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Abstract

Viscosity approximate methods have recently received much attention due to the applications in convex
optimization problems. In this paper, we study a viscosity iterative algorithm with computational errors.
Strong convergence theorems of solutions are established in the framework of Hilbert spaces. The main
results presented in this paper improve the corresponding results announced recently. c©2016 All rights
reserved.
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1. Introduction

Variational inclusion problems have emerged as an effective and powerful tool for studying a wide class
of unrelated problems arising in various branches of social, physical, engineering, pure and applied sciences
in a unified and general framework, see, for example, [6, 7, 12]. Variational inclusion problems, which
include equilibrium problems, fixed point problems, saddle point problems, and complementarity problems
as special cases have been extended and generalized in different directions by using novel and innovative
techniques and ideas, both for their own sake and for their applications, see, for example, [1, 8, 9, 11, 13],
and the references therein. In the case that the given operator can be decomposed into the sum of two (or
more) maximal monotone operators, whose resolvents are easier to evaluate than the resolvent of the original
operator. Such a method is known as the operator splitting method. This can lead to the development of
very efficient methods, since one can treat each part of the original operator independently; see, for example,
[3, 10, 16], and the references therein. A useful feature of the forward-backward splitting method is that the
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resolvent step involves the subdifferential of the proper, convex and lower semicontinuous part only and the
other part facilitates the problem decomposition. The simplest of these is the resolvent method. Viscosity
approximation method, which was introduced by Moudafi [15], recently has received much attention due to
the applications in convex optimization problems; see, for example, [19–21], and the references therein.

In this article, we propose a viscosity splitting method for solving variational inclusion problems, fixed
point problems and equilibrium problems. Indeed, there are many problems needing more than one con-
straint. For these problems, we have to obtain some solution of a nonlinear problem which is also the solution
of other nonlinear problems. We establish a strong convergence theorem of solutions in the framework of
Hilbert spaces. The organization of this paper is as follows. In Section 2, we provide some necessary mathe-
matical preliminaries. In Section 3, a viscosity splitting algorithm with computational errors is investigated.
Some applications of the main results are also discussed in this section.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C be a nonempty
closed convex subset of H and let PC be the metric projection from H onto C.

Let S : C → H be a mapping. F (S) stands for the fixed point set of S. Recall that S is said to be
contractive iff there exists a constant κ ∈ (0, 1) such that

‖Sx− Sy‖ ≤ κ‖x− y‖, ∀x, y ∈ C.

S is said to be firmly nonexpansive iff

‖Sx− Sy‖2 ≤ 〈x− y, Sx− Sy〉, ∀x, y ∈ C.

It is known that PC is firmly nonexpansive. S is said to be nonexpansive iff

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

S is said to be strict pseudocontraction iff there exists a constant τ ∈ [0, 1) such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + τ‖(x− Tx)− (y − Ty)‖2, ∀x, y ∈ C.

The class of strict pseudocontractions was introduced by Browder and Petryshyn [5] in 1967. It is clear that
the class of strict pseudocontractions strictly include the class of nonexpansive mappings as a special cases.
It is also known that strict pseudocontraction is Lipschitz continuous; see [5] and the references therein.

Recall that S is said to be monotone iff

〈Sx− Sy, x− y〉 ≥ 0, ∀x, y ∈ C.

S is said to be strongly monotone iff there exists a constant α > 0 such that

〈Sx− Sy, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C.

For such a case, we say that S is an α-strongly monotone mapping. S is said to be inverse-strongly monotone
iff there exists a constant α > 0 such that

〈Sx− Sy, x− y〉 ≥ α‖Sx− Sy‖2, ∀x, y ∈ C.

For such a case, we say that S is an α-inverse-strongly monotone mapping. It is clear that S is inverse-
strongly monotone if and only if S−1 is strongly monotone.

A set-valued mapping T : H → 2H is said to be monotone iff for all x, y ∈ H, f ∈ Tx and g ∈ Ty imply
〈x − y, f − g〉 ≥ 0. A monotone mapping T : H → 2H is maximal iff the graph G(T ) of T is not properly
contained in the graph of any other monotone mapping. It is known that a monotone mapping T is maximal
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iff, for any (x, f) ∈ H ×H, 〈x − y, f − g〉 ≥ 0 for all (y, g) ∈ G(T ) implies f ∈ Tx. Let A be a monotone
mapping of C into H and NCv the normal cone to C at v ∈ C, i.e.,

NCv = {w ∈ H : 〈v − u,w〉 ≥ 0, ∀u ∈ C}

and define a mapping T on C by

Tv =

{
∅, v /∈ C,
Av +NCv, v ∈ C.

