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Abstract

In this paper, we obtain some fixed point theorems for admissible mappings in b-metric spaces. Some
useful examples are given to illustrate the facts. We also discuss an application to a nonlinear quadratic
integral equation. Our results complement, extend and generalize a number of fixed point theorems including
the well-known Geraghty [M. A. Geraghty, Proc. Amer. Math. Soc., 40 (1973), 604–608] and Ćirić [L.
B. Ćirić, Proc. Amer. Math. Soc., 45 (1974), 267–273] theorems on b-metric spaces. c©2016 All rights
reserved.
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1. Introduction

Geraghty [13] and Ćirić [9] obtained two important generalizations of the classical Banach contraction
principle (BCP) as follows:

Theorem 1.1 ([13]). Let (X, d) be a complete metric space and T : X → X be a self-mapping such that for
all x, y ∈ X,

d(Tx, Ty) ≤ β(d(x, y))d(x, y),

where β : [0,∞)→ [0, 1) is a function satisfying β(tn)→ 1 implies tn → 0 as n→∞. Then T has a unique
fixed point z ∈ X.
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Theorem 1.2 ([9]). Let X be a T -orbitally complete metric space and T : X → X be a quasi-contraction,
that is, there exists a real number r ∈ [0, 1) such that for all x, y ∈ X,

d(Tx, Ty) ≤ r m(x, y),

where m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}. Then T has a unique fixed point z ∈ X.

As per Rhoades [18], a quasi-contraction on a metric space is the most general among contractions.

Recently, Kumam et al. [16] introduced the notion generalized quasi-contraction and obtained an inter-
esting generalization of Theorem 1.2.

Definition 1.3. A self-mapping T of a metric space X is called a generalized quasi-contraction, if there
exists a number r ∈ [0, 1) such that for all x, y ∈ X,

d(Tx, Ty) ≤ r M(x, y),

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx), d(T 2x, x), d(T 2x, Tx), d(T 2x, y), d(T 2x, Ty)}.

Theorem 1.4 ([16]). Let T be a generalized quasi-contraction on a T -orbitally complete metric space X.
Then T has a unique fixed point z ∈ X.

On the other hand, Samet et al. [19] introduced the concept of α-ψ contractive type mappings as well
as α-admissible mappings and established various results in complete metric spaces. Indeed, they extended
and generalized many existing fixed point results in the literature. Subsequently, a number of extensions
and generalizations of their results have appeared in [2, 3, 7, 8, 15, 21] and elsewhere. Motivated by Ćirić
[9], Geraghty [13], Kumam et al. [16] and Samet et al. [19], in this paper we obtain some fixed point
theorems for admissible mappings in b-metric spaces. Besides presenting some useful examples, we discuss
an application to a nonlinear quadratic integral equation.

2. Preliminaries

For the sake of completeness, we recall some basic definitions and results.

Definition 2.1 ([9, 16]). Let X be a metric space and T : X → X be a self-mapping. For each x ∈ X and
n ∈ N, define

O(x;n) = {x, Tx, ..., Tnx} and O(x;∞) = {x, Tx, ..., Tnx, ...}.

The set O(x;∞) is called the orbit of T and the metric space X is said be T -orbitally complete, if every
Cauchy sequence in O(x;∞) is convergent in X.

Every complete metric space is T -orbitally complete for all mappings T : X → X but the converse is
not true.

Example 2.2 ([16]). Let X be a metric space which is not complete and T : X → X, a mapping defined by
Tx = x0 for all x ∈ X and some x0 ∈ X. Then X is a T -orbitally complete metric space but not complete.

In [10–12], Czerwik et al. introduced a wider class of metric spaces namely b-metric spaces and extended
some fixed point theorems from metric spaces to these spaces. In recent years, a number of fixed point
results for single-valued and multi-valued operators in b-metric spaces have been studied extensively in
[4–6, 10–12, 17, 20] and elsewhere.

Definition 2.3 ([10–12]). Let X be a non-empty set and d : X ×X → [0,∞) be a functional. Then d is
called a b-metric on X, if
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(1) d(x, y) = 0, if x = y;

(2) d(x, y) = d(y, x);

(3) d(x, y) ≤ s[d(x, z) + d(y, z)], where s ≥ 1.

The pair (X, d) is called a b-metric space or a generalized metric space.

If we take s = 1, we get the usual definition of a metric space. However, a b-metric on X needs not to
be a metric on X. Therefore the class of b-metrics is larger than the class of metrics.

The following examples are some known b-metric spaces.

Example 2.4. Let X = {x1, x2, x3} and d : X ×X → [0,∞) be a function such that

d(x1, x2) = a > 2, d(x1, x3) = d(x2, x3) = 1, d(xn, xn) = 0,

d(xn, xk) = d(xk, xn), d(xn, xk) ≤
a

2
[d(xn, xi) + d(xi, xk)], n, k, i ∈ {1, 2, 3}.

Then (X, d) is a b-metric space.

