t) : t ∈ R+} is an asymptotically nonexpansive semigroup, {fn}∞n=1 is an infinite family of
contractive mappings from C into itself, A is a strong positive bounded linear operator, and {un}, {vn}
are two bounded sequences in C. We prove under certain appropriate assumptions on the sequences
{αn}, {γn}, {δn}, {cn}, {σn}, and {tn}, that {xn} defined by (1.2) converges strongly to a member of F (T )
in the framework of a reflexive and strictly convex Banach space with a uniformly Gáteaux differentiable
norm and correct the mistake above. Our results generalize and extend the corresponding results given by
Marino and Xu [17], Lou et al. [15], Yang [32], Song and Xu [23], Zegeye and Shahzad [39], and many
others.

2. Preliminaries and lemmas

Recall that a Banach space E is said to be strictly convex if ||x|| = ||y|| = 1, and x 6= y implies
||x+ y|| < 2. In a strictly convex Banach space E, we have that if ||x|| = ||y|| = ||tx+ (1− t)y|| for t ∈ (0, 1)
and x, y ∈ E, then x = y.

Let E be a Banach space with dimE ≥ 2. The modulus of E is the function δE : (0, 2]→ [0, 1] defined
by

δE(ε) = inf

{
1− ||x+ y||

2
: ||x|| = ||y|| = 1, ||x− y|| = ε

}
.

A Banach space E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2]. Let S := {x ∈ E : ||x|| = 1}
denote the unit sphere of the Banach space E. Then the Banach space E is said to be smooth provided the
limit

lim
t→0

||x+ ty|| − ||x||
t

(2.1)

exists for each x, y ∈ S. In this case, the norm of E is said to be Gáteaux differentiable. The space E is
said to have a uniformly Gáteaux differentiable norm if for each y ∈ S the limit (2.1) is attained uniformly
for x ∈ S. It is well-known that if E is uniformly convex then E is reflexive and strictly convex, and if E is
smooth then any duality mapping on E is single-valued and norm-to-weak∗ continuous. If E has a uniformly
Gáteaux differentiable norm then the duality mapping is norm-to-weak∗ uniformly continuous on bounded
sets and also E is smooth.

Let µ be a continuous linear functional on l∞ and (a0, a1, ...) ∈ l∞. We write µ(an) instead of
µ((a0, a1, ...)). Recall that a Banach limit µ is a bounded functional on l∞ such that

||µ|| = µ(1) = 1, lim inf
n→∞

an ≤ µ(an) ≤ lim sup
n→∞

an, µ(an+r) = µ(an)

for any fixed positive integer r and for all (a0, a1, ...) ∈ l∞.
Let D be a nonempty subset of C. A sequence {fn} of mappings of C into E is said to be stable on

D (see [1]) if {fn(x) : n ∈ N} is a singleton for every x ∈ D. It is clear that if {fn} is stable on D, then
fn(x) = f1(x) for all n ∈ N and x ∈ D.

In a smooth Banach space, we say an operator A is strongly positive if there exists a constant γ > 0
with the property

〈Ax, J(x)〉 ≥ γ||x||2, ||aI − bA|| = sup
||x||≤1

|〈(aI − bA)x, J(x)〉|,

where I is the identity mapping, a ∈ [0, 1], b ∈ [−1, 1], and J is normalized duality mapping.
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Lemma 2.1 ([32, Lemma 2.1]). Assume that A is a strongly positive linear bounded operator on a smooth
Banach space E with coefficient γ > 0 and 0 < ρ ≤ ||A||−1, then ||1− ρA|| ≤ 1− ργ.

Lemma 2.2 ([39, Theorem 3.1]). Let C be a nonempty closed convex subset of a reflexive and strictly
convex real Banach space E with a uniformly Gáteaux differentiable norm. Suppose that {xn} is a bounded
sequence in C, and T = {T (t) : t ∈ R+} is an asymptotically nonexpansive semigroup on C with a sequence
{Lt} ⊂ [1,∞) such that limn→∞ ||xn − T (t)xn|| = 0 for all t ≥ 0. Define the set

K = {x ∈ C : µ||xn − x||2 = min
y∈C

µ||xn − y||2}.

If F (T ) 6= ∅, then K
⋂
F (T ) 6= ∅.

Lemma 2.3 ([7, Lemma 2.1]). Let C be a nonempty closed convex subset of a Banach space E with a
uniformly Gáteaux differentiable norm and let S be a directed set. let {xα : α ∈ S} be a bounded set of E.
Let u ∈ C. Then µ||xα − z||2 attains its minimum over C at u if and only if

µ(z − u, J(xα − u)) ≤ 0

for all z ∈ C, where J is the duality map of E.

Lemma 2.4 ([33, Lemma 2.3]). Let {xn} and {yn} be bounded sequences in a Banach space E and let {βn}
be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose xn+1 = βnxn + (1− βn)yn for
all integers n ≥ 0 and lim supn→∞(||yn+1 − yn|| − ||xn+1 − xn||) ≤ 0. Then limn→∞ ||yn − xn|| = 0.

In [12, 13], by using different methods, Liu proved the following lemma, and also see [14].