Then T is maximal monotone and 0 ∈ Tv iff 〈Av, u − v〉 ≥ 0 for all u ∈ C; see [17] and the references
therein. Let I denote the identity operator on H and B : H → 2H be a maximal monotone operator. Then
we can define, for each r > 0, a nonexpansive single valued mapping Jr : H → H by Jr = (I + rB)−1. It is
called the resolvent of B. We know that B−10 = F (Jr) for all r > 0 and Jr is firmly nonexpansive.

Let F be a bifunction of C × C into R, where R denotes the set of real numbers. We consider the
following equilibrium problem in the terminology of Blum and Oettli [4].

Find x ∈ C such that F (x, y) ≥ 0, ∀y ∈ C. (2.1)

In this paper, the set of such an x ∈ C is denoted by EP (F ), i.e., EP (F ) = {x ∈ C : F (x, y) ≥ 0, ∀y ∈ C}.
To study equilibrium problem (2.1), we may assume that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, lim supt↓0 F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semi-continuous.

In order to prove our main results, we also need the following lemmas.

Lemma 2.1 ([14]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn + δn + en,

where {γn} is a real number sequence in (0, 1) and {δn} and {en} are nonnegative real number sequences
such that

(i)
∑∞

n=1 γn =∞;

(ii) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=1 δn <∞;

(iii)
∑∞

n=1 en <∞.

Then limn→∞ αn = 0.

Lemma 2.2 ([4]). Let C be a nonempty closed convex subset of H and let F : C × C → R be a bifunction
satisfying (A1)-(A4). Then, for any r > 0 and x ∈ H, there exists z ∈ C such that

rF (z, y) + 〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, define
Trx = {z ∈ C : rF (z, y) + 〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all r > 0 and x ∈ H. Then, the followings hold:

(a) F (Tr) = EP (F ) is closed and convex.
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(b) Tr is single-valued;

(c) Tr is firmly nonexpansive,

Lemma 2.3 ([2]). Let C be a nonempty closed convex subset of H, let F : C × C → R be a bifunction
satisfying (A1)-(A4), and Tt and Ts are defined as in Lemma 2.2. Then

‖Tsx− Ttx‖ ≤
|s− t|
t
‖x− Ttx‖.

Lemma 2.4 ([18]). Let {xn} and {yn} be bounded sequences in H and let {βn} be a sequence in (0, 1) with
0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose that xn+1 = (1− βn)yn + βnxn for all integers n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.5 ([22]). Let C be a nonempty closed convex subset of H and let PC be the metric projection
from H onto C. Let T : C → H be a τ -strict pseudo-contraction with F (T ) 6= ∅. Then, F (PCT ) = F (T ).
Define S : C → H by Sx = kx+ (1− k)Tx for each x ∈ C. Then, as k ∈ [τ, 1), S : C → H is nonexpansive
such that F (S) = F (T ). Moreover, I − PCS is demiclosed at origin.

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let T : C → H be a strict
pseudocontraction with constant τ ∈ [0, 1) and let f : C → C be a contraction with constant κ ∈ (0, 1). Let F
be a bifunction from C×C to R which satisfies (A1)-(A4). Let A : C → H be an α-inverse-strongly monotone
mapping and let B : H → 2H be a maximal monotone mapping. Assume F (T )∩ (A+B)−1(0)∩EP (F ) 6= ∅.
Let {rn} and {sn} be positive real number sequences. Let {αn}, {βn}, {γn}, and {δn} be real number
sequences in (0, 1) such that αn + βn + γn = 1. Let {en} be a sequence in H such that

∑∞
n=1 ‖en‖ <∞. Let

{xn} be a sequence generated in the following process: x1 ∈ C,{
zn = PC(δnxn + (1− δn)Txn),

xn+1 = αnf(xn) + βnxn + γnyn, n ≥ 1,

where {yn} is a sequence in C such that snF (yn, y) + 〈y− yn, yn − Jrn
(
zn − rnAzn + en

)
〉 ≥ 0 for all y ∈ C.