Example 2.5 ([5]). Let R be the set of reals and `p(R) =

{
{xn} ⊂ R :

∞∑
n=1
|xn|p <∞

}
with 0 < p < 1. The

functional d : `p(R)× `p(R)→ R defined by

d(x, y) :=

( ∞∑
k=1

|xn − yn|p
)1/p

, for all x = {xn}, y = {yn} ∈ `p(R),

is a b-metric on `p(R) with coefficient s = 21/p > 1.

Notice that the above result holds for the general case `p(X) with 0 < p < 1, where X is a Banach space.

Definition 2.6. Let X be a b-metric space and {xn} a sequence in X. Then

(a) the sequence {xn} is convergent, if there exists z ∈ X such that lim
n→∞

d(xn, z) = 0;

(b) the sequence {xn} is Cauchy, if lim
n,m→∞

d(xn, xm) = 0;

(c) X is complete, if every Cauchy sequence in X is convergent.

Remark 2.7. Also note that,

(d) every convergent sequence {xn} in X has a unique limit;

(e) every convergent sequence {xn} in X is Cauchy.

In general, a b-metric needs not to be a continuous functional.

Example 2.8 ([17]). Let X = N ∪ {∞} and d : X ×X → [0,∞) be defined by

d(m,n) =


0 if m = n,

| 1m −
1
n | if one of m,n is even and the other is even or ∞,

5 if one of m,n is odd and the other is odd (and m 6= n) or ∞,
2 otherwise.

Then (X, d) is a b-metric space (with s = 5/2). Let xn = 2n for each n ∈ N. Then

lim
n→∞

d(xn,∞) = lim
n→∞

d(2n,∞) = lim
n→∞

1

2n
= 0,

but lim
n→∞

d(xn, 1) = 2 6= 5 = d(∞, 1).
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Definition 2.9 ([19]). Let α : X × X → [0,∞) be a functional. A mapping T : X → X is said to be
α-admissible, if for all x, y ∈ X,

α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1.

Definition 2.10 ([14]). The mapping T : X → X is said to be triangular α-admissible, if for all x, y, z ∈ X,

(i) α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1;

(ii) α(x, z) ≥ 1 and α(z, y) ≥ 1 implies α(x, y) ≥ 1.

3. Generalized α-quasi contraction

In this section, we obtain a Ćirić type result for admissible mappings. Now onwards, N denotes the set
of natural numbers and X a b-metric space (X, d), where d is continuous.

Definition 3.1. Let X be a b-metric space. A mapping T : X → X is said to be generalized α-quasi
contraction, if there exists a functional α : X ×X → [0,∞) and q < 1

s2
such that

α(x, y)d(Tx, Ty) ≤ qM(x, y).

Our main result of this section is prefaced by the following lemmas.

Lemma 3.2 ([14]). Let T be a triangular α-admissible mapping. Assume that there exists x0 ∈ X such that
α(x0, Tx0) ≥ 1. Define a sequence {xn} by xn = Tnx0. Then α(xm, xn) ≥ 1 for all m,n ∈ N with m < n.

Lemma 3.3. Let X be a b-metric space and T : X → X be a generalized α-quasi contraction satisfying the
following conditions:

(A) T is triangular α-admissible;

(B) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1.

Then for all positive integers i, j ∈ {1, 2, · · · , n}, (i < j)

d(T ix0, T
jx0) ≤ q.δ[O(x0, n)].

Proof. By assumption, there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Define xn = Tnx0 for all n ∈ N. Since
T is triangular α-admissible, from Lemma 3.2 it follows that

α(T ix0, T
jx0) = α(xi, xj) ≥ 1, for i, j ∈ N ∪ {0} with i < j.

Let 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n. Then T i−1x0, T
ix0, T

j−1x0, T
jx0 ∈ O(x0, n). Since T is a generalized

α-quasi contraction, we have

d(T ix0, T
jx0) = d(TT i−1x0, TT

j−1x0)

≤ α(T i−1x0, T
j−1x0)d(TT i−1x0, TT

j−1x0)

≤ q.max{d(T i−1x0, T
j−1x0), d(T i−1x0, TT

i−1x0), d(T j−1x0, TT
j−1x0),

d(T i−1x0, TT
j−1x0), d(T j−1x0, TT

i−1x0), d(T 2T i−1x0, T
i−1x0),

d(T 2T i−1x0, TT
i−1x0), d(T 2T i−1x0, T

j−1x0), d(T 2T i−1x0, TT
j−1x0)}

= q.max{d(T i−1x0, T
j−1x0), d(T i−1x0, T

ix0), d(T j−1x0, T
jx0), d(T i−1x0, T

jx0),

d(T j−1x0, T
ix0), d(T i+1x0, T

i−1x0), d(T i+1x0, T
ix0), d(T i+1x0, T

j−1x0),

d(T i+1x0, T
jx0)}

≤ q.δ[O(x0, n)].