Lemma 2.5 ([12, 13]). Let {an}, {bn}, and {cn} be three nonnegative real sequences and let {αn} be a real
sequence in [0, 1] such that

∑∞
n=1 αn = +∞. If there exists a positive integer n0 such that

an+1 ≤ (1− αn)an + bn + cn, n ≥ n0, (2.2)

where bn = αna
∗
n, limn→∞ a

∗
n = 0, and

∑∞
n=0 cn < +∞, then limn→∞ an = 0.

Corollary 2.6 ([30, Lemma 2.5]). Let {αn} and {cn} be two nonnegative real sequences and let {αn} be a
real sequence in [0, 1] such that

∑∞
n=1 αn = +∞. If there exists a positive integer n0 such that

an+1 ≤ (1− αn)an + αnσn + cn, n ≥ n0, (2.3)

where {σn} is a real sequence with lim supn→∞ σn ≤ 0 and
∑∞

n=0 cn < +∞, then limn→∞ an = 0.

Proof. In fact, let

a∗n =

{
σn, σn ≥ 0,

0, σn < 0.

Then a∗n ≥ 0 (n = 1, 2, 3...) and σn ≤ a∗n (n = 1, 2, 3...). By lim supn→∞ σn ≤ 0, we can easily get
limn→∞ a

∗
n = 0. It follows from (2.2) that (2.3) holds. Hence, by Lemma 2.5, we see that limn→∞ an = 0.

That is, Corollary 2.6 holds.

3. Main results

Lemma 3.1. Let C be a nonempty closed convex subset of a reflexive and strictly convex Banach space E
with a uniformly Gáteaux differentiable norm, C±C ⊂ C. Let T = {T (t) : t ∈ R+} be a u.a.r. nonexpansive
semigroup on C with a sequence {Lt} ⊂ [1,∞) such that F (T ) 6= ∅, and {fn} ⊂ ΠC is stable on F (T ).
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Let A be a strongly positive linear bounded self-adjoint operator with coefficient γ, A(C) ⊂ C. Assume that
0 < γ < γ

α , and α is contraction constant of all fn. Let {xn} be a sequence defined by

xn = αnγfn(xn) + (I − αnA)T (tn)xn, ∀n ≥ 1 (3.1)

such that {αn} is a sequence in (0, 1), limn→∞ tn = ∞, and limn→∞ αn = limn→∞
Ltn−1
αn

= 0. Then the
sequence {xn} converges strongly, as n→∞, to a point x∗ of F (T ) which satisfies the variational inequality:

〈(A− γf1)x∗, j(x∗ − p)〉 ≤ 0, p ∈ F (T ), f1 ∈ ΠC . (3.2)

Proof. Since limn→∞ αn = limn→∞
Ltn−1
αn

= 0, we may assume, without loss of generality, that

αn < min

{
||A||−1, 2

γ − γα

}
,
Ltn − 1

αn
≤ γ − γα

2
, ∀n ≥ 1.

For each n ≥ 1 and tn ≥ 0, define a mapping Sn : C → E by

Snx = αnγfn(x) + (I − αnA)T (tn)x, ∀x ∈ C.

Since C ± C ⊂ C, it is easy to see Sn : C → C. For all x, y ∈ C, by Lemma 2.1, we have

||Snx− Sny|| =||αnγ(fn(x)− fn(y)) + (I − αnA)(T (tn)x− T (tn)y)||
≤αnγ||fn(x)− fn(y)||+ ||I − αnA||||T (tn)x− T (tn)y||
≤αnγα||x− y||+ (1− αnγ)Ltn ||x− y||
= [1− αn(γ − γα) + (Ltn − 1)(1− αnγ)] ||x− y||

≤
[
1− αn(γ − γα)(1 + αnγ)

2

]
||x− y||

≤
[
1− αn(γ − γα)

2

]
||x− y||.

Thus, Sn : C → C is a contractive mapping. By the Banach contraction mapping principle, it yields a
unique fixed point xn ∈ C such that

xn = αnγfn(xn) + (I − αnA)T (tn)xn, ∀n ≥ 1.

Let p ∈ F (T ), then

||xn − p|| = ||αn(γfn(xn)−Ap) + (I − αnA)(T (tn)xn − p)||
= ||αn(γfn(xn)− γfn(p)) + (I − αnA)(T (tn)xn − p) + αn(γfn(p)−Ap)||
≤ αnγα||xn − p||+ (1− αnγ)Ltn ||xn − p||+ αn||γfn(p)−Ap||.

It follows that [
(γ − γα)− Ltn − 1

αn
(1− αnγ)

]
||xn − p|| ≤ ||γfn(p)−Ap||.

Since {fn} is stable on F (T ), that is fn(p) = f1(p) for all n ∈ N, therefore,

||xn − p|| ≤
2||γf1(p)−Ap||

γ − γα
.