Assume that the control sequences {αn}, {βn}, {δn}, {rn}, and {sn} satisfy the conditions: limn→∞ αn = 0,∑∞
n=1 αn = ∞, 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, 0 < lim infn→∞ sn, 0 < r ≤ rn ≤ r′ < 2α,

0 ≤ τ ≤ δn < 1, and limn→∞ |δn − δn+1| = limn→∞ |rn − rn+1| = limn→∞ |sn − sn+1| = 0, where r and r′

are real constants. Then {xn} converges strongly to q = PF (T )∩(A+B)−1(0)∩EP (F )f(q).

Proof. Fixing p ∈ F (T ) ∩ (A + B)−1(0) ∩ EP (F ), in view of Lemma 2.2, we find that p = Tp = Tsnp =
Jrn(p− rnAp) and yn = TsnJrn

(
zn − rnAzn + en). For any x, y ∈ C, we see that

‖(I − rnA)x− (I − rnA)y‖2 = ‖x− y‖2 − 2rn〈x− y,Ax−Ay〉+ r2
n‖Ax−Ay‖2

≤ ‖x− y‖2 − rn(2α− rn)‖Ax−Ay‖2.

By using the condition imposed on {rn}, we see that ‖(I − rnA)x− (I − rnA)y‖ ≤ ‖x− y‖. This proves that
I − rnA is nonexpansive. Put Tn = PC(δnI + (1 − δn)T ). In view of Lemma 2.5, we find that Tn : C → C
is nonexpansive with F (T ) = F (Tn) for every n ≥ 1. It follows that

‖xn+1 − p‖ ≤ αn‖f(xn)− p‖+ βn‖xn − p‖+ γn‖yn − p‖
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≤ αn‖xn − f(p)‖+ αn‖f(p)− p‖+ βn‖xn − p‖+ γn‖Jrn
(
zn − rnAzn + en)− Jrn

(
p− rnAp)‖

≤ αnκ‖xn − p‖+ αn‖f(p)− p‖+ βn‖xn − p‖+ γn‖
(
zn − rnAzn + en)−

(
p− rnAp)‖

≤ αnκ‖xn − p‖+ αn‖f(p)− p‖+ βn‖xn − p‖+ γn‖Tnxn − p‖+ γn‖en‖

≤ max{‖xn − p‖,
‖f(p)− p‖

1− κ
}+ ‖en‖

...

≤ max{‖x1 − p‖,
‖f(p)− p‖

1− κ
}+

∞∑
i=1

‖ei‖ <∞,

which implies that {xn} is bounded, so are {yn} and {zn}. Letting λn = xn+1−βnxn
1−βn , we have

‖λn+1 − λn‖ ≤
αn+1

1− βn+1
‖f(xn+1)− yn+1‖+

αn
1− βn

‖f(xn)− yn‖+ ‖yn+1 − yn‖. (3.1)

Put un = zn − rnAzn + en. Since B is monotone, we see that

〈Jrn+1un − Jrnun,
un − Jrn+1un

rn+1
− un − Jrnun

rn
〉 ≥ 0.

It follows that
〈Jrn+1un − Jrnun, (1−

rn+1

rn
)(un − Jrnun)〉 ≥ ‖Jrn+1un − Jrnun‖2.

This in turn implies that
|rn+1 − rn|

rn
‖un − Jrnun‖ ≥ ‖Jrn+1un − Jrnun‖. (3.2)

Putting ζn = Jrn(zn − rnAzn + en), we have

‖ζn+1 − ζn‖ ≤ ‖Jrn+1

(
zn+1 − rn+1Azn+1 + en+1)− Jrn+1

(
zn − rnAzn + en)‖

+ ‖Jrn+1

(
zn − rnAzn + en)− Jrn

(
zn − rnAzn + en)‖

≤ ‖
(
zn+1 − rn+1Azn+1 + en+1)−

(
zn − rnAzn + en)‖+ ‖Jrn+1un − Jrnun‖.