This proves the lemma.
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Remark 3.4. It follows from the above lemma that if T is a generalized α-quasi contraction and x0 ∈ X,
then for every positive integer n, there exists a positive integer k ≤ n such that

d(x0, T
kx0) = δ[O(x0, n)].

Theorem 3.5. Let X be a T -orbitally complete b-metric space (with constant s ≥ 1) and T : X → X a
generalized α-quasi contraction satisfying conditions (A) and (B) of Lemma 3.3. Then T has a fixed point
in X.

Proof. By assumption, there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Define a sequence {xn} by xn = Tnx0
for all n ∈ N. We show that the sequence {Tnx0} is a Cauchy sequence. By the triangle inequality and
Lemma 3.3 and Remark 3.4, we have

d(x0, T
kx0) ≤ s[d(x0, Tx0) + d(Tx0, T

kx0)]

≤ s[d(x0, Tx0) + q.δ[O(x0, n)]]

= s[d(x0, Tx0) + q.d(x0, T
kx0)].

Therefore,

δ[O(x0, n)] = d(x0, T
kx0) ≤

s

1− qs
d(x0, Tx0).

Let n and m be positive integers with n < m. Since T is a generalized α-quasi contraction, it follows
from Lemma 3.3 that

d(Tnx0, T
mx0) = d(TTn−1x0, TT

m−1x0)

≤ α(Tn−1x0, T
m−1x0)d(TTn−1x0, TT

m−1x0)

≤ q.max{d(Tn−1x0, T
m−1x0), d(Tn−1x0, TT

n−1x0), d(Tm−1x0, T
mx0),

d(Tn−1x0, T
mx0), d(Tm−1x0, TT

n−1x0), d(T 2Tn−1x0, T
n−1x0),

d(T 2Tn−1x0, TT
n−1x0), d(T 2Tn−1x0, T

m−1x0), d(T 2Tn−1x0, T
mx0)}

= q.max{d(Tn−1x0, T
m−nTn−1x0), d(Tn−1x0, TT

n−1x0),

d(Tm−nTn−1x0, T
m−n+1Tn−1x0), d(Tn−1x0, T

m−n+1Tn−1x0),

d(Tm−nTn−1x0, TT
n−1x0), d(T 2Tn−1x0, T

n−1x0), d(T 2Tn−1x0, TT
n−1x0),

d(T 2Tn−1x0, T
m−nTn−1x0), d(T 2Tn−1x0, T

m−n+1Tn−1x0)}.

Since

O(Tn−1x0,m− n+ 1) = {Tn−1x0, TTn−1x0, T 2Tn−1x0, · · · , Tm−nTn−1x0, Tm−n+1Tn−1x0},

the above inequality reduces to

d(Tnx0, T
mx0) ≤ q.δ[O(Tn−1x0,m− n+ 1)]. (3.1)

By Remark 3.4, there exists an integer k1, 1 ≤ k1 ≤ m− n+ 1 such that

δ[O(Tn−1x0,m− n+ 1)] = d(Tn−1x0, T
k1Tn−1x0). (3.2)

Again, by Lemma 3.3, we have

d(Tn−1x0, T
k1Tn−1x0) = d(TTn−2x0, T

k1+1Tn−2x0)

≤ q.δ[O(Tn−2x0, k1 + 1)]

≤ q.δ[O(Tn−2x0,m− n+ 2)].
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Then (3.2) becomes

δ[O(Tn−1x0,m− n+ 1)] ≤ q.δ[O(Tn−2x0,m− n+ 2)]. (3.3)

Therefore, from (3.1) and (3.3), we get

d(Tnx0, T
mx0) ≤ q.δ[O(Tn−1x0,m− n+ 1)]

≤ q2.δ[O(Tn−2x0,m− n+ 2)]

...

≤ qn.δ[O(x0,m)]

≤ qns

1− qs
d(x0, Tx0).

Since lim
n→∞

qn = 0, the sequence {Tnx0} is Cauchy in X. Since X is T -orbitally complete, there exists

u ∈ X such that
lim
n→∞

Tnx0 = u.

By the triangular inequality, we get

d(u, Tu) ≤ s[d(u, Tn+1x0) + d(Tu, Tn+1x0)]

= s[d(u, Tn+1x0) + d(Tu, TTnx0)]

≤ s[d(u, Tn+1x0) + α(u, Tnx0)d(Tu, TTnx0)]

≤ s[d(u, Tn+1x0) + qmax{d(Tnx0, u), d(Tnx0, TT
nx0), d(u, Tu), d(Tnx0, Tu),

d(u, TTnx0), d(T 2Tnx0, T
nx0), d(T 2Tnx0, TT

nx0), d(T 2Tnx0, u), d(T 2Tnx0, Tu)}]
= s[d(u, Tn+1x0) + qmax{d(Tnx0, u), d(Tnx0, T

n+1x0), d(u, Tu), d(Tnx0, Tu),

d(u, Tn+1x0), d(Tn+2x0, T
nx0), d(Tn+2x0, T

n+1x0), d(Tn+2x0, u), d(Tn+2x0, Tu)}]
≤ s[d(u, Tn+1x0) + qmax{d(Tnx0, u), s[d(Tnx0, u) + d(u, Tn+1x0)], d(u, Tu),

s[d(Tnx0, u) + d(u, Tu)], d(u, Tn+1x0), s[d(Tn+2x0, u) + d(u, Tnx0)],

s[d(Tn+2x0, u) + d(u, Tn+1x0)], d(Tn+2x0, u), s[d(Tn+2x0, u) + d(u, Tu)}].