This implies that {xn} is bounded, and so are {T (tn)xn} and {fn(xn)}. Moreover, it follows from (3.1) and
limn→∞ αn = 0 that

lim
n→∞

||xn − T (tn)xn|| = lim
n→∞

αn||γfn(xn)−AT (tn)xn|| = 0.
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Since {T (t) : t ∈ R+} is u.a.r. on C and limn→∞ tn =∞, then for any t ≥ 0,

lim
n→∞

||T (t)T (tn)xn − T (tn)xn|| ≤ lim
n→∞

sup
x∈D
||T (t)T (tn)x− T (tn)x|| = 0,

where D is any bounded subset of C containing {xn}. Hence

||xn − T (t)xn|| ≤||xn − T (tn)xn||+ ||T (tn)xn − T (t)T (tn)xn||+ ||T (t)T (tn)xn − T (t)xn||
≤(1 + Lt)||xn − T (tn)xn||+ ||T (tn)xn − T (t)T (tn)xn||,

and therefore, ||xn − T (t)xn|| → 0, as n→∞. Define the set

K = {x ∈ C : µ||xn − x||2 = min
y∈C

µ||xn − y||2}.

By Lemma 2.2 we get that there exists x∗ ∈ K such that x∗ ∈ K
⋂
F (T ). Since C ± C ⊂ C, we have

x∗ + γf1(x
∗)−Ax∗ ∈ C, and then it follows from Lemma 2.3 that

µ〈x∗ + γf1(x
∗)−Ax∗ − x∗, j(xn − x∗)〉 ≤ 0,

which implies that
µ〈γf1(x∗)−Ax∗, j(xn − x∗)〉 ≤ 0. (3.3)

Notice that

||xn − x∗||2 =〈αnγfn(xn) + (I − αnA)T (tn)xn − x∗, j(xn − x∗)〉
=〈αn(γfn(xn)− γfn(x∗)) + (I − αnA)(T (tn)xn − x∗) + αn(γfn(x∗)−Ax∗), j(xn − x∗)〉
≤αnγα||xn − x∗||2 + (1− αnγ)Ltn ||xn − x∗||2 + αn〈γfn(x∗)−Ax∗, j(xn − x∗)〉.

Since {fn} is stable on F (T ), that is fn(x∗) = f1(x
∗) for all n ∈ N, we derive that

[αn(γ − γα)− (Ltn − 1)(1− αnγ)]||xn − x∗||2 ≤ αn〈γf1(x∗)−Ax∗, j(xn − x∗)〉.

Therefore,

||xn − x∗||2 ≤
2

γ − γα
〈γf1(x∗)−Ax∗, j(xn − x∗)〉.

This together with (3.3) implies that

µ||xn − x∗||2 ≤
2

γ − γα
µ〈γf1(x∗)−Ax∗, j(xn − x∗)〉 ≤ 0.

Hence, there exists a subsequence {xnk
} ⊂ {xn} such that xnk

→ x∗ as k →∞. Again, since

xn = αnγfn(xn) + (I − αnA)T (tn)xn,

we derive that

(A− γfn)xn = − 1

αn
(I − αnA)(I − T (tn))xn.

Notice that

〈(I − T (tn))xn − (I − T (xn))p, j(xn − p)〉 =||xn − p||2 − 〈T (tn)xn − T (xn)p, j(xn − p)〉
≥||xn − p||2 − Ltn ||xn − p||2

=− (Ltn − 1)||xn − p||2,
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it follows that, for all p ∈ F (T ),

〈(A− γfnk
)xnk

, j(xnk
− p)〉 =− 1

αnk

〈(I − αnk
A)(I − T (tnk

))xnk
, j(xnk

− p)〉

=− 1

αnk

〈(I − T (tnk
))xnk

− (I − T (tnk
))p, j(xnk

− p)〉

+ 〈A(I − T (tnk
))xnk

, j(xnk
− p)〉

≤
Ltnk

− 1

αnk

||xnk
− p||2 + 〈A(I − T (tnk

))xnk
, j(xnk

− p)〉.

(3.4)

On the other hand, as {fn} is stable on F (T ), that is, fn(x∗) = f1(x
∗) for all n ∈ N, we have

〈(A− γf1)x∗, j(x∗ − p)〉 =〈(A− γf1)x∗, j(x∗ − p)− j(xnk
− p)〉

+ 〈(A− γfnk
)x∗ − (A− γfnk

)xnk
, j(xnk

− p)〉
+ 〈(A− γfnk

)xnk
, j(xnk

− p)〉.
(3.5)

Substituting (3.4) into (3.5) and letting k →∞, we have

〈(A− γf1)x∗, j(x∗ − p)〉 ≤ 0, (3.6)

that is, x∗ ∈ F (T ) is a solution of (3.2).
Let {xni} ⊂ {xn} be another subsequence such that xni → p ∈ F (T ) as i→∞. Then from (3.6) we get

〈(A− γf1)p, j(p− x∗)〉 ≤ 0. (3.7)

Adding up (3.6) and (3.7), we have that

0 ≥〈(A− γf1)x∗ − (A− γf1)p, j(x∗ − q)〉
=〈A(x∗ − p), j(x∗ − p)〉 − γ〈f1(x∗)− f1(p), j(x∗ − p)〉
≥γ||x∗ − p||2 − γ||f1(x∗)− f1(p)||||x∗ − p||
≥(γ − γα)||x∗ − p||2.

Hence p = x∗. The proof is completed.