(3.3)

Substituting (3.2) into (3.3), we find that

‖ζn+1 − ζn‖ ≤ ‖
(
zn+1 − rn+1Azn+1 + en+1

)
−
(
zn − rnAzn + en

)
‖+
|rn+1 − rn|

rn
‖un − Jrnun‖

≤ ‖zn+1 − zn‖+ ‖(zn − rn+1Azn)− (zn − rnAzn)‖

+
|rn+1 − rn|

rn
‖un − Jrnun‖+ ‖en+1‖+ ‖en‖

≤ ‖zn+1 − zn‖+ |rn+1 − rn|(‖Azn‖+
‖un − Jrnun‖

rn
) + ‖en+1‖+ ‖en‖.

(3.4)

Hence, we have

‖yn+1 − yn‖ ≤ ‖Tsn+1Jrn+1

(
zn+1 − rn+1Azn+1 + en+1)− Tsn+1Jrn

(
zn − rnAzn + en)‖

+ ‖Tsn+1Jrn
(
zn − rnAzn + en)− TsnJrn

(
zn − rnAzn + en)‖

≤ ‖ζn+1 − ζn‖+
‖Tsnζn − ζn‖

sn
|sn+1 − sn|.

(3.5)

Combining (3.4) with (3.5), we find that

‖yn+1 − yn‖ ≤ ‖zn+1 − zn‖+ |rn+1 − rn|(‖Azn‖+
‖un − Jrnun‖

rn
) + ‖en+1‖

+ ‖en‖+
‖Tsnζn − ζn‖

sn
|sn+1 − sn|.

(3.6)
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On the other hand, we have

‖zn+1 − zn‖ ≤ ‖xn+1 − xn‖+ ‖Tn+1xn − Tnxn‖
≤ ‖xn+1 − xn‖+ ‖(δn+1xn + (1− δn+1)Txn)− (δnxn + (1− δn)Txn)‖
≤ ‖xn+1 − xn‖+ |δn+1 − δn|‖Txn − xn‖.

From (3.6), we find

‖yn+1 − yn‖ ≤ ‖xn+1 − xn‖+ |δn+1 − δn|‖Txn − xn‖+ |rn+1 − rn|(‖Azn‖+
‖un − Jrnun‖

rn
)

+ ‖en+1‖+ ‖en‖+
‖Tsnζn − ζn‖

sn
|sn+1 − sn|,

which together with (3.1) yields that

‖λn+1 − λn‖ − ‖xn+1 − xn‖ ≤
αn+1

1− βn+1
‖f(xn+1)− yn+1‖+

αn
1− βn

‖f(xn)− yn‖+ ξn,

where ξn = |δn+1−δn|‖Txn−xn‖+ |rn+1−rn|(‖Azn‖+ ‖un−Jrnun‖rn
)+‖en+1‖+‖en‖+ ‖Tsnζn−ζn‖sn

|sn+1−sn|.
This implies that

lim sup
n→∞

(
‖λn+1 − λn‖ − ‖xn+1 − xn‖

)
= 0.

Using Lemma 2.4, we see that limn→∞ ‖λn − xn‖ = 0, which in turn implies that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.7)

Since Jrn is firmly nonexpansive, we find that

‖ζn − p‖2 ≤ 〈
(
zn − rnAzn + en)−

(
p− rnAp), ζn − p〉

=
1

2

(
‖
(
zn − rnAzn + en)−

(
p− rnAp)‖2 + ‖ζn − p‖2

− ‖
(
(zn − rnAzn + en)−

(
p− rnAp)

)
− (ζn − p)‖2

)
≤ 1

2

(
‖zn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖) + ‖ζn − p‖2 − ‖zn − ζn − rn(Azn −Ap) + en‖2

)
≤ 1

2

(
‖zn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖) + ‖ζn − p‖2 − ‖zn − ζn‖2

− ‖rn(Azn −Ap)− en‖2 + 2‖zn − ζn‖‖rn(Azn −Ap)− en‖
)

≤ 1

2

(
‖xn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖) + ‖ζn − p‖2 − ‖zn − ζn‖2

− ‖rn(Azn −Ap)− en‖2 + 2‖zn − ζn‖‖rn(Azn −Ap)− en‖
)
.