By letting n→∞, we get

d(u, Tu) ≤ qsmax{d(u, Tu), sd(u, Tu)}
= qs2d(u, Tu).

Since q <
1

s2
, we get d(u, Tu) = 0. Hence u is a fixed point of T .

Corollary 3.6 ([21]). Let (X, d) be a complete b-metric space (with constant s ≥ 1), α : X ×X → [0,∞) a
functional and T : X → X be an α-quasi-contraction, that is,

α(x, y)d(Tx, Ty) ≤ qm(x, y)

for all x, y ∈ X, where 0 ≤ q < 1 and

m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Suppose that the following conditions hold:
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(i) T is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1.

If we set q <
1

s2 + s
, then T has a fixed point in X.

When α(x, y) = 1 for all x, y ∈ X, we obtain the following results:

Corollary 3.7. Theorem 1.4.

Corollary 3.8. Theorem 1.2.

The following example shows the generality of Theorem 3.5 over 1.4.

Example 3.9. Let X = [0, 4] be endowed with the b-metric d : X×X → [0,∞) defined by d(x, y) = |x−y|2.
Define T : X → X by

Tx =

{ x

4
if x ∈ [0, 1],

4 if x ∈ (1, 4],

and α : X ×X → [0,∞) by

α(x, y) =

{
2 if (x, y) ∈ [0, 1],
0 otherwise.

Then (X, d) is a T -orbitally complete b-metric space with s = 2.

If x, y ∈ [0, 1], then

α(x, y)d(Tx, Ty) = 2
∣∣∣x
4
− y

4

∣∣∣2
=

1

8
|x− y|2 = qd(x, y) ≤ qM(x, y),

where q =
1

8
<

1

4
=

1

s2
. If x ∈ [0, 1] and y ∈ (1, 4], then α(x, y)d(Tx, Ty) = 0 ≤ qM(x, y). Now, if x = 0

and y = 4, then d(T0, T4) = 16 = M(0, 4). Hence d(T0, T4) > qM(0, 4) for any q < 1. Therefore, the
contractive condition of Theorem 1.4 is not satisfied. Since α(x, y)d(Tx, Ty) = 0 ≤ qM(x, y), the mapping T
is a generalized α-quasi-contraction. Further, it is easy to check that T is triangular α-admissible. Therefore,
the mapping T satisfies all the conditions of Theorem 3.5 and x = 0 and x = 4 are the fixed points of T .

4. Geraghty type contractive mapping

In this section, we present some Geraghty type results for admissible mappings.

Definition 4.1 ([7]). Let X be a b-metric space, T : X → X and α, β : X × X → [0,∞). The mapping
T is said to be an (α, β)-admissible mapping, if α(x, y) ≥ 1 and β(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1 and
β(Tx, Ty) ≥ 1 for all x, y ∈ X.

Definition 4.2 ([7]). Let α, β : X×X → [0,∞). A b-metric space X is (α, β)-regular, if {xn} is a sequence
in X such that xn → x ∈ X, α(xn, xn+1) ≥ 1 and β(xn, xn+1) ≥ 1 for all n and there exists a subsequence
{xnk} of {xn} such that α(xnk

, xnk+1) ≥ 1, β(xnk
, xnk+1) ≥ 1 for all k ∈ N. Also α(x, Tx) ≥ 1, β(x, Tx) ≥ 1.

We need the following class of functions to prove certain results of this section:

1. Θ is a family of functions θ : [0,∞)→ [0, 1) such that for any bounded sequence {tn} of positive reals,
θ(tn)→ 1 implies tn → 0;

2. Ψ is a family of functions ψ : [0,∞) → [0,∞) such that ψ is continuous, strictly increasing and
ψ(0) = 0.
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Definition 4.3. Let X be a b-metric space, T : X → X and α, β : X×X → [0,∞). A mapping T is said to
be (α, β)-Geraghty type contractive mapping, if there exists θ ∈ Θ such that for all x, y ∈ X, the following
condition holds:

α(x, Tx)β(y, Ty)ψ(s3d(Tx, Ty)) ≤ θ(ψ(N(x, y)))ψ(N(x, y)), (4.1)

where N(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
and ψ ∈ Ψ.