Theorem 3.2. Let C be a nonempty closed convex subset of a reflexive and strictly convex Banach space E
with a uniformly Gáteaux differentiable norm, C±C ⊂ C. Let T = {T (t) : t ∈ R+} be a u.a.r. nonexpansive
semigroup on C with a sequence {Lt} ⊂ [1,∞) such that F (T ) 6= ∅, and {fn} ⊂ ΠC is stable on F (T ).
Let A be a strongly positive linear bounded self-adjoint operator with coefficient γ, A(C) ⊂ C. Assume that
0 < γ < γ

α . Let {xn} be a sequence defined by{
xn+1 = αnγfn(xn) + βnxn + δnun + ((1− βn − δn)I − αnA)T (tn)yn,

yn = (1− cn − σn)xn + σnvn + cnT (tn)xn, ∀n ≥ 1,
(3.8)

satisfying

(1) αn ∈ (0, 1), limn→∞ αn = limn→∞
Ltn−1
αn

= 0,
∑∞

n=1 αn =∞;

(2) βn ∈ (0, 1), 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(3) δn, σn ∈ [0, 1],
∑∞

n=1 δn <∞,
∑∞

n=1 σn <∞;

(4) h, tn ≥ 0, tn+1 = tn + h, limn→∞ tn =∞;

(5) cn ∈ [0, 1], limn→∞ |cn+1 − cn| = 0, lim supn→∞ cn < 1.
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Suppose {un} and {vn} are bounded in C, then as n → ∞, the sequence {xn} defined by (3.8) converges
strongly to some common fixed point x∗ of F (T ) which is the unique solution in F (T ) to the variational
inequality (3.2).

Proof. By the conditions (1) and (2), we may assume, with no loss of generality, that αn ≤ (1−βn−δn)||A||−1
and Ltn−1

αn
≤ γ−γα

6 for all n ≥ 1. Since A is a linear bounded self-adjoint operator on E, then ||A|| =
sup{|〈Ax, J(x)〉| : x ∈ E, ||x|| = 1}. When ||x||=1, as

〈((1− βn − δn)I − αnA)x, J(x)〉 =1− βn − δn − αn〈Ax, J(x)〉
≥1− βn − δn − αn||A||
≥0,

we have

||(1− βn − δn)I − αnA|| = sup{〈((1− βn − δn)I − αnA)x, J(x)〉 : x ∈ E, ||x|| = 1}
= sup{1− βn − δn − αn〈Ax, J(x)〉 : x ∈ E, ||x|| = 1}
≤1− βn − δn − αnγ.

Taking a point p ∈ F (T ), from (3.8), we obtain

||yn − p|| = ||(1− cn − σn)(xn − p) + σn(vn − p) + cn(T (tn)xn − p)||
≤ (1− cn − σn)||xn − p||+ σn||vn − p||+ cnLtn ||xn − p||
≤ [1 + cn(Ltn − 1)]||xn − p||+ σn||vn − p||.

(3.9)

By condition (1), there exists n0 ∈ N such that

γ − γα− 2(Ltn − 1)

αn
− (Ltn − 1)2

α2
n

≥ γ − γα
2

, n ≥ n0. (3.10)

It then follows from the definition of {xn}, (3.9) and (3.10) that

||xn+1 − p|| =||αn(γfn(xn)−Ap) + βn(xn − p) + δn(un − p)
+ [(1− βn − δn)I − αnA](T (tn)yn − p)||

=||αn(γfn(xn)− γfn(p)) + βn(xn − p) + δn(un − p)
+ [(1− βn − δn)I − αnA](T (tn)yn − p) + αn(γfn(p)−Ap)||
≤αnγα||xn − p||+ βn||xn − p||+ δn||un − p||

+ (1− βn − δn − αnγ)Ltn ||yn − p||+ αn||γfn(p)−Ap||
≤αnγα||xn − p||+ βn||xn − p||+ αn||γfn(p)−Ap||

+ (1− βn − δn − αnγ)[1 + cn(Ltn − 1)]Ltn ||xn − p||
+ (1− βn − δn − αnγ)σnLtn ||vn − p||+ δn||un − p||

=αnγα||xn − p||+ βn||xn − p||+ αn||γfn(p)−Ap||
+ (1− βn − δn − αnγ)[1 + cn(Ltn − 1)][1 + (Ltn − 1)]||xn − p||
+ (1− βn − δn − αnγ)σnLtn ||vn − p||+ δn||un − p||
≤[1− αn(γ − γα)]||xn − p||+ [(cn + 1)(Ltn − 1)

+ cn(Ltn − 1)2]||xn − p||+ αn||γfn(p)−Ap||+ σnLtn ||vn − p||+ δn||un − p||
≤[1− αn(γ − γα)]||xn − p||+ [2(Ltn − 1)

+ (Ltn − 1)2]||xn − p||+ αn||γfn(p)−Ap||+ σnLtn ||vn − p||+ δn||un − p||

≤
[
1− αn

(
γ − γα− 2(Ltn − 1)

αn
− (Ltn − 1)2

α2
n

)]
||xn − p||
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+ αn||γfn(p)−Ap||+ σnLtn ||vn − p||+ δn||un − p||

≤
[
1− αn(γ − γα)

2

]
||xn − p||+

αn(γ − γα)

2

∥∥∥∥2(γf1(p)−Ap)
γ − γα

∥∥∥∥+ σnLtn ||vn − p||+ δn||un − p||

≤max

{
||xn − p||,

∥∥∥∥2(γf1(p)−Ap)
γ − γα

∥∥∥∥}+ σnLt1 ||vn − p||+ δn||un − p||, n ≥ n0.