This implies that
‖ζn − p‖2 ≤ ‖xn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖)− ‖zn − ζn‖2

+ 2rn‖zn − ζn‖‖Azn −Ap‖+ 2‖zn − ζn‖‖en‖.
(3.8)

Since A is inverse-strongly monotone, we find that

‖ζn − p‖2 ≤ ‖(zn − rnAzn)− (p− rnAp) + en‖2

≤ ‖(zn − p)− rn(Azn −Ap)‖2 + ‖en‖(‖en‖+ 2‖zn − p‖)
≤ ‖zn − p‖2 − rn(2αn − rn)‖Azn −Ap‖2 + ‖en‖(‖en‖+ 2‖zn − p‖)
≤ ‖xn − p‖2 − rn(2αn − rn)‖Azn −Ap‖2 + ‖en‖(‖en‖+ 2‖zn − p‖).
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Hence, we have

‖xn+1 − p‖2 ≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn‖yn − p‖2

≤ αn‖f(xn)− p‖2 + ‖xn − p‖2 − rn(2αn − rn)γn‖Axn −Ap‖2 + ‖en‖(‖en‖+ 2‖en‖‖xn − p‖).

Using the conditions imposed on the control sequences, we find from (3.7) that limn→∞ ‖Axn − Ap‖ = 0.
From (3.8), we have

‖xn+1 − p‖2 ≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn‖yn − p‖2

≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn‖ζn − p‖2

≤ αn‖f(xn)− p‖2 + ‖xn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖)− γn‖zn − ζn‖2

+ 2rn‖zn − ζn‖‖Azn −Ap‖+ 2‖zn − ζn‖‖en‖.

It follows that

γn‖zn − ζn‖2 ≤ αn‖f(xn)− p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖+ 2‖zn − ζn‖)
+ 2rn‖zn − xn‖‖Azn −Ap‖+ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖).

This implies that
lim
n→∞

‖zn − ζn‖ = 0.

On the other hand, we have

‖yn − p‖2 ≤
1

2

(
‖ζn − p‖2 + ‖yn − p‖2 − ‖yn − ζn‖2

)
.

That is,
‖yn − p‖2 ≤ ‖ζn − p‖2 − ‖yn − ζn‖2

≤ ‖zn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖)− ‖yn − ζn‖2

≤ ‖xn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖)− ‖yn − ζn‖2.

It follows that

‖xn+1 − p‖2 ≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn‖yn − p‖2

≤ αn‖f(xn)− p‖2 + ‖xn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖)− γn‖yn − ζn‖2.

This implies that

γn‖yn − ζn‖2 ≤ αn‖f(xn)− p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖+ ‖en‖(‖en‖+ 2‖zn − p‖).

From (3.7), we find
lim
n→∞

‖ζn − yn‖ = 0.

Note that ‖yn−xn‖ ≤ ‖xn+1−xn‖
γn

+ αn
γn
‖f(xn)−xn‖. It follows that limn→∞ ‖xn−yn‖ = 0. Since PΓf , where

Γ = F (T ) ∩ (A+B)−1(0) ∩EP (F ), is a contractive operator, we see that there exists a unique fixed point.
Next, we denote the unique fixed point of PΓf by q, that is, q = PΓf(q). Now, we are in a position to

show lim supn→∞〈xn − q, f(q)− q〉 ≤ 0. To show it, we can choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈xn − q, f(q)− q〉 = lim
i→∞
〈xni − q, f(q)− q〉.

Since {xni} is bounded, we can choose a subsequence {xnij
} of {xni} which converges weakly to some point

x̄. We may assume, without loss of generality, that {xni} converges weakly to x̄. Now, we are in a position
to show x̄ ∈ F (T ) ∩ (A+B)−1(0) ∩ EP (F ).
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First, we prove x̄ ∈ (A+B)−1(0). Notice that

zn − ζn + en
rn

−Azn ∈ Bζn.

Let µ ∈ Bν. Since B is monotone, we find that〈
zn − ζn + en

rn
−Azn − µ, ζn − ν

〉
≥ 0.