Theorem 4.4. Let (X, d) be a complete b-metric space, T : X → X and α, β : X ×X → [0,∞). Suppose
the following conditions hold:

(A) T is an (α, β)-admissible mapping;

(B) T is an (α, β)-Geraghty type contractive mapping;

(C) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1;

(D) either T is continuous or X is (α, β)-regular.

Then T has a unique fixed point.

Proof. By assumption, there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1. Define a sequence
{xn} in X by xn = Tnx0 = Txn−1 for n ∈ N. It is obvious that if xnk

= xnk+1 for some nk ∈ N, then xnk
is

a fixed point of T and we are done. Suppose that xn 6= xn+1 for all n ∈ N. Since T is (α, β)-admissible, so

α(x0, Tx0) = α(x0, x1) ≥ 1⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1⇒ α(Tx1, Tx2) = α(x2, x3) ≥ 1.

By continuing this manner, we get α(xn, xn+1) ≥ 1 for all n ≥ 0. Similarly β(xn, xn+1) ≥ 1 for all n ≥ 0.
From (4.1), we have

ψ(d(xn+1, xn+2)) = ψ(d(Txn, Txn+1))

≤ ψ(s3d(Txn, Txn+1))

≤ α(xn, Txn)β(xn+1, Txn+1)ψ(s3d(Txn, Txn+1))

≤ θ(ψ(N(xn, xn+1)))ψ(N(xn, xn+1)),

where

N(xn, xn+1) = max

{
d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1),

d(xn, Txn+1) + d(xn+1, Txn)

2s

}
= max

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2) + d(xn+1, xn+1)

2s

}
= max{d(xn, xn+1), d(xn+1, xn+2)}.

Now, if N(xn, xn+1) = d(xn+1, xn+2), then

ψ(d(xn+1, xn+2)) ≤ θ(ψ(N(xn, xn+1)))ψ(N(xn, xn+1))

= θ(ψ(N(xn, xn+1)))ψ(d(xn+1, xn+2))

< ψ(d(xn+1, xn+2)),

a contradiction. Therefore N(xn, xn+1) = d(xn, xn+1). Now

ψ(d(xn+1, xn+2)) ≤ θ(ψ(N(xn, xn+1)))ψ(N(xn, xn+1)) (4.2)

= θ(ψ(N(xn, xn+1)))ψ(d(xn, xn+1))

< ψ(d(xn, xn+1)).

Since ψ is a strictly increasing mapping, the sequence {d(xn, xn+1)} is decreasing and bounded from
below. Thus, there exists r ≥ 0 such that

lim
n→∞

d(xn, xn+1) = r.
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From (4.2), we get
ψ(d(xn+1, xn+2))

ψ(N(xn, xn+1))
≤ θ(ψ(N(xn, xn+1))) < 1. (4.3)

By letting n→∞ in (4.3), we have 1 ≤ lim
n→∞

θ(ψ(N(xn, xn+1))) < 1.

That is, lim
n→∞

θ(ψ(N(xn, xn+1))) = 1 and θ ∈ Θ implies lim
n→∞

ψ(N(xn, xn+1)) = 0 which yields that

r = lim
n→∞

d(xn, xn+1) = 0. (4.4)

We show that {xn} is a Cauchy sequence in X. Suppose {xn} is not Cauchy. Then there exists ε > 0
and the subsequences {xmk

} and {xnk
} of {xn} with nk > mk > k such that

d(xnk
, xmk

) ≥ ε, (4.5)

and nk is the smallest number such that (4.5) holds. From (4.5) we get

d(xnk−1, xmk
) < ε. (4.6)

By using triangle inequality, (4.5) and (4.6) we have

ε ≤ d(xnk
, xmk

)

≤ s[d(xnk
, xnk−1) + d(xnk−1, xmk

)]

< s[d(xnk
, xnk−1) + ε]. (4.7)

By taking the upper limit as k →∞ in (4.7) and using (4.4), we get

ε ≤ lim sup
k→∞

d(xnk
, xmk

) < sε. (4.8)

From the triangle inequality, we have

d(xnk
, xmk

) ≤ s[d(xnk
, xnk+1) + d(xnk+1, xmk

)], (4.9)

and

d(xnk+1, xmk
) ≤ s[d(xnk+1, xnk

) + d(xnk
, xmk

)]. (4.10)

By taking the upper limit as k →∞ in (4.9) and applying (4.4), (4.8) becomes

ε ≤ s
(

lim sup
k→∞

d(xnk+1, xmk
)

)
,

and taking the upper limit as k →∞ in (4.10) gives

lim sup
k→∞

d(xnk+1, xmk
) ≤ s.sε = s2ε.

Thus
ε

s
≤ lim sup

k→∞
d(xnk+1, xmk

) ≤ s2ε. (4.11)

Similarly, we get
ε

s
≤ lim sup

k→∞
d(xnk

, xmk+1) ≤ s2ε. (4.12)

By triangular inequality, we have

d(xnk+1, xmk
) ≤ s[d(xnk+1, xmk+1) + d(xmk+1, xmk

)]. (4.13)
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By taking the upper limit as k →∞ in (4.13), from (4.4) and (4.11) we obtain that

ε

s
≤ s lim sup

k→∞
d(xnk+1, xmk+1).