By the induction, we have

||xn+1 − p|| ≤ max

{
||xn0 − p||,

∥∥∥∥2(f1(p)−Ap)
γ − γα

∥∥∥∥}+

( ∞∑
n=1

δnLt1 +
∞∑
n=1

σn

)
M, ∀n ≥ 1,

where M = maxn∈N{||un − p||, ||vn − p||}. Hence {xn} is bounded, and so are {fn(xn)}, {T (tn)xn}, {yn},
{T (tn)yn}. Now we claim that

||xn+1 − xn|| → 0 as n→∞.

Putting {ln} as a sequence that

ln =
xn+1 − βnxn

1− βn
, ∀n ≥ 1, (3.11)

then, we get

ln+1 − ln =
xn+2 − βn+1xn+1

1− βn+1
− xn+1 − βnxn

1− βn

=
αn+1γfn+1(xn+1) + δn+1un+1 + ((1− βn+1 − δn+1)I − αn+1A)T (tn+1)yn+1

1− βn+1

− αnγfn(xn) + δnun + ((1− βn − δn)I − αnA)T (tn)yn
1− βn

=
αn+1(γfn+1(xn+1)−AT (tn+1)yn+1)

1− βn+1
+
δn+1(un+1 − T (tn+1)yn+1)

1− βn+1

− αn(γfn(xn)−AT (tn)yn)

1− βn
− δn(un − T (tn)yn)

1− βn
+ T (tn+1)yn+1 − T (tn)yn,

(3.12)

and notice that

yn+1 − yn =(1− cn+1 − σn+1)xn+1 + σn+1vn+1 + cn+1T (tn+1)xn+1 − (1− cn − σn)xn

− σnvn − cnT (tn)xn

=(1− cn+1)xn+1 − (1− cn)xn + cn+1T (tn+1)xn+1 − cnT (tn)xn

+ σn+1(vn+1 − xn+1) + σn(xn − vn)

=(1− cn+1)(xn+1 − xn) + (cn − cn+1)xn + cn+1(T (tn+1)xn+1 − T (tn)xn)

+ (cn+1 − cn)T (tn)xn + σn+1(vn+1 − xn+1) + σn(xn − vn)

=(1− cn+1)(xn+1 − xn) + (cn − cn+1)xn + cn+1(T (tn+1)xn+1 − T (tn+1)xn)

+ cn+1(T (tn+1)xn − T (tn)xn) + (cn+1 − cn)T (tn)xn

+ σn+1(vn+1 − xn+1) + σn(xn − vn).

(3.13)

Substituting (3.13) into (3.12), we have

||ln+1 − ln|| ≤
αn+1

1− βn+1
||γfn+1(xn+1)−AT (tn+1)yn+1)||+

δn
1− βn

||un − T (tn)yn||

+
αn

1− βn
||γfn(xn)−AT (tn)yn||+

δn+1

1− βn+1
||un+1 − T (tn+1)yn+1||

+ ||T (tn+1)yn+1 − T (tn)yn||



L. Liu, C. Liu, F. Wang, Y. Wu, J. Nonlinear Sci. Appl. 9 (2016), 5695–5711 5705

≤||T (tn+1)yn+1 − T (tn+1)yn||+ ||T (tn+1)yn − T (tn)yn||+ Fn

≤Ltn+1 ||yn+1 − yn||+ ||T (tn + h)yn − T (tn)yn||+ Fn

=||yn+1 − yn||+ (Ltn+1 − 1)||yn+1 − yn||+ ||T (h)T (tn)yn − T (tn)yn||+ Fn

≤(1− cn+1)||xn+1 − xn||+ |cn − cn+1|||xn||+ |cn+1 − cn|||T (tn)xn||
+ cn+1||T (tn+1)xn − T (tn)xn||+ cn+1||T (tn+1)xn+1 − T (tn+1)xn||
+ σn+1||vn+1 − xn+1||+ σn||xn − vn||+ (Ltn+1 − 1)||yn+1 − yn||
+ ||T (h)T (tn)yn − T (tn)yn||+ Fn

≤(1− cn+1)||xn+1 − xn||+ |cn − cn+1|||xn||+ cn+1Ltn+1 ||xn+1 − xn||
+ cn+1||T (h)T (tn)xn − T (tn)xn||+ |cn+1 − cn|||T (tn)xn||
+ σn+1||vn+1 − xn+1||+ σn||xn − vn||+ (Ltn+1 − 1)||yn+1 − yn||
+ ||T (h)T (tn)yn − T (tn)yn||+ Fn

≤||xn+1 − xn||+ cn+1||T (h)T (tn)xn − T (tn)xn||
+ ||T (h)T (tn)yn − T (tn)yn||+ cn+1(Ltn+1 − 1)||xn+1 − xn||
+ (Ltn+1 − 1)||yn+1 − yn||+ |cn+1 − cn|(||xn||+ ||T (tn)xn||)
+ σn+1||vn+1 − xn+1||+ σn||xn − vn||+ Fn

≤||xn+1 − xn||+ cn+1||T (h)T (tn)xn − T (tn)xn||
+ ||T (h)T (tn)yn − T (tn)yn||+ Fn +Gn,

where

Fn =
αn+1

1− βn+1
||γfn+1(xn+1)−AT (tn+1)yn+1)||+

δn+1

1− βn+1
||un+1 − T (tn+1)yn+1||

+
αn

1− βn
||γfn(xn)−AT (tn)yn||+

δn
1− βn

||un − T (tn)yn||,

Gn =cn+1(Ltn+1 − 1)||xn+1 − xn||+ (Ltn+1 − 1)||yn+1 − yn||+ σn||xn − vn||
+ |cn+1 − cn|(||xn||+ ||T (tn)xn||) + σn+1||vn+1 − xn+1||.