It follows that 〈−Ax̄− µ, x̄− ν〉 ≥ 0. This implies that −Ax̄ ∈ Bx̄, that is, x̄ ∈ (A+B)−1(0).
Next, we prove x̄ ∈ F (T ). From the restriction on {δn}, we find δn → δ ∈ [τ, 1). Define S : C → H by

Sx = δx+ (1− δ)Tx. Then, S is a nonexpansive mapping with F (S) = F (T ) = F (PCS). Note that

‖PCSxn − xn‖ ≤ ‖xn − zn‖+ ‖Tnxn − PCSxn‖
≤ ‖xn − zn‖+ ‖(δnxn + (1− δn)Txn)− Sxn‖
≤ ‖xn − zn‖+ |δn − δ|‖Txn − xn‖.

This shows that limn→∞ ‖PCSxn − xn‖ = 0. From Lemma 2.5, we have x̄ ∈ F (PCS) = F (T ).
Finally, we prove x̄ ∈ EP (F ). Notice that

snF (yn, y) + 〈y − yn, yn − ζn〉 ≥ 0, ∀y ∈ C.

By using condition (A2), we see that 〈y − yn, yn − ζn〉 ≥ snF (y, yn) for all y ∈ C. Replacing n by ni, we
arrive at

〈y − yni ,
yni − ζni

sni

〉 ≥ F (y, yni), ∀y ∈ C.

By using the condition lim infn→∞ sn > 0, we find that 0 ≥ F (y, x̄). This proves that x̄ ∈ EP (F ). This
shows that lim supn→∞〈xn − q, f(q)− q〉 ≤ 0. Note that

‖xn+1 − q‖2 ≤ αn〈f(xn)− q, xn+1 − q〉+ βn‖xn − q‖‖xn+1 − q‖+ γn‖yn − q‖‖xn+1 − q‖
≤ αn〈f(xn)− f(q), xn+1 − q〉+ αn〈f(q)− q, xn+1 − q〉

+ βn‖xn − q‖‖xn+1 − q‖+ γn(‖xn − q‖+ en)‖xn+1 − q‖

≤ αnκ+ βn + γn
2

(‖xn − q‖2 + ‖xn+1 − q‖2) + αn〈f(q)− q, xn+1 − q〉+ en‖xn+1 − q‖.

It follows that

‖xn+1 − q‖2 ≤
(
1− αn(1− κ)

)
‖xn − q‖2 + 2αn〈f(q)− q, xn+1 − q〉+ 2‖xn+1 − q‖en.

From Lemma 2.1, we find that limn→∞ ‖xn − q‖ = 0. This completes the proof.

From Theorem 3.1, we have the following results immediately.

Corollary 3.2. Let C be a nonempty closed convex subset of a Hilbert space H. Let f : C → C be a
contraction with constant κ ∈ (0, 1). Let F be a bifunction from C × C to R which satisfies (A1)-(A4).
Assume F (T )∩EP (F ) 6= ∅. Let {sn} be a positive real number sequence. Let {αn}, {βn}, {γn}, and {δn} be
real number sequences in (0, 1) such that αn+βn+γn = 1. Let {en} be a sequence in H such that

∑∞
n=1 ‖en‖ <

∞. Let {xn} be a sequence generated in the following process: x1 ∈ C, xn+1 = αnf(xn)+βnxn+γnyn, n ≥ 1,
where {yn} is a sequence in C such that snF (yn, y)+〈y−yn, yn−zn−en〉 ≥ 0 for all y ∈ C. Assume that the
control sequences {αn}, {βn}, {δn}, {rn}, and {sn} satisfy the conditions: limn→∞ αn = 0,

∑∞
n=1 αn =∞,

0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, 0 < lim infn→∞ sn, 0 < r ≤ rn ≤ r′ < 2α, 0 ≤ τ ≤ δn < 1,
and limn→∞ |δn − δn+1| = limn→∞ |sn − sn+1| = 0, where r and r′ are real constants. Then {xn} converges
strongly to q = PF (T )∩EP (F )f(q).
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Corollary 3.3. Let C be a nonempty closed convex subset of a Hilbert space H. Let f : C → C be a
contraction with constant κ ∈ (0, 1). Let F be a bifunction from C × C to R which satisfies (A1)-(A4).
Let A : C → H be an α-inverse-strongly monotone mapping and let B : H → 2H be a maximal monotone
mapping. Assume (A + B)−1(0) ∩ EP (F ) 6= ∅. Let {rn} and {sn} be positive real number sequences.
Let {αn}, {βn}, and {γn} be real number sequences in (0, 1) such that αn + βn + γn = 1. Let {en} be
a sequence in H such that