That is,
ε

s2
≤ lim sup

k→∞
d(xnk+1, xmk+1). (4.14)

Again, by following the above process, we get

lim sup
k→∞

d(xnk+1, xmk+1) ≤ s3ε. (4.15)

From (4.14) and (4.15), we get

ε

s2
≤ lim sup

k→∞
d(xnk+1, xmk+1) ≤ s3ε.

Since X is (α, β)-regular, by (4.1) we have

ψ
(
s3d(xnk+1, xmk+1)

)
= ψ

(
s3d(Txnk

, Txmk
)
)

≤ α(xnk
, Txnk

)β(xmk
, Txmk

)ψ
(
s3d(Txnk

, Txmk
)
)

≤ θ (ψ(N(xnk
, xmk

)))ψ(N(xnk
, xmk

)),

where

N(xnk
, xmk

) = max

{
d(xnk

, xmk
), d(xnk

, Txnk
), d(xmk

, Txmk
),
d(xnk

, Txmk
) + d(xmk

, Txnk
)

2s

}
= max

{
d(xnk

, xmk
), d(xnk

, xnk+1), d(xmk
, xmk+1),

d(xnk
, xmk+1) + d(xmk

, xnk+1)

2s

}
.

By taking limit supremum as k →∞ in the above equation and using (4.4), (4.8), (4.11) and (4.12), we
obtain

ε = max

{
ε,

ε
s + ε

s

2s

}
≤ lim sup

k→∞
N(xnk

, xmk
) ≤ max

{
sε,

s2ε+ s2ε

2s

}
= sε.

Similarly, we can show that

ε = max

{
ε,

ε
s + ε

s

2s

}
≤ lim inf

k→∞
N(xnk

, xmk
) ≤ max

{
sε,

s2ε+ s2ε

2s

}
= sε.

Hence, it follows from (4.14) that

ψ(sε) = ψ
(
s3(

ε

s2
)
)

≤ ψ
(
s3 lim sup

k→∞
d(xnk+1, xmk+1)

)
≤ α(xnk

, xnk+1)β(xmk
, xmk+1)ψ

(
s3 lim sup

k→∞
d(xnk+1, xmk+1)

)
≤ θ

(
ψ(lim sup

k→∞
N(xnk

, xmk
))

)
ψ(lim sup

k→∞
N(xnk

, xmk
))

≤ θ (ψ(sε))ψ(sε)

< ψ(sε),
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which is a contradiction. Therefore {xn} is a Cauchy sequence. Since X is complete, there exists x∗ ∈ X
such that xn → x∗. First, suppose that T is continuous. Then we have

x∗ = lim
n→∞

xn+1 = lim
n→∞

Txn = T lim
n→∞

xn = Tx∗.

Now, suppose that X is (α, β)-regular. Then, there exists a subsequence {xnk
} of {xn} such that

α(xnk+1, xnk
) ≥ 1 and β(xnk+1, xnk

) ≥ 1 for all k ∈ N and α(x∗, Tx∗) ≥ 1 and β(x∗, Tx∗) ≥ 1. Now from
(4.1), with x = xnk

and y = x∗, we obtain

ψ(d(xnk+1, Tx
∗)) = ψ(d(Txnk

, Tx∗))

≤ ψ
(
s3d(Txnk

, Tx∗)
)

(4.16)

≤ α(xnk
, Txnk

)β(x∗, Tx∗)ψ
(
s3d(Txnk

, Tx∗)
)

≤ θ (ψ(N(xnk
, x∗))ψ(N(xnk

, x∗)),

where

N(xnk
, x∗) = max

{
d(xnk

, x∗), d(xnk
, Txnk

), d(x∗, Tx∗),
d(xnk

, Tx∗) + d(x∗, Txnk
)

2s

}
= max

{
d(xnk

, x∗), d(xnk
, xnk+1), d(x∗, Tx∗),

d(xnk
, Tx∗) + d(x∗, xnk+1)

2s

}
≤ max {d(xnk

, x∗), s[d(xnk
, x∗) + d(xnk+1, x

∗)], d(x∗, Tx∗),

s[d(xnk
, x∗) + d(x∗, Tx∗)] + d(x∗, xnk+1)

2s

}
.

By letting k →∞, we get

lim
k→∞

N(xnk
, x∗) ≤ max

{
d(x∗, Tx∗),

d(x∗, Tx∗)

2

}
= d(x∗, Tx∗).

Therefore, by taking the limit as k →∞ in (4.16), we get

ψ(d(x∗, Tx∗)) ≤ lim
k→∞

θ(ψ(N(xnk
, x∗)))ψ(d(x∗, Tx∗)).