It follows that

||ln+1 − ln|| − ||xn+1 − xn|| ≤cn+1||T (h)T (tn)xn − T (tn)xn||
+ ||T (h)T (tn)yn − T (tn)yn||+ Fn +Gn.

(3.14)

Since {T (t) : t ∈ R+} is u.a.r. and limn→∞ tn =∞, it follows that

lim
n→∞

||T (h)T (tn)xn − T (tn)xn|| ≤ lim
t→∞

sup
x∈B
||T (h)T (t)x− T (t)x|| = 0,

lim
n→∞

||T (h)T (tn)yn − T (tn)yn|| ≤ lim
t→∞

sup
x∈B
||T (h)T (t)x− T (t)x|| = 0,

where B is any bounded set containing {xn}. Moreover, since {xn}, {yn}, {T (tn)xn}, {T (tn)yn}, {fn(xn)},
{un}, {vn} are bounded, by conditions (1), (2), (3), (5), (3.14) implies that

lim sup
n→∞

(||ln+1 − ln|| − ||xn+1 − xn||) ≤ 0.

Hence by Lemma 2.4, we have limn→∞ ||ln − xn|| = 0. Consequently, it follows from (3.11) that
limn→∞ ||xn+1 − xn|| = limn→∞(1− βn)||ln − xn|| = 0. Again since

||yn − xn|| = ||(1− cn − σn)xn + σnvn + cnT (tn)xn − xn||
≤ σn||vn − xn||+ cn||T (tn)xn − xn||,
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we have

||xn − T (tn)xn|| ≤||xn − xn+1||+ ||xn+1 − T (tn)xn||
=||xn − xn+1||+ ||αnγfn(xn) + βnxn + δnun + ((1− βn − δn)I − αnA)T (tn)yn − T (tn)xn||
=||xn − xn+1||+ ||αn(γfn(xn)−AT (tn)xn) + βn(xn − T (tn)xn)

+ δn(un − T (tn)xn) + (1− βn − δn)I − αnA)(T (tn)yn − T (tn)xn)||
≤||xn − xn+1||+ αn||γfn(xn)−AT (tn)xn||+ βn||xn − T (tn)xn||

+ δn||un − T (tn)xn||+ (1− βn − δn − αnγ)Ltn ||yn − xn||
≤||xn − xn+1||+ αn||γfn(xn)−AT (tn)xn||+ βn||xn − T (tn)xn||

+ δn||un − T (tn)xn||+ (1− βn − δn − αnγ)Ltn(σn||vn − xn||+ cn||T (tn)xn − xn||)
≤[βn + (1− βn)cnLtn ]||T (tn)xn − xn||+ ||xn − xn+1||

+ αn||γfn(xn)−AT (tn)xn||+ δn||un − T (tn)xn||+ σnLtn ||vn − xn||,

it then follows that

(1− βn)(1− cnLtn)||T (tn)xn − xn|| ≤||xn − xn+1||+ αn||γfn(xn)−AT (tn)xn||
+ δn||un − T (tn)xn||+ σnLtn ||vn − xn||.

By the conditions (2) and (5), it is easy to see that there exists N ≥ 0, we have

(1− βn)(1− cnLtn) ≥ c > 0, n ≥ N,

where c is a constant. It follows that

lim
n→∞

||T (tn)xn − xn|| = 0,

and hence for any t ≥ 0,

||xn − T (t)xn|| ≤||xn − T (tn)xn||+ ||T (tn)xn − T (t)T (tn)xn||+ ||T (t)T (tn)xn − T (t)xn||
≤||xn − T (tn)xn||+ ||T (tn)xn − T (t)T (tn)xn||+ Lt||xn − T (tn)xn|| → 0, n→∞,

that is ||xn−T (t)xn|| → 0, n→∞. For each m ≥ 1, let zm ∈ C be the unique fixed point of the contraction
mapping

Smx = αmγfm(x) + (I − αmA)T (tm)x,

where tm and αm satisfy the conditions of Lemma 3.1. Then it follows from Lemma 3.1 that limm→∞ zm = x∗.
Since

||zm − xn+1||2 =〈αmγfm(zm) + (I − αmA)T (tm)zm − xn+1, j(zm − xn+1)〉
=〈αm(γfm(zm)−Azm) + αm(Azm −AT (tm)zm)

+ (T (tm)zm − T (tm)xn+1) + (T (tm)xn+1 − xn+1), j(zm − xn+1)〉
≤αm〈γfm(zm)−Azm, j(zm − xn+1)〉+ Ltm ||zm − xn+1||2