∑∞
n=1 ‖en‖ < ∞. Let {xn} be a sequence generated in the following process:

x1 ∈ C, xn+1 = αnf(xn) + βnxn + γnyn, n ≥ 1, where {yn} is a sequence in C such that snF (yn, y) + 〈y −
yn, yn − Jrn

(
zn − rnAzn + en

)
〉 ≥ 0 for all y ∈ C. Assume that the control sequences {αn}, {βn}, {rn},

and {sn} satisfy the conditions: limn→∞ αn = 0,
∑∞

n=1 αn = ∞, 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
0 < lim infn→∞ sn, 0 < r ≤ rn ≤ r′ < 2α, and limn→∞ |rn − rn+1| = limn→∞ |sn − sn+1| = 0, where r and
r′ are real constants. Then {xn} converges strongly to q = P(A+B)−1(0)∩EP (F )f(q).

Corollary 3.4. Let C be a nonempty closed convex subset of a Hilbert space H. Let T : C → H be a strict
pseudocontraction with constant τ ∈ [0, 1) and let f : C → C be a contraction with constant κ ∈ (0, 1).
Let A : C → H be an α-inverse-strongly monotone mapping and let B : H → 2H be a maximal monotone
mapping such that its domain is in C. Assume F (T )∩ (A+B)−1(0) 6= ∅. Let {rn} be a positive real number
sequence. Let {αn}, {βn}, {γn}, and {δn} be real number sequences in (0, 1) such that αn + βn + γn = 1.
Let {en} be a sequence in H such that

∑∞
n=1 ‖en‖ < ∞. Let {xn} be a sequence generated in the following

process: x1 ∈ C, {
zn = PC(δnxn + (1− δn)Txn),

xn+1 = αnf(xn) + βnxn + γnJrn
(
zn − rnAzn + en

)
, n ≥ 1.

Assume that the control sequences {αn}, {βn}, {δn}, {rn} satisfy the conditions: limn→∞ αn = 0,
∑∞

n=1 αn =
∞, 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, 0 < r ≤ rn ≤ r′ < 2α, 0 ≤ τ ≤ δn < 1, and limn→∞ |δn −
δn+1| = limn→∞ |rn − rn+1| = 0, where r and r′ are real constants. Then {xn} converges strongly to
q = PF (T )∩(A+B)−1(0)f(q).

Let G be a bifunction from C ×C to R which satisfies (A1)-(A4), and let W be a multivalued mapping
of H into itself defined by

Wx =

{
{z ∈ H : G(x, y) ≥ 〈y − x, z〉 ∀y ∈ C}, x ∈ C,
∅, x /∈ C.

Then W is a maximal monotone operator with the domain D(W ) ⊂ C and EP (G) = W−1(0). Hence, we
have the following result on common solutions of a pair of equilibrium problems.

Corollary 3.5. Let C be a nonempty closed convex subset of a Hilbert space H. Let f : C → C be a
contraction with constant κ ∈ (0, 1). Let F and G be two bifunctions from C × C to R which satisfies
(A1)-(A4). Assume EP (G) ∩ EP (F ) 6= ∅. Let {rn} and {sn} be positive real number sequences. Let {αn},
{βn}, and {γn} be real number sequences in (0, 1) such that αn + βn + γn = 1. Let {en} be a sequence in H
such that

∑∞
n=1 ‖en‖ <∞. Let {xn} be a sequence generated in the following process: x1 ∈ C,{

zn = (I + rnW )−1(xn + en),

xn+1 = αnf(xn) + βnxn + γnyn, n ≥ 1,

where {yn} is a sequence in C such that snF (yn, y) + 〈y − yn, yn − zn〉 ≥ 0 for all y ∈ C. Assume that
the control sequences {αn}, {βn}, {rn}, and {sn} satisfy the conditions: limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, 0 < lim infn→∞ sn, 0 < r ≤ rn ≤ r′ < 2α, and limn→∞ |rn −
rn+1| = limn→∞ |sn − sn+1| = 0, where r and r′ are real constants. Then {xn} converges strongly to
q = PEP (G)∩EP (F )f(q).
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