That is, 1 ≤ lim
k→∞

θ(ψ(N(xnk
, x∗))), which implies that lim

k→∞
θ(ψ(N(xnk

, x∗))) = 1. Consequently, we

obtain lim
k→∞

N(xnk
, x∗) = 0. Hence d(x∗, Tx∗) = 0, that is, x∗ = Tx∗.

Further, suppose that x∗ and y∗ are two fixed points of T such that x∗ 6= y∗ and α(x∗, Tx∗) ≥ 1,
α(y∗, T y∗) ≥ 1 and β(x∗, Tx∗) ≥ 1, β(y∗, T y∗) ≥ 1. Now by applying (4.1), we have

ψ(d(x∗, y∗)) = ψ(d(Tx∗, Ty∗))

≤ ψ
(
s3d(Tx∗, T y∗)

)
≤ α(x∗, Tx∗)β(y∗, T y∗)ψ

(
s3d(Tx∗, T y∗)

)
≤ θ (ψ(N(x∗, y∗)))ψ(N(x∗, y∗)),

where

N(x∗, y∗) = max

{
d(x∗, y∗), d(x∗, Tx∗), d(y∗, T y∗),

d(x∗, T y∗) + d(y∗, Tx∗)

2s

}
= d(x∗, y∗).

Hence, ψ(d(x∗, y∗)) ≤ θ (ψ(N(x∗, y∗)))ψ(d(x∗, y∗)) < ψ(d(x∗, y∗)), which is a contradiction unless
d(x∗, y∗) = 0 and T has a unique fixed point.
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Corollary 4.5. Let (X, d) be a complete b-metric space, T : X → X and α, β : X ×X → [0,∞). Suppose
the following conditions hold:

(a) T is an α-admissible mapping;

(b) T is an α-Geraghty type contractive mapping;

(c) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(d) either T is continuous or X is α-regular.

Then T has a unique fixed point.

Example 4.6. Let X = [0,∞) be endowed with the b-metric d : X×X → [0,∞) defined by d(x, y) = |x−y|2.
Then (X, d) is a complete b-metric space with s = 2. Let T : X → X be defined by

Tx =

 1− x2

8
if x ∈ [0, 1],

2x otherwise.

Define α, β : X ×X → [0,∞), θ : [0,∞)→ [0, 1) and ψ : [0,∞)→ [0,∞) as

α(x, y) =

{ 3

2
if (x, y) ∈ [0, 1],

1 otherwise.
; β(x, y) =

{
1 if (x, y) ∈ [0, 1],
0 otherwise.

; θ(t) =
3

4
and ψ(t) = t.

First we show that T is an (α, β)-admissible mapping.
If x, y ∈ [0, 1], then α(x, y) > 1, β(x, y) ≥ 1, Tx ≤ 1 and Ty ≤ 1. By the definition of α and β, it follows

that α(Tx, Ty) > 1 and β(Tx, Ty) ≥ 1. Further, if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1,
β(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0} and xn → x ∈ X as n→∞, then xn ⊆ [0, 1] and hence x ∈ [0, 1]. This
implies that α(x, Tx) ≥ 1 and β(x, Tx) ≥ 1.

For x, y ∈ [0, 1], we have

α(x, Tx)β(y, Ty)ψ(s3d(Tx, Ty)) = 12|Tx− Ty|2

=
3

16
|x2 − y2|2 =

3

16
|x− y|2|x+ y|2 ≤ 3

4
|x− y|2

= θ(ψ(d(x, y)))ψ(d(x, y)) ≤ θ(ψ(M(x, y)))ψ(M(x, y)).

Hence the contractive condition of Theorem 4.4 is satisfied. If x, y ∈ (1,∞), then Tx > 1 and α(x, Tx) ≥
1. Then we have

α(x, Tx)ψ(s3d(Tx, Ty)) = 8|2x− 2y|2

= 32|x− y|2 > θ(ψ(M(x, y))ψ(M(x, y)).

Hence the contractive condition of Corollary 4.5 is not satisfied by T . However,

α(x, Tx)β(y, Ty)ψ(s3d(Tx, Ty)) = 0 ≤ θ(ψ(M(x, y)))ψ(M(x, y)).

Again, if x ∈ [0, 1] and y > 1, α(x, Tx)β(y, Ty)ψ(s3d(Tx, Ty)) = 0 ≤ θ(ψ(M(x, y)))ψ(M(x, y)). There-
fore, all the conditions of Theorem 4.4 are satisfied and T has a fixed point x∗ =

√
17− 4.

5. Applications to nonlinear integral equations

In this section, we discuss an application to nonlinear quadratic integral equation.