+ αm||A||||zm − T (tm)zm||||zm − xn+1||+ ||T (tm)xn+1 − xn+1||||zm − xn+1||,

we have
〈γfm(zm)−Azm, j(xn+1 − zm)〉 ≤||A||||zm − T (tm)zm||||zm − xn+1||

+
1

αm
||T (tm)xn+1 − xn+1||||zm − xn+1||

+
Ltm − 1

αm
||zm − xn+1||2

≤Ltm − 1

αm
M2 + ||A||||zm − T (tm)zm||M

+
1

αm
||T (tm)xn+1 − xn+1||M,

(3.15)
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where M > 0 is a constant such that M ≥ ||zm − xn+1||. Therefore, firstly, taking upper limit as n → ∞,
and then as m→∞ in (3.15), we obtain that

lim sup
m→∞

lim sup
n→∞

〈γfm(zm)−Azm, j(xn+1 − zm)〉 ≤ 0. (3.16)

On the other hand, since limm→∞ zm = x∗ due to the fact that the duality map J is single-valued and
norm topology to weak∗ topology uniformly continuous on bounded sets of E, we obtain limm→∞(xn+1 −
zm) = xn+1 − x∗, thus

〈γf1(x∗)−Ax∗, j(xn+1 − zm)〉 → 〈γf1(x∗)−Ax∗, j(xn+1 − x∗)〉 uniformly for n, as m→∞.

Therefore
lim
m→∞

H(xn, zm) = 0 uniformly for n,

where H(xn, zm) = 〈γf1(x∗) − Ax∗, j(xn+1 − x∗) − j(xn+1 − zm)〉. Moreover, by fm(x∗) = f1(x
∗) for all

m ∈ N, we have

〈γf1(x∗)−Ax∗, j(xn+1 − x∗)〉 =〈γf1(x∗)−Ax∗, j(xn+1 − x∗)− j(xn+1 − zm)〉
+ 〈γfm(x∗)− γfm(zm), j(xn+1 − zm)〉+ 〈γfm(zm)−Azm, j(xn+1 − zm)〉
+ 〈Azm −Ax∗, j(xn+1 − zm)〉
≤〈γf1(x∗)−Ax∗, j(xn+1 − x∗)− j(xn+1 − zm)〉

+ 〈γfm(zm)−Azm, j(xn+1 − zm)〉+ γα||zm − x∗||||zm − xn+1||
+ ||A||||zm − x∗||||zm − xn+1||.

Now we prove
lim sup
m→∞

lim sup
n→∞

H(xn, zm) = 0.

Since lim supm→∞ lim supn→∞H(xn, zm) exists, we can assume that there exist {xnk
} ⊂ {xn}, {zmj} ⊂ {zm}

such that
lim sup
m→∞

lim sup
n→∞

H(xn, zm) = lim
j→∞

lim
k→∞

H(xnk
, zmj )

and we can define
lim
k→∞

H(xnk
, zmj ) = Wj .

Since
lim
j→∞

H(xnk
, zmj ) = 0, uniformly for k

there exists J ∈ N, when j > J , we have

|H(xnk
, zmj )| < ε, uniformly for k,

which means
|Wj | ≤ ε, k →∞.

Therefore
lim sup
m→∞

lim sup
n→∞

H(xn, zm) = lim
j→∞

Wj = 0. (3.17)

Combining (3.16) and (3.17), we get

lim sup
m→∞

lim sup
n→∞

〈(γf1 −A)x∗, j(xn+1 − x∗)〉 ≤ 0.

Thus
lim sup
n→∞

〈(γf1 −A)x∗, j(xn+1 − x∗)〉 ≤ 0. (3.18)
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Now, it follows form (3.9) that

||yn − x∗|| ≤ [1 + cn(Ltn − 1)]||xn − x∗||+ σn||vn − x∗||,

which together with the iterative process (3.8) implies the following estimates

||xn+1 − x∗||2 =〈αn(γfn(xn)−Ax∗) + βn(xn − x∗) + ((1− βn − δn)I

− αnA)(T (tn)yn − x∗) + δn(un − x∗), j(xn+1 − x∗)〉
=〈αn(γfn(xn)− γfn(x∗)) + βn(xn − x∗) + ((1− βn − δn)I

− αnA)(T (tn)yn − x∗) + δn(un − x∗) + αn(γfn(x∗)−Ax∗), j(xn+1 − x∗)〉
≤αnγα||xn − x∗||||xn+1 − x∗||+ βn||xn − x∗||||xn+1 − x∗||

+ δn||un − x∗||||xn+1 − x∗||+ αn〈(γf1(x∗)−Ax∗), j(xn+1 − x∗)〉
+ (1− βn − δn − αnγ)Ltn ||yn − x∗||||xn+1 − x∗||
≤αnγα||xn − x∗||||xn+1 − x∗||+ βn||xn − x∗||||xn+1 − x∗||

+ δn||un − x∗||||xn+1 − x∗||+ αn〈(γf1(x∗)−Ax∗), j(xn+1 − x∗)〉
+ (1− βn − δn − αnγ)σnLtn ||vn − x∗||||xn+1 − x∗||
+ (1− βn − δn − αnγ)[1 + cn(Ltn − 1)][1

+ (Ltn − 1)]||xn − x∗||||xn+1 − x∗||
≤[1− αn(γ − γα)]||xn − x∗||||xn+1 − x∗||+ (Ltn − 1)(1