Consider the integral equation

x(t) = h(t) + λ

1∫
0

k(t, s)f(s, x(s))ds, t ∈ I = [0, 1], λ ≥ 0. (5.1)
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Also, consider the following conditions:

(a) h : I → R is a continuous function;
(b) f : I × R→ R is a continuous function, f(t, x) ≥ 0 and there exists a constant 0 ≤ L < 1 such that for

all x, y ∈ R,
|f(t, x)− f(t, y)| ≤ L|x(t)− y(t)|;

(c) k : I × I → R is continuous at t ∈ I for every s ∈ I and measurable at s ∈ I for all t ∈ I such that

k(t, x) ≥ 0 and
1∫
0

k(t, s)ds ≤ K;

(d) λpKpLp ≤ 1

23p−3
;

(e) the space X = C(I) of continuous functions defined on I = [0, 1] with the standard metric given by

ρ(x, y) = sup
t∈I
|x(t)− y(t)| for x, y ∈ C(I).

Now, for p ≥ 1, we define

d(x, y) = (ρ(x, y))p =

(
sup
t∈I
|x(t)− y(t)|

)p
= sup

t∈I
|x(t)− y(t)|p, for x, y ∈ C(I).

Then (X, d) is a complete b-metric space with s = 2p−1 (cf. [1, 3]).

Theorem 5.1. Under assumptions (a)-(e) the nonlinear quadratic integral equation (5.1) has a unique
solution in C(I).

Proof. Define an operator T : X → X by

Tx(t) = h(t) + λ

1∫
0

k(t, s)f(s, x(s))ds, t ∈ I = [0, 1], λ ≥ 0.

Now, for x, y ∈ X, we have

|Tx(t)− Ty(t)| =

∣∣∣∣∣∣h(t) + λ

1∫
0

k(t, s)f(s, x(s))ds− h(t)− λ
1∫

0

k(t, s)f(s, y(s))ds

∣∣∣∣∣∣
≤ λ

1∫
0

k(t, s)|f(s, x(s))− f(s, y(s))|ds

≤ λ
1∫

0

k(t, s)L|x(s)− y(s)|ds.

Since |x(s)− y(s)| ≤ sup
s∈I
|x(s)− y(s)| = ρ(x, y), we get

|Tx(t)− Ty(t)| ≤ λKLρ(x, y).

Now, we can write

d(Tx, Ty) = sup
t∈I
|Tx(t)− Ty(t)|p

≤ (λKL(p(x, y)))p

≤ λpKpLpd(x, y)

≤ 1

23p−3
M(x, y).

Therefore, all the assumptions of Corollary 3.7 are satisfied by the operator T and (5.1) has a unique
solution in C(I).
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Example 5.2. Consider the following functional integral equation:

x(t) =
t

1 + t2
+

1

18

1∫
0

s

9et(1 + t)

|x(s)|
1 + |x(s)|

ds, t ∈ I = [0, 1].

It is observed that the above equation is a special case of (5.1) with

h(t) =
t

1 + t2
,

k(t, s) =
s

1 + t
,

f(t, x) =
|x|

9et(1 + |x|)
.

Now, for arbitrary x, y ∈ R such that x ≥ y and for t ∈ [0, 1], we obtain

|f(t, x)− f(t, y)| =
∣∣∣∣ |x|
9et(1 + |x|)

− |y|
9et(1 + |y|)

∣∣∣∣
=

1

9et

∣∣∣∣ |x|1 + |x|
− |y|

1 + |y|

∣∣∣∣
≤ 1

9
|x− y|.

Thus, f satisfies condition (b) of the integral equation (5.1) with L =
1

9
. It can be easily seen that h is

a continuous function and k satisfies condition (c) with

1∫
0

k(t, s)ds =

1∫
0

s

1 + t
ds =

1

2(1 + t)
≤ 1

2
= K.

By substituting L =
1

9
, K =

1

2
and λ =

1

18
in condition (d), we obtain

1

9p
× 1

18p
× 1

2p
≤ 1

23p−3
.

The above inequality is true for each p ≥ 1. Consequently, all the conditions of Theorem 5.1 are satisfied
and hence the integral equation (5.1) has a unique solution in C(I).
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1549–1556. 1, 1.4, 1, 2.1, 2.2
[17] A. Latif, V. Parvaneh, P. Salimi, A. E. Al-Mazrooei, Various Suzuki type theorems in b-metric spaces, J. Nonlinear

Sci. Appl., 8 (2015), 363–377. 2, 2.8
[18] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226

(1977), 257–290. 1
[19] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for αψ-contractive type mappings, Nonlinear Anal., 75 (2012),

2154–2165. 1, 2.9
[20] S. L. Singh, C. Bhatnagar, S. N. Mishra, Stability of iterative procedures for multivalued maps in metric spaces,

Demonstratio Math., 37 (2005), 905–916. 2
[21] W. Sintunavarat, S. Plubtieng, P. Katchang, Fixed point result and applications on a b-metric space endowed with

an arbitrary binary relation, Fixed Point Theory Appl., 2013 (2013), 13 pages. 1, 3.6


	1  Introduction
	2  Preliminaries
	3 Generalized -quasi contraction
	4 Geraghty type contractive mapping
	5 Applications to nonlinear integral equations