+ cnLtn)||xn − x∗||||xn+1 − x∗||+ αn〈(γf1(x∗)−Ax∗), j(xn+1 − x∗)〉
+ δn||un − x∗||||xn+1 − x∗||+ σnLtn ||vn − x∗||||xn+1 − x∗||

≤[1− αn(γ − γα)]
||xn − x∗||2 + ||xn+1 − x∗||2

2
+ (Ltn − 1)(1 + cnLtn)||xn − x∗||||xn+1 − x∗||+ αn〈(γf1(x∗)−Ax∗), j(xn+1 − x∗)〉
+ δn||un − x∗||||xn+1 − x∗||+ σnLtn ||vn − x∗||||xn+1 − x∗||,

and thus

||xn+1 − x∗||2 ≤[1− αn(γ − γα)]||xn − x∗||2

+ 2αn
[
(Ltn − 1)α−1n (1 + Lt1) ||xn − x∗||||xn+1 − x∗||

+〈(γf1(x∗)−Ax∗) , j(xn+1 − x∗)〉] + 2δnM
′ + 2σnLt1M

′,

where M ′ = maxn{||un − x∗||||xn+1 − x∗||, ||vn − x∗||||xn+1 − x∗||} ≥ 0. Consequently, by Corollary 2.6 and
(3.18), we obtain that

lim
n→∞

xn = x∗.

The proof is completed.

Remark 3.3.

(i) Theorem 3.2 extends Theorem 3.4 of Marino and Xu [17] from a real Hilbert space to a reflexive and
strictly convex Banach space with a uniformly Gáteaux differentiable norm and from nonexpansive
mappings to asymptotically nonexpansive semigroups.

(ii) Theorem 3.2 extends Theorem 4.2 of Song and Xu [23] from nonexpansive semigroups to asymptotically
nonexpansive semigroups.

(iii) Taking T (t1) = T, h = t1, δn = cn = σn ≡ 0, A = I, γ = 1, and fn ≡ f1 in Theorem 3.2 and then
C ±C ⊂ C is not necessary. We get Theorem 2.2 of Lou et al. [15] and generalize it from a uniformly
convex Banach space to a reflexive and strictly convex Banach space.
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(iv) Taking δn = cn = σn ≡ 0, A = I, γ = 1, and fn ≡ u in Theorem 3.2 and then C ± C ⊂ C is not
necessary. We get Theorem 3.3 of Zegeye and Shahzad [39].

(v) Our results completely generalize the results of Yang [32].

Corollary 3.4. Let C be a nonempty closed convex subset of a uniformly convex Banach space E with a
uniformly Gáteaux differentiable norm, C ± C ⊂ C. Let T = {T (t) : t ∈ R+} be a u.a.r. nonexpansive
semigroup on C with a sequence {Lt} ⊂ [1,∞) such that F (T ) 6= ∅, and {fn} ⊂ ΠC is stable on F (T ).
Let A be a strongly positive linear bounded self-adjoint operator with coefficient γ, A(C) ⊂ C. Assume that
0 < γ < γ

α . Let {xn} be a sequence defined by (3.8) satisfying

(1) αn ∈ (0, 1), limn→∞ αn = limn→∞
Ltn−1
αn

= 0,
∑∞

n=1 αn =∞;

(2) βn ∈ (0, 1), 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(3) δn, σn ∈ [0, 1],
∑∞

n=1 δn <∞,
∑∞

n=1 σn <∞;

(4) h, tn ≥ 0, tn+1 = tn + h, limn→∞ tn =∞;

(5) cn ∈ [0, 1], limn→∞ |cn+1 − cn| = 0, lim supn→∞ cn < 1.

Suppose {un} and {vn} are bounded in C, then as n → ∞, the sequence {xn} converges strongly to some
common fixed point x∗ of F (T ) which is the unique solution in F (T ) to the variational inequality (3.2).

Corollary 3.5. Let C be a nonempty closed convex subset of a Hilbert space H, C ± C ⊂ C. Let T =
{T (t) : t ∈ R+} be a u.a.r. nonexpansive semigroup on C with a sequence {Lt} ⊂ [1,∞) such that F (T ) 6= ∅,
and {fn} ⊂ ΠC is stable on F (T ). Let A be a strongly positive linear bounded self-adjoint operator with
coefficient γ, A(C) ⊂ C. Assume that 0 < γ < γ

α . Let {xn} be a sequence defined by (3.8) satisfying

(1) αn ∈ (0, 1), limn→∞ αn = limn→∞
Ltn−1
αn

= 0,
∑∞

n=1 αn =∞;

(2) βn ∈ (0, 1), 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(3) δn, σn ∈ [0, 1],
∑∞

n=1 δn <∞,
∑∞

n=1 σn <∞;

(4) h, tn ≥ 0, tn+1 = tn + h, limn→∞ tn =∞;

(5) cn ∈ [0, 1], limn→∞ |cn+1 − cn| = 0, lim supn→∞ cn < 1.

Suppose {un} and {vn} are bounded in C, then as n → ∞, the sequence {xn} converges strongly to some
common fixed point x∗ of F (T ) which is the unique solution in F (T ) to the variational inequality (3.2).

Remark 3.6. Since every nonexpansive semigroup is asymptotically nonexpansive semigroup, our theorems
hold for the case when T = {T (t) : t ∈ R+} is simply nonexpansive semigroup.
